Facebook
TwitterThe statistic shows the problems caused by poor quality data for enterprises in North America, according to a survey of North American IT executives conducted by 451 Research in 2015. As of 2015, ** percent of respondents indicated that having poor quality data can result in extra costs for the business.
Facebook
Twitter
According to our latest research, the global Real-Time Data Quality Monitoring AI market size reached USD 1.82 billion in 2024, reflecting robust demand across multiple industries. The market is expected to grow at a CAGR of 19.4% during the forecast period, reaching a projected value of USD 8.78 billion by 2033. This impressive growth trajectory is primarily driven by the increasing need for accurate, actionable data in real time to support digital transformation, compliance, and competitive advantage across sectors. The proliferation of data-intensive applications and the growing complexity of data ecosystems are further fueling the adoption of AI-powered data quality monitoring solutions worldwide.
One of the primary growth factors for the Real-Time Data Quality Monitoring AI market is the exponential increase in data volume and velocity generated by digital business processes, IoT devices, and cloud-based applications. Organizations are increasingly recognizing that poor data quality can have significant negative impacts on business outcomes, ranging from flawed analytics to regulatory penalties. As a result, there is a heightened focus on leveraging AI-driven tools that can continuously monitor, cleanse, and validate data streams in real time. This shift is particularly evident in industries such as BFSI, healthcare, and retail, where real-time decision-making is critical and the cost of errors can be substantial. The integration of machine learning algorithms and natural language processing in data quality monitoring solutions is enabling more sophisticated anomaly detection, pattern recognition, and predictive analytics, thereby enhancing overall data governance frameworks.
Another significant driver is the increasing regulatory scrutiny and compliance requirements surrounding data integrity and privacy. Regulations such as GDPR, HIPAA, and CCPA are compelling organizations to implement robust data quality management systems that can provide audit trails, ensure data lineage, and support automated compliance reporting. Real-Time Data Quality Monitoring AI tools are uniquely positioned to address these challenges by providing continuous oversight and immediate alerts on data quality issues, thereby reducing the risk of non-compliance and associated penalties. Furthermore, the rise of cloud computing and hybrid IT environments is making it imperative for enterprises to maintain consistent data quality across disparate systems and geographies, further boosting the demand for scalable and intelligent monitoring solutions.
The growing adoption of advanced analytics, artificial intelligence, and machine learning across industries is also contributing to market expansion. As organizations seek to leverage predictive insights and automate business processes, the need for high-quality, real-time data becomes paramount. AI-powered data quality monitoring solutions not only enhance the accuracy of analytics but also enable proactive data management by identifying potential issues before they impact downstream applications. This is particularly relevant in sectors such as manufacturing and telecommunications, where operational efficiency and customer experience are closely tied to data reliability. The increasing investment in digital transformation initiatives and the emergence of Industry 4.0 are expected to further accelerate the adoption of real-time data quality monitoring AI solutions in the coming years.
From a regional perspective, North America continues to dominate the Real-Time Data Quality Monitoring AI market, accounting for the largest revenue share in 2024, followed by Europe and Asia Pacific. The presence of leading technology providers, early adoption of AI and analytics, and stringent regulatory frameworks are key factors driving market growth in these regions. Asia Pacific is anticipated to witness the highest CAGR during the forecast period, fueled by rapid digitalization, expanding IT infrastructure, and increasing investments in AI technologies across countries such as China, India, and Japan. Meanwhile, Latin America and the Middle East & Africa are emerging as promising markets, supported by growing awareness of data quality issues and the gradual adoption of advanced data management solutions.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset is an expanded version of the popular "Sample - Superstore Sales" dataset, commonly used for introductory data analysis and visualization. It contains detailed transactional data for a US-based retail company, covering orders, products, and customer information.
This version is specifically designed for practicing Data Quality (DQ) and Data Wrangling skills, featuring a unique set of real-world "dirty data" problems (like those encountered in tools like SPSS Modeler, Tableau Prep, or Alteryx) that must be cleaned before any analysis or machine learning can begin.
This dataset combines the original Superstore data with 15,000 plausibly generated synthetic records, totaling 25,000 rows of transactional data. It includes 21 columns detailing: - Order Information: Order ID, Order Date, Ship Date, Ship Mode. - Customer Information: Customer ID, Customer Name, Segment. - Geographic Information: Country, City, State, Postal Code, Region. - Product Information: Product ID, Category, Sub-Category, Product Name. - Financial Metrics: Sales, Quantity, Discount, and Profit.
This dataset is intentionally corrupted to provide a robust practice environment for data cleaning. Challenges include: Missing/Inconsistent Values: Deliberate gaps in Profit and Discount, and multiple inconsistent entries (-- or blank) in the Region column.
Data Type Mismatches: Order Date and Ship Date are stored as text strings, and the Profit column is polluted with comma-formatted strings (e.g., "1,234.56"), forcing the entire column to be read as an object (string) type.
Categorical Inconsistencies: The Category field contains variations and typos like "Tech", "technologies", "Furni", and "OfficeSupply" that require standardization.
Outliers and Invalid Data: Extreme outliers have been added to the Sales and Profit fields, alongside a subset of transactions with an invalid Sales value of 0.
Duplicate Records: Over 200 rows are duplicated (with slight financial variations) to test your deduplication logic.
This dataset is ideal for:
Data Wrangling/Cleaning (Primary Focus): Fix all the intentional data quality issues before proceeding.
Exploratory Data Analysis (EDA): Analyze sales distribution by region, segment, and category.
Regression: Predict the Profit based on Sales, Discount, and product features.
Classification: Build an RFM Model (Recency, Frequency, Monetary) and create a target variable (HighValueCustomer = 1 if total sales are* $>$ $1000$*) to be predicted by logistical regression or decision trees.
Time Series Analysis: Aggregate sales by month/year to perform forecasting.
This dataset is an expanded and corrupted derivative of the original Sample Superstore dataset, credited to Tableau and widely shared for educational purposes. All synthetic records were generated to follow the plausible distribution of the original data.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Curtailment dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT The exponential increase of published data and the diversity of systems require the adoption of good practices to achieve quality indexes that enable discovery, access, and reuse. To identify good practices, an integrative review was used, as well as procedures from the ProKnow-C methodology. After applying the ProKnow-C procedures to the documents retrieved from the Web of Science, Scopus and Library, Information Science & Technology Abstracts databases, an analysis of 31 items was performed. This analysis allowed observing that in the last 20 years the guidelines for publishing open government data had a great impact on the Linked Data model implementation in several domains and currently the FAIR principles and the Data on the Web Best Practices are the most highlighted in the literature. These guidelines presents orientations in relation to various aspects for the publication of data in order to contribute to the optimization of quality, independent of the context in which they are applied. The CARE and FACT principles, on the other hand, although they were not formulated with the same objective as FAIR and the Best Practices, represent great challenges for information and technology scientists regarding ethics, responsibility, confidentiality, impartiality, security, and transparency of data.
Facebook
Twitter
According to our latest research, the global Loan Data Quality Solutions market size reached USD 2.43 billion in 2024, reflecting a robust demand for advanced data management in the financial sector. The market is expected to grow at a CAGR of 13.4% during the forecast period, reaching a projected value of USD 7.07 billion by 2033. This impressive growth is primarily driven by the increasing need for accurate, real-time loan data to support risk management, regulatory compliance, and efficient lending operations across banks and financial institutions. As per our latest analysis, the proliferation of digital lending platforms and the tightening of global regulatory frameworks are major catalysts accelerating the adoption of loan data quality solutions worldwide.
A critical growth factor in the Loan Data Quality Solutions market is the escalating complexity of financial regulations and the corresponding need for robust compliance mechanisms. Financial institutions are under constant pressure to comply with evolving regulatory mandates such as Basel III, GDPR, and Dodd-Frank. These regulations demand the maintenance of high-quality, auditable data throughout the loan lifecycle. As a result, banks and lending organizations are increasingly investing in sophisticated data quality solutions that ensure data integrity, accuracy, and traceability. The integration of advanced analytics and artificial intelligence into these solutions further enhances their ability to detect anomalies, automate data cleansing, and streamline regulatory reporting, thereby reducing compliance risk and operational overhead.
Another significant driver is the rapid digital transformation sweeping through the financial services industry. The adoption of cloud-based lending platforms, automation of loan origination processes, and the rise of fintech disruptors have collectively amplified the volume and velocity of loan data generated daily. This surge necessitates efficient data integration, cleansing, and management to derive actionable insights and maintain competitive agility. Financial institutions are leveraging loan data quality solutions to break down data silos, enable real-time decision-making, and deliver seamless customer experiences. The ability to unify disparate data sources and ensure data consistency across applications is proving invaluable in supporting product innovation and enhancing risk assessment models.
Additionally, the growing focus on customer centricity and personalized lending experiences is fueling the demand for high-quality loan data. Accurate borrower profiles, transaction histories, and credit risk assessments are crucial for tailoring loan products and improving portfolio performance. Loan data quality solutions empower banks and lenders to maintain comprehensive, up-to-date customer records, minimize errors in loan processing, and reduce the incidence of fraud. The deployment of machine learning and predictive analytics within these solutions is enabling proactive identification of data quality issues, thereby supporting strategic decision-making and fostering long-term customer trust.
In the evolving landscape of financial services, the integration of a Loan Servicing QA Platform has become increasingly vital. This platform plays a crucial role in ensuring the accuracy and efficiency of loan servicing processes, which are integral to maintaining high standards of data quality. By automating quality assurance checks and providing real-time insights, these platforms help financial institutions mitigate risks associated with loan servicing errors. The use of such platforms not only enhances operational efficiency but also supports compliance with stringent regulatory requirements. As the demand for seamless and error-free loan servicing continues to grow, the adoption of Loan Servicing QA Platforms is expected to rise, further driving the need for comprehensive loan data quality solutions.
From a regional perspective, North America currently dominates the Loan Data Quality Solutions market, accounting for the largest revenue share in 2024. The regionÂ’s mature financial ecosystem, early adoption of digital technologies, and stringent regulatory landscape underpin robust market growth. Europe follows closely, driven by regulatory harmonization and incre
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Telecom Data Quality Platform market size reached USD 2.62 billion in 2024, driven by increasing data complexity and the need for enhanced data governance in the telecom sector. The market is projected to grow at a robust CAGR of 13.7% from 2025 to 2033, reaching a forecasted value of USD 8.11 billion by 2033. This remarkable growth is fueled by the rapid expansion of digital services, the proliferation of IoT devices, and the rising demand for high-quality, actionable data to optimize network performance and customer experience.
The primary growth factor for the Telecom Data Quality Platform market is the escalating volume and complexity of data generated by telecom operators and service providers. With the advent of 5G, IoT, and cloud-based services, telecom companies are managing unprecedented amounts of structured and unstructured data. This surge necessitates advanced data quality platforms that can efficiently cleanse, integrate, and enrich data to ensure it is accurate, consistent, and reliable. Inaccurate or incomplete data can lead to poor decision-making, customer dissatisfaction, and compliance risks, making robust data quality solutions indispensable in the modern telecom ecosystem.
Another significant driver is the increasing regulatory scrutiny and compliance requirements in the telecommunications industry. Regulatory bodies worldwide are imposing stringent data governance standards, compelling telecom operators to invest in data quality platforms that facilitate data profiling, monitoring, and lineage tracking. These platforms help organizations maintain data integrity, adhere to data privacy regulations such as GDPR, and avoid hefty penalties. Additionally, the integration of artificial intelligence and machine learning capabilities into data quality platforms is helping telecom companies automate data management processes, detect anomalies, and proactively address data quality issues, further stimulating market growth.
The evolution of customer-centric business models in the telecom sector is also contributing to the expansion of the Telecom Data Quality Platform market. Telecom operators are increasingly leveraging advanced analytics and personalized services to enhance customer experience and reduce churn. High-quality data is the cornerstone of these initiatives, enabling accurate customer segmentation, targeted marketing, and efficient service delivery. As telecom companies continue to prioritize digital transformation and customer engagement, the demand for comprehensive data quality solutions is expected to soar in the coming years.
From a regional perspective, North America currently dominates the Telecom Data Quality Platform market, accounting for the largest market share in 2024, followed closely by Europe and Asia Pacific. The presence of major telecom operators, rapid technological advancements, and early adoption of data quality solutions are key factors driving market growth in these regions. Meanwhile, Asia Pacific is anticipated to exhibit the fastest growth rate during the forecast period, propelled by the expanding telecom infrastructure, rising mobile penetration, and increasing investments in digital transformation initiatives across emerging economies such as China and India.
The Telecom Data Quality Platform market by component is categorized into software and services. The software segment encompasses standalone platforms and integrated solutions designed to automate data cleansing, profiling, and enrichment processes. Telecom operators are increasingly investing in advanced software solutions that leverage artificial intelligence and machine learning to enhance data quality management, automate repetitive tasks, and provide real-time insights into data anomalies. These platforms are designed to handle large volumes of heterogeneous data, ensuring data accuracy and consistency across multiple sources, which is essential for efficient network operations and strategic decision-making.
The services segment, on the other hand, includes consulting, implementation, support, and maintenance services. As telecom companies embark on digital transformation journeys, the demand for specialized services to customize and integrate data quality platforms within existing IT ecosystems has surged. Consulting services help organiz
Facebook
TwitterThis report describes the quality assurance arrangements for the registered provider (RP) Tenant Satisfaction Measures statistics, providing more detail on the regulatory and operational context for data collections which feed these statistics and the safeguards that aim to maximise data quality.
The statistics we publish are based on data collected directly from local authority registered provider (LARPs) and from private registered providers (PRPs) through the Tenant Satisfaction Measures (TSM) return. We use the data collected through these returns extensively as a source of administrative data. The United Kingdom Statistics Authority (UKSA) encourages public bodies to use administrative data for statistical purposes and, as such, we publish these data.
These data are first being published in 2024, following the first collection and publication of the TSM.
In February 2018, the UKSA published the Code of Practice for Statistics. This sets standards for organisations producing and publishing statistics, ensuring quality, trustworthiness and value.
These statistics are drawn from our TSM data collection and are being published for the first time in 2024 as official statistics in development.
Official statistics in development are official statistics that are undergoing development. Over the next year we will review these statistics and consider areas for improvement to guidance, validations, data processing and analysis. We will also seek user feedback with a view to improving these statistics to meet user needs and to explore issues of data quality and consistency.
Until September 2023, ‘official statistics in development’ were called ‘experimental statistics’. Further information can be found on the https://www.ons.gov.uk/methodology/methodologytopicsandstatisticalconcepts/guidetoofficialstatisticsindevelopment">Office for Statistics Regulation website.
We are keen to increase the understanding of the data, including the accuracy and reliability, and the value to users. Please https://forms.office.com/e/cetNnYkHfL">complete the form or email feedback, including suggestions for improvements or queries as to the source data or processing to enquiries@rsh.gov.uk.
We intend to publish these statistics in Autumn each year, with the data pre-announced in the release calendar.
All data and additional information (including a list of individuals (if any) with 24 hour pre-release access) are published on our statistics pages.
The data used in the production of these statistics are classed as administrative data. In 2015 the UKSA published a regulatory standard for the quality assurance of administrative data. As part of our compliance to the Code of Practice, and in the context of other statistics published by the UK Government and its agencies, we have determined that the statistics drawn from the TSMs are likely to be categorised as low-quality risk – medium public interest (with a requirement for basic/enhanced assurance).
The publication of these statistics can be considered as medium publi
Facebook
Twitter
As per our latest research, the global map data quality assurance market size reached USD 1.85 billion in 2024, driven by the surging demand for high-precision geospatial information across industries. The market is experiencing robust momentum, growing at a CAGR of 10.2% during the forecast period. By 2033, the global map data quality assurance market is forecasted to attain USD 4.85 billion, fueled by the integration of advanced spatial analytics, regulatory compliance needs, and the proliferation of location-based services. The expansion is primarily underpinned by the criticality of data accuracy for navigation, urban planning, asset management, and other geospatial applications.
One of the primary growth factors for the map data quality assurance market is the exponential rise in the adoption of location-based services and navigation solutions across various sectors. As businesses and governments increasingly rely on real-time geospatial insights for operational efficiency and strategic decision-making, the need for high-quality, reliable map data has become paramount. Furthermore, the evolution of smart cities and connected infrastructure has intensified the demand for accurate mapping data to enable seamless urban mobility, effective resource allocation, and disaster management. The proliferation of Internet of Things (IoT) devices and autonomous systems further accentuates the significance of data integrity and completeness, thereby propelling the adoption of advanced map data quality assurance solutions.
Another significant driver contributing to the market’s expansion is the growing regulatory emphasis on geospatial data accuracy and privacy. Governments and regulatory bodies worldwide are instituting stringent standards for spatial data collection, validation, and sharing to ensure public safety, environmental conservation, and efficient governance. These regulations mandate comprehensive quality assurance protocols, fostering the integration of sophisticated software and services for data validation, error detection, and correction. Additionally, the increasing complexity of spatial datasets—spanning satellite imagery, aerial surveys, and ground-based sensors—necessitates robust quality assurance frameworks to maintain data consistency and reliability across platforms and applications.
Technological advancements are also playing a pivotal role in shaping the trajectory of the map data quality assurance market. The advent of artificial intelligence (AI), machine learning, and cloud computing has revolutionized the way spatial data is processed, analyzed, and validated. AI-powered algorithms can now automate anomaly detection, spatial alignment, and feature extraction, significantly enhancing the speed and accuracy of quality assurance processes. Moreover, the emergence of cloud-based platforms has democratized access to advanced geospatial tools, enabling organizations of all sizes to implement scalable and cost-effective data quality solutions. These technological innovations are expected to further accelerate market growth, opening new avenues for product development and service delivery.
From a regional perspective, North America currently dominates the map data quality assurance market, accounting for the largest revenue share in 2024. This leadership position is attributed to the region’s early adoption of advanced geospatial technologies, strong regulatory frameworks, and the presence of leading industry players. However, the Asia Pacific region is poised to witness the fastest growth over the forecast period, propelled by rapid urbanization, infrastructure development, and increased investments in smart city projects. Europe also maintains a significant market presence, driven by robust government initiatives for environmental monitoring and urban planning. Meanwhile, Latin America and the Middle East & Africa are gradually emerging as promising markets, supported by growing digitalization and expanding geospatial applications in transportation, utilities, and resource management.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Network Development Plan dataset. The quality assessment was carried out on 31st March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality; to demonstrate our progress we conduct annual assessments of our data quality in line with the dataset refresh rate. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Data Quality Coverage Analytics market size stood at USD 2.8 billion in 2024, reflecting a robust expansion driven by the accelerating digital transformation across enterprises worldwide. The market is projected to grow at a CAGR of 16.4% during the forecast period, reaching a forecasted size of USD 11.1 billion by 2033. This remarkable growth trajectory is underpinned by the increasing necessity for accurate, reliable, and actionable data to fuel strategic business decisions, regulatory compliance, and operational optimization in an increasingly data-centric business landscape.
One of the primary growth factors for the Data Quality Coverage Analytics market is the exponential surge in data generation from diverse sources, including IoT devices, enterprise applications, social media platforms, and cloud-based environments. This data explosion has brought to the forefront the critical need for robust data quality management solutions that ensure the integrity, consistency, and reliability of data assets. Organizations across sectors are recognizing that poor data quality can lead to significant operational inefficiencies, flawed analytics outcomes, and increased compliance risks. As a result, there is a heightened demand for advanced analytics tools that can provide comprehensive coverage of data quality metrics, automate data profiling, and offer actionable insights for continuous improvement.
Another significant driver fueling the market's expansion is the tightening regulatory landscape across industries such as BFSI, healthcare, and government. Regulatory frameworks like GDPR, HIPAA, and SOX mandate stringent data quality standards and audit trails, compelling organizations to invest in sophisticated data quality analytics solutions. These tools not only help organizations maintain compliance but also enhance their ability to detect anomalies, prevent data breaches, and safeguard sensitive information. Furthermore, the integration of artificial intelligence and machine learning into data quality analytics platforms is enabling more proactive and predictive data quality management, which is further accelerating market adoption.
The growing emphasis on data-driven decision-making within enterprises is also playing a pivotal role in propelling the Data Quality Coverage Analytics market. As organizations strive to leverage business intelligence and advanced analytics for competitive advantage, the importance of high-quality, well-governed data becomes paramount. Data quality analytics platforms empower organizations to identify data inconsistencies, rectify errors, and maintain a single source of truth, thereby unlocking the full potential of their data assets. This trend is particularly pronounced in industries such as retail, manufacturing, and telecommunications, where real-time insights derived from accurate data can drive operational efficiencies, enhance customer experiences, and support innovation.
From a regional perspective, North America currently dominates the Data Quality Coverage Analytics market due to the high concentration of technology-driven enterprises, early adoption of advanced analytics solutions, and robust regulatory frameworks. However, the Asia Pacific region is witnessing the fastest growth, fueled by rapid digitalization, increasing investments in cloud infrastructure, and the emergence of data-driven business models across key economies such as China, India, and Japan. Europe also represents a significant market, driven by stringent data protection regulations and the widespread adoption of data governance initiatives. Latin America and the Middle East & Africa are gradually catching up, as organizations in these regions recognize the strategic value of data quality in driving business transformation.
The Component segment of the Data Quality Coverage Analytics market is bifurcated into software and services, each playing a crucial role in enabling organizations to achieve comprehensive data quality management. The software segment encompasses a wide range of solutions, including data profiling, cleansing, enrichment, monitoring, and reporting tools. These software solutions are designed to automate and streamline the process of identifying and rectifying data quality issues across diverse data sources and formats. As organizations increasingly adopt cloud-base
Facebook
TwitterS1. Folder: The scripts used to process particular steps. The folder is available at https://osf.io/jcb92 . (ZIP 10 kb)
Facebook
TwitterRecords selected for their start dates. Records having a “Start date” from 1 January 2005 to 31 Deccember 2014 (both inclusive) are listed in a “StartDate” sheet, with the remaining records in a “StartDate_leftovers” sheet. The data (112,013 records from Additional file 3: Table S1) are presented in the following six Recruitment Type categories: (1) Active, not recruiting (8582 selected records, with 2512 leftovers), (2) Completed (50,012; 17,282), (3) Enrolling by invitation (606; 416), (4) Recruiting (12,991; 10,232), (5) Suspended (432; 165), and (6) Terminated (7215, 1568). The sheets are numbered 1–6, respectively. The file is available at https://osf.io/jcb92 . (ODS 3850 kb)
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global market size for the Real-Time Data Quality Monitoring AI sector reached USD 1.82 billion in 2024, demonstrating robust expansion driven by the increasing importance of data-driven decision-making across industries. The market is expected to grow at a CAGR of 19.7% from 2025 to 2033, with the forecasted market size projected to reach USD 9.04 billion by 2033. This growth is primarily fueled by the rising complexity of enterprise data ecosystems and the critical need for accurate, timely, and actionable data insights to maintain competitive advantage in a rapidly evolving digital landscape.
One of the primary growth factors for the Real-Time Data Quality Monitoring AI market is the exponential increase in data volumes generated by organizations across all sectors. As enterprises rely more heavily on big data analytics, IoT devices, and real-time business intelligence, ensuring the quality, consistency, and reliability of data becomes paramount. Poor data quality can lead to erroneous insights, regulatory non-compliance, and significant financial losses. AI-driven solutions offer advanced capabilities such as automated anomaly detection, pattern recognition, and predictive analytics, enabling organizations to maintain high data integrity and accuracy in real time. This shift towards proactive data quality management is crucial for sectors such as banking, healthcare, and e-commerce, where even minor data discrepancies can have far-reaching consequences.
Another significant driver of market expansion is the surge in regulatory requirements and data governance standards worldwide. Governments and industry regulators are imposing stricter data quality and transparency mandates, particularly in sectors handling sensitive information like finance and healthcare. AI-powered real-time monitoring tools can help organizations not only comply with these regulations but also build trust with stakeholders and customers. By automating data quality checks and providing real-time dashboards, these tools reduce manual intervention, minimize human error, and accelerate response times to data quality issues. This regulatory pressure, combined with the operational benefits of AI, is prompting organizations of all sizes to invest in advanced data quality monitoring solutions.
The growing adoption of cloud computing and hybrid IT infrastructures is further catalyzing the demand for real-time data quality monitoring AI solutions. As enterprises migrate their workloads to the cloud and adopt distributed data architectures, the complexity of managing data quality across multiple environments increases. AI-based monitoring tools, with their ability to integrate seamlessly across on-premises and cloud platforms, provide a unified view of data quality metrics and enable centralized management. This capability is particularly valuable for multinational organizations and those undergoing digital transformation initiatives, as it ensures consistent data quality standards regardless of where data resides. The scalability and flexibility offered by AI-driven solutions make them indispensable in the modern enterprise landscape.
From a regional perspective, North America currently leads the Real-Time Data Quality Monitoring AI market, accounting for the largest share in 2024, followed closely by Europe and Asia Pacific. The region’s dominance is attributed to the high concentration of technology innovators, early adoption of AI and big data technologies, and stringent regulatory frameworks. However, Asia Pacific is anticipated to witness the fastest growth over the forecast period, driven by rapid digitalization, increased cloud adoption, and the proliferation of e-commerce and fintech sectors. Latin America and the Middle East & Africa are also emerging as promising markets, albeit at a slower pace, as organizations in these regions gradually recognize the strategic importance of real-time data quality monitoring for operational efficiency and regulatory compliance.
The Component segment of the Real-Time Data Quality Monitoring AI market is broadly categorized into Software, Hardware, and Services. Software solutions form the backbone of this market, offering a comprehensive suite of tools for data profiling, cleansing, enrichment, and validation. These platforms le
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundRoutine Data Quality Assessments (RDQAs) were developed to measure and improve facility-level electronic medical record (EMR) data quality. We assessed if RDQAs were associated with improvements in data quality in KenyaEMR, an HIV care and treatment EMR used at 341 facilities in Kenya.MethodsRDQAs assess data quality by comparing information recorded in paper records to KenyaEMR. RDQAs are conducted during a one-day site visit, where approximately 100 records are randomly selected and 24 data elements are reviewed to assess data completeness and concordance. Results are immediately provided to facility staff and action plans are developed for data quality improvement. For facilities that had received more than one RDQA (baseline and follow-up), we used generalized estimating equation models to determine if data completeness or concordance improved from the baseline to the follow-up RDQAs.Results27 facilities received two RDQAs and were included in the analysis, with 2369 and 2355 records reviewed from baseline and follow-up RDQAs, respectively. The frequency of missing data in KenyaEMR declined from the baseline (31% missing) to the follow-up (13% missing) RDQAs. After adjusting for facility characteristics, records from follow-up RDQAs had 0.43-times the risk (95% CI: 0.32–0.58) of having at least one missing value among nine required data elements compared to records from baseline RDQAs. Using a scale with one point awarded for each of 20 data elements with concordant values in paper records and KenyaEMR, we found that data concordance improved from baseline (11.9/20) to follow-up (13.6/20) RDQAs, with the mean concordance score increasing by 1.79 (95% CI: 0.25–3.33).ConclusionsThis manuscript demonstrates that RDQAs can be implemented on a large scale and used to identify EMR data quality problems. RDQAs were associated with meaningful improvements in data quality and could be adapted for implementation in other settings.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
AI In Data Quality Market Size 2025-2029
The ai in data quality market size is valued to increase by USD 1.9 billion, at a CAGR of 22.9% from 2024 to 2029. Proliferation of big data and escalating data complexity will drive the ai in data quality market.
Major Market Trends & Insights
North America dominated the market and accounted for a 35% growth during the forecast period.
By Deployment - Cloud-based segment accounted for the largest market revenue share in 2023
CAGR from 2024 to 2029 : 22.9%
Market Summary
In the realm of data management, the integration of Artificial Intelligence (AI) in data quality has emerged as a game-changer. According to recent estimates, The market is projected to reach a value of USD12.2 billion by 2025, underscoring its growing significance. This growth is driven by the proliferation of big data and escalating data complexity. AI's ability to analyze vast amounts of data and extract valuable insights has become indispensable for businesses seeking to enhance their data quality and gain a competitive edge. The fusion of generative AI and natural language interfaces is another key trend.
This development enables more intuitive and user-friendly interactions with data, making it easier for businesses to identify and address data quality issues. However, the complexity of integrating AI with heterogeneous and legacy IT environments poses a significant challenge. Despite these hurdles, the future direction of AI in data quality is undeniably forward. As businesses continue to grapple with the intricacies of managing and leveraging their data, the role of AI in ensuring data quality and accuracy will only become more essential.
What will be the Size of the AI In Data Quality Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the AI In Data Quality Market Segmented and what are the key trends of market segmentation?
The ai in data quality industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Component
Software
Services
Deployment
Cloud-based
On premises
Industry Application
BFSI
IT and telecommunications
Healthcare
Retail and e commerce
Others
Geography
North America
US
Canada
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
South Korea
Rest of World (ROW)
By Component Insights
The software segment is estimated to witness significant growth during the forecast period.
The market continues to evolve, with the software segment driving innovation. This segment encompasses platforms, tools, and applications that automate data integrity processes. Traditional rule-based systems have given way to AI-driven solutions, which autonomously monitor data quality. The software segment can be divided into standalone platforms, integrated modules, and embedded features. Standalone platforms offer end-to-end capabilities, while integrated modules function within larger data management or governance suites. Embedded features, found in cloud data warehouses and lakehouse platforms, provide AI-powered checks as native functionalities. In 2021, the market size for AI-driven data quality solutions was estimated at USD3.5 billion, reflecting the growing importance of maintaining data accuracy and consistency.
Request Free Sample
Regional Analysis
North America is estimated to contribute 35% to the growth of the global market during the forecast period.Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
See How AI In Data Quality Market Demand is Rising in North America Request Free Sample
The market is witnessing significant growth and evolution, with North America leading the charge. Comprising the United States and Canada, this region is home to the world's most advanced technology companies and a thriving venture capital ecosystem. This unique combination of technological expertise and investment has led to the early adoption of foundational technologies such as cloud computing, big data analytics, and machine learning. As a result, the North American market is characterized by a sophisticated customer base that recognizes the strategic value of data and the importance of its integrity.
This growth is driven by the increasing demand for data accuracy, security, and compliance in various industries, including finance, healthcare IT, and retail. AI technologies, such as machine learning algorithms and natural language processing, are increasingly being used to improve data quality, enhance customer experiences, and drive business growth.
Market Dynamics
Our researchers analyzed
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Historic Faults dataset. The quality assessment was carried out on the 23rd of September 2025. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy NetworksWe welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Administrative data are increasingly important in statistics, but, like other types of data, may contain measurement errors. To prevent such errors from invalidating analyses of scientific interest, it is therefore essential to estimate the extent of measurement errors in administrative data. Currently, however, most approaches to evaluate such errors involve either prohibitively expensive audits or comparison with a survey that is assumed perfect. We introduce the “generalized multitrait-multimethod” (GMTMM) model, which can be seen as a general framework for evaluating the quality of administrative and survey data simultaneously. This framework allows both survey and administrative data to contain random and systematic measurement errors. Moreover, it accommodates common features of administrative data such as discreteness, nonlinearity, and nonnormality, improving similar existing models. The use of the GMTMM model is demonstrated by application to linked survey-administrative data from the German Federal Employment Agency on income from of employment, and a simulation study evaluates the estimates obtained and their robustness to model misspecification. Supplementary materials for this article are available online.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
See the complete table of contents and list of exhibits, as well as selected illustrations and example pages from this report.
Get a FREE sample now!
Data quality tools market in APAC overview
The need to improve customer engagement is the primary factor driving the growth of data quality tools market in APAC. The reputation of a company gets hampered if there is a delay in product delivery or response to payment-related queries. To avoid such issues organizations are integrating their data with software such as CRM for effective communication with customers. To capitalize on market opportunities, organizations are adopting data quality strategies to perform accurate customer profiling and improve customer satisfaction.
Also, by using data quality tools, companies can ensure that targeted communications reach the right customers which will enable companies to take real-time action as per the requirements of the customer. Organizations use data quality tool to validate e-mails at the point of capture and clean their database of junk e-mail addresses. Thus, the need to improve customer engagement is driving the data quality tools market growth in APAC at a CAGR of close to 23% during the forecast period.
Top data quality tools companies in APAC covered in this report
The data quality tools market in APAC is highly concentrated. To help clients improve their revenue shares in the market, this research report provides an analysis of the market’s competitive landscape and offers information on the products offered by various leading companies. Additionally, this data quality tools market in APAC analysis report suggests strategies companies can follow and recommends key areas they should focus on, to make the most of upcoming growth opportunities.
The report offers a detailed analysis of several leading companies, including:
IBM
Informatica
Oracle
SAS Institute
Talend
Data quality tools market in APAC segmentation based on end-user
Banking, financial services, and insurance (BFSI)
Telecommunication
Retail
Healthcare
Others
BFSI was the largest end-user segment of the data quality tools market in APAC in 2018. The market share of this segment will continue to dominate the market throughout the next five years.
Data quality tools market in APAC segmentation based on region
China
Japan
Australia
Rest of Asia
China accounted for the largest data quality tools market share in APAC in 2018. This region will witness an increase in its market share and remain the market leader for the next five years.
Key highlights of the data quality tools market in APAC for the forecast years 2019-2023:
CAGR of the market during the forecast period 2019-2023
Detailed information on factors that will accelerate the growth of the data quality tools market in APAC during the next five years
Precise estimation of the data quality tools market size in APAC and its contribution to the parent market
Accurate predictions on upcoming trends and changes in consumer behavior
The growth of the data quality tools market in APAC across China, Japan, Australia, and Rest of Asia
A thorough analysis of the market’s competitive landscape and detailed information on several vendors
Comprehensive details on factors that will challenge the growth of data quality tools companies in APAC
We can help! Our analysts can customize this market research report to meet your requirements. Get in touch
Facebook
TwitterThis data record contains questions and responses to a USGS-wide survey conducted to identify issues and needs associated with quality assurance and quality control (QA/QC) of USGS timeseries data streams. This research was funded by the USGS Community for Data Integration as part of a project titled “From reactive- to condition-based maintenance: Artificial intelligence for anomaly predictions and operational decision-making”. The poll targeted monitoring network managers and technicians and asked questions about operational data streams and timeseries data collection in order to identity opportunities to streamline data access, expedite the response to data quality issues, improve QA/QC procedures, reduce operations costs, and uncover other maintenance needs. The poll was created using an online survey platform. It was sent to 2326 systematically selected USGS email addresses and received 175 responses in 11 days before it was closed to respondents. The poll contained 48 questions of various types including long answer, multiple choice, and ranking questions. The survey contained a mix of mandatory and optional questions. These distinctions as well as full descriptions of survey questions are noted on the metadata.
Facebook
TwitterThe statistic shows the problems caused by poor quality data for enterprises in North America, according to a survey of North American IT executives conducted by 451 Research in 2015. As of 2015, ** percent of respondents indicated that having poor quality data can result in extra costs for the business.