100+ datasets found
  1. Problems of poor data quality for enterprises in North America 2015

    • statista.com
    Updated Jan 26, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Problems of poor data quality for enterprises in North America 2015 [Dataset]. https://www.statista.com/statistics/520490/north-america-survey-enterprise-poor-data-quality-problems/
    Explore at:
    Dataset updated
    Jan 26, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2015
    Area covered
    United States, Canada
    Description

    The statistic shows the problems caused by poor quality data for enterprises in North America, according to a survey of North American IT executives conducted by 451 Research in 2015. As of 2015, ** percent of respondents indicated that having poor quality data can result in extra costs for the business.

  2. Data from: DATA QUALITY ON THE WEB: INTEGRATIVE REVIEW OF PUBLICATION...

    • scielo.figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Morgana Carneiro de Andrade; Maria José Baños Moreno; Juan-Antonio Pastor-Sánchez (2023). DATA QUALITY ON THE WEB: INTEGRATIVE REVIEW OF PUBLICATION GUIDELINES [Dataset]. http://doi.org/10.6084/m9.figshare.22815541.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Morgana Carneiro de Andrade; Maria José Baños Moreno; Juan-Antonio Pastor-Sánchez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT The exponential increase of published data and the diversity of systems require the adoption of good practices to achieve quality indexes that enable discovery, access, and reuse. To identify good practices, an integrative review was used, as well as procedures from the ProKnow-C methodology. After applying the ProKnow-C procedures to the documents retrieved from the Web of Science, Scopus and Library, Information Science & Technology Abstracts databases, an analysis of 31 items was performed. This analysis allowed observing that in the last 20 years the guidelines for publishing open government data had a great impact on the Linked Data model implementation in several domains and currently the FAIR principles and the Data on the Web Best Practices are the most highlighted in the literature. These guidelines presents orientations in relation to various aspects for the publication of data in order to contribute to the optimization of quality, independent of the context in which they are applied. The CARE and FACT principles, on the other hand, although they were not formulated with the same objective as FAIR and the Best Practices, represent great challenges for information and technology scientists regarding ethics, responsibility, confidentiality, impartiality, security, and transparency of data.

  3. D

    Data Quality Management Service Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Data Quality Management Service Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-quality-management-service-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Quality Management Service Market Outlook



    The global data quality management service market size was valued at approximately USD 1.8 billion in 2023 and is projected to reach USD 5.9 billion by 2032, growing at a compound annual growth rate (CAGR) of 14.1% during the forecast period. The primary growth factor driving this market is the increasing volume of data being generated across various industries, necessitating robust data quality management solutions to maintain data accuracy, reliability, and relevance.



    One of the key growth drivers for the data quality management service market is the exponential increase in data generation due to the proliferation of digital technologies such as IoT, big data analytics, and AI. Organizations are increasingly recognizing the importance of maintaining high data quality to derive actionable insights and make informed business decisions. Poor data quality can lead to significant financial losses, inefficiencies, and missed opportunities, thereby driving the demand for comprehensive data quality management services.



    Another significant growth factor is the rising regulatory and compliance requirements across various industry verticals such as BFSI, healthcare, and government. Regulations like the General Data Protection Regulation (GDPR) and the Health Insurance Portability and Accountability Act (HIPAA) necessitate organizations to maintain accurate and high-quality data. Non-compliance with these regulations can result in severe penalties and damage to the organization’s reputation, thus propelling the adoption of data quality management solutions.



    Additionally, the increasing adoption of cloud-based solutions is further fueling the growth of the data quality management service market. Cloud-based data quality management solutions offer scalability, flexibility, and cost-effectiveness, making them an attractive option for organizations of all sizes. The availability of advanced data quality management tools that integrate seamlessly with existing IT infrastructure and cloud platforms is encouraging enterprises to invest in these services to enhance their data management capabilities.



    From a regional perspective, North America is expected to hold the largest share of the data quality management service market, driven by the early adoption of advanced technologies and the presence of key market players. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, owing to the rapid digital transformation, increasing investments in IT infrastructure, and growing awareness about the importance of data quality management in enhancing business operations and decision-making processes.



    Component Analysis



    The data quality management service market is segmented by component into software and services. The software segment encompasses various data quality tools and platforms that help organizations assess, improve, and maintain the quality of their data. These tools include data profiling, data cleansing, data enrichment, and data monitoring solutions. The increasing complexity of data environments and the need for real-time data quality monitoring are driving the demand for sophisticated data quality software solutions.



    Services, on the other hand, include consulting, implementation, and support services provided by data quality management service vendors. Consulting services assist organizations in identifying data quality issues, developing data governance frameworks, and implementing best practices for data quality management. Implementation services involve the deployment and integration of data quality tools with existing IT systems, while support services provide ongoing maintenance and troubleshooting assistance. The growing need for expert guidance and support in managing data quality is contributing to the growth of the services segment.



    The software segment is expected to dominate the market due to the continuous advancements in data quality management tools and the increasing adoption of AI and machine learning technologies for automated data quality processes. Organizations are increasingly investing in advanced data quality software to streamline their data management operations, reduce manual intervention, and ensure data accuracy and consistency across various data sources.



    Moreover, the services segment is anticipated to witness significant growth during the forecast period, driven by the increasing demand for professional services that can help organizations address complex dat

  4. D

    Data Quality Management Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Data Quality Management Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-quality-management-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Quality Management Market Outlook



    The global data quality management market size was valued at approximately USD 1.7 billion in 2023, and it is projected to reach USD 4.9 billion by 2032, growing at a robust CAGR of 12.4% during the forecast period. This growth is fueled by the increasing demand for high-quality data to drive business intelligence and analytics, enhance customer experience, and ensure regulatory compliance. As organizations continue to recognize data as a critical asset, the importance of maintaining data quality has become paramount, driving the market's expansion significantly.



    One of the primary growth factors for the data quality management market is the exponential increase in data generation across various industries. With the advent of digital transformation, the volume of data generated by enterprises has grown multifold, necessitating effective data quality management solutions. Organizations are leveraging big data and analytics to derive actionable insights, but these efforts can only be successful if the underlying data is accurate, consistent, and reliable. As such, the need for robust data quality management solutions has become more urgent, driving market growth.



    Another critical driver is the rising awareness of data privacy and compliance regulations globally. Governments and regulatory bodies worldwide have introduced stringent data protection laws, such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States. These regulations necessitate that organizations maintain high standards of data quality and integrity to avoid hefty penalties and reputational damage. As a result, businesses are increasingly adopting data quality management solutions to ensure compliance, thereby propelling market growth.



    Additionally, the growing adoption of cloud technologies is also contributing to the market's expansion. Cloud-based data quality management solutions offer scalability, flexibility, and cost-effectiveness, making them attractive to organizations of all sizes. The ease of integration with other cloud-based applications and systems further enhances their appeal. Small and medium enterprises (SMEs), in particular, are adopting cloud-based solutions to improve data quality without the need for significant upfront investments in infrastructure and maintenance, which is further fueling market growth.



    Regionally, North America holds the largest share of the data quality management market, driven by the presence of key market players and the early adoption of advanced technologies. The region's strong focus on innovation and data-driven decision-making further supports market growth. Meanwhile, the Asia Pacific region is expected to exhibit the highest growth rate during the forecast period. The rapid digitalization of economies, increasing investments in IT infrastructure, and growing awareness of data quality's importance are significant factors contributing to this growth. Furthermore, the rising number of small and medium enterprises in emerging economies of the region is propelling the demand for data quality management solutions.



    Component Analysis



    In the data quality management market, the component segment is bifurcated into software and services. The software segment is the most significant contributor to the market, driven by the increasing adoption of data quality tools and platforms that facilitate data cleansing, profiling, matching, and monitoring. These software solutions enable organizations to maintain data accuracy and consistency across various sources and formats, thereby ensuring high-quality data for decision-making processes. The continuous advancements in artificial intelligence and machine learning technologies are further enhancing the capabilities of data quality software, making them indispensable for organizations striving for data excellence.



    The services segment, on the other hand, includes consulting, implementation, and support services. These services are crucial for organizations seeking to deploy and optimize data quality solutions effectively. Consulting services help organizations identify their specific data quality needs and devise tailored strategies for implementation. Implementation services ensure the smooth integration of data quality tools within existing IT infrastructures, while support services provide ongoing maintenance and troubleshooting assistance. The demand for services is driven by the growing complexity of data environments and the need for specialized expertise in managing data quality chall

  5. D

    Data Quality Solution Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Quality Solution Report [Dataset]. https://www.datainsightsmarket.com/reports/data-quality-solution-1442743
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Quality Solutions market, currently valued at $3785.8 million (2025), is projected to experience steady growth, exhibiting a Compound Annual Growth Rate (CAGR) of 2.3% from 2025 to 2033. This growth is fueled by several key factors. The increasing reliance on data-driven decision-making across various industries necessitates high-quality, reliable data. This demand is driving investments in advanced data quality solutions capable of handling large volumes of diverse data sources, including structured and unstructured data from cloud platforms, on-premises systems, and third-party providers. Furthermore, stringent data privacy regulations like GDPR and CCPA are forcing organizations to prioritize data accuracy and compliance, further boosting the market. The rising adoption of cloud-based data management solutions also contributes to market expansion as these platforms often include integrated data quality features. Competitive landscape includes established players like IBM, Informatica, and Oracle, alongside emerging innovative companies focusing on specific data quality niches, fostering innovation and competition. The market segmentation, although not explicitly detailed, can be reasonably inferred to include solutions categorized by deployment (cloud, on-premise, hybrid), data type (structured, unstructured), and industry vertical (finance, healthcare, retail, etc.). Growth will likely be uneven across these segments, with cloud-based solutions and those addressing the needs of data-intensive sectors (like finance and healthcare) experiencing faster adoption rates. While technological advancements are driving growth, challenges remain, including the complexity of implementing and maintaining data quality solutions, the need for specialized skills, and the potential for high initial investment costs. However, the long-term benefits of improved data quality, including enhanced decision-making, reduced operational costs, and improved regulatory compliance, outweigh these challenges, ensuring continued market expansion in the coming years.

  6. D

    Data Quality Management Tool Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jan 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Quality Management Tool Report [Dataset]. https://www.datainsightsmarket.com/reports/data-quality-management-tool-1961962
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jan 18, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Market Overview The global data quality management tool market is projected to reach USD 694.1 million by 2033, exhibiting a CAGR of 3.4% from 2025 to 2033. Growing demand for data accuracy and compliance in various industries drives market growth. The surge in data volume and complexity, coupled with the increasing adoption of cloud-based data management solutions, further fuels market expansion. Key Market Dynamics The adoption of data quality management tools is primarily driven by the need to improve data quality and ensure data accuracy. Organizations across various sectors are increasingly realizing the importance of data quality for decision-making, regulatory compliance, and customer satisfaction. Additionally, the growing adoption of cloud-based data management solutions offers cost-effective and scalable options for data quality management, further contributing to market growth. However, challenges related to data integration, data governance, and data security remain key restraints for the market.

  7. o

    Historic Faults (SPEN_019) Data Quality Checks

    • spenergynetworks.opendatasoft.com
    Updated Mar 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Historic Faults (SPEN_019) Data Quality Checks [Dataset]. https://spenergynetworks.opendatasoft.com/explore/dataset/spen_data_quality_historic_faults/
    Explore at:
    Dataset updated
    Mar 28, 2025
    Description

    This data table provides the detailed data quality assessment scores for the Historic Faults dataset. The quality assessment was carried out on the 31st March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks. We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.

  8. D

    Data Quality Solution Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Data Quality Solution Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-quality-solution-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Quality Solution Market Outlook



    The global data quality solution market size is projected to grow significantly from USD 1.5 billion in 2023 to approximately USD 4.8 billion by 2032, reflecting a robust CAGR of 13.5%. This growth is driven primarily by the increasing adoption of data-driven decision-making processes across various industries. The surge in Big Data, coupled with the proliferation of IoT devices, has necessitated robust data quality solutions to ensure the accuracy, consistency, and reliability of data that organizations rely on for strategic insights.



    One of the notable growth factors in this market is the exponential increase in data volumes, which calls for effective data management strategies. Businesses today are inundated with data from diverse sources such as social media, sensor data, transactional data, and more. Ensuring the quality of this data is paramount for gaining actionable insights and maintaining competitive advantage. Consequently, the demand for sophisticated data quality solutions has surged, propelling market growth. Additionally, stringent regulatory requirements across various sectors, including finance and healthcare, have further emphasized the need for data quality solutions to ensure compliance with data governance standards.



    Another significant driver for the data quality solution market is the growing emphasis on digital transformation initiatives. Organizations across the globe are leveraging digital technologies to enhance operational efficiencies and customer experiences. However, the success of these initiatives largely depends on the quality of data being utilized. As a result, there is a burgeoning demand for data quality tools that can automate data cleansing, profiling, and enrichment processes, ensuring that the data is fit for purpose. This trend is particularly evident in sectors such as BFSI and retail, where accurate data is crucial for risk management, customer personalization, and strategic decision-making.



    The rise of artificial intelligence and machine learning technologies also contributes significantly to the market's growth. These technologies rely heavily on high-quality data to train models and generate accurate predictions. Poor data quality can lead to erroneous insights and suboptimal decisions, thus undermining the potential benefits of AI and ML initiatives. Therefore, organizations are increasingly investing in advanced data quality solutions to enhance their AI capabilities and drive innovation. This trend is expected to further accelerate market growth over the forecast period.



    Component Analysis



    The data quality solution market can be segmented based on components, primarily into software and services. The software segment encompasses various tools and platforms designed to enhance data quality through cleansing, profiling, enrichment, and monitoring. These software solutions are equipped with advanced features like data matching, de-duplication, and standardization, which are crucial for maintaining high data quality standards. The increasing complexity of data environments and the need for real-time data quality management are driving the adoption of these sophisticated software solutions, making this segment a significant contributor to the market's growth.



    In addition to the software, the services segment plays a crucial role in the data quality solution market. This segment includes professional services such as consulting, implementation, training, and support. Organizations often require expert guidance to deploy data quality solutions effectively and ensure they are tailored to specific business needs. Consulting services help in assessing current data quality issues, defining data governance frameworks, and developing customized solutions. Implementation services ensure seamless integration of data quality tools with existing systems, while training and support services empower users with the necessary skills to manage and maintain data quality effectively. The growth of the services segment is bolstered by the increasing complexity of data ecosystems and the need for specialized expertise.



    Report Scope




    Attributes Details
    Report Title Data Quality Solution Market Research

  9. d

    Technical Limits (SPEN_018) Data Quality Checks - Dataset - Datopian CKAN...

    • demo.dev.datopian.com
    Updated May 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Technical Limits (SPEN_018) Data Quality Checks - Dataset - Datopian CKAN instance [Dataset]. https://demo.dev.datopian.com/dataset/sp-energy-networks--spen_data_quality_technical_limits
    Explore at:
    Dataset updated
    May 27, 2025
    Description

    This data table provides the detailed data quality assessment scores for the Technical Limits dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks. We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.

  10. c

    Global Data Quality Tools Market Report 2025 Edition, Market Size, Share,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated May 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). Global Data Quality Tools Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/data-quality-tools-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Data Quality Tools market size will be USD XX million in 2025. It will expand at a compound annual growth rate (CAGR) of XX% from 2025 to 2031.

    North America held the major market share for more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Europe accounted for a market share of over XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Asia Pacific held a market share of around XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Latin America had a market share of more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. Middle East and Africa had a market share of around XX% of the global revenue and was estimated at a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031. KEY DRIVERS The Emergence of Big Data & IoT and Increasing Data Proliferation are driving the market growth One of the most significant drivers of the data quality tools market is the emergence of Big Data and the Internet of Things (IoT). As organizations expand their digital operations, they are increasingly reliant on real-time data collected from a vast network of connected devices, including industrial machines, smart home appliances, wearable tech, and autonomous vehicles. This rapid increase in data sources results in immense volumes of complex, high-velocity data that must be processed and analyzed efficiently. However, the quality of this data often varies due to inconsistent formats, transmission errors, or incomplete inputs. Data quality tools are vital in this context, enabling real-time profiling, validation, and cleansing to ensure reliable insights. For Instance, General Electric (GE), uses data quality solutions across its Predix IoT platform to ensure the integrity of sensor data for predictive maintenance and performance optimization. (Source: https://www.ge.com/news/press-releases/ge-predix-software-platform-offers-20-potential-increase-performance-across-customer#:~:text=APM%20Powered%20by%20Predix%20-%20GE%20is%20expanding,total%20cost%20of%20ownership%2C%20and%20reduce%20operational%20risks.) According to a recent Gartner report, over 60% of companies identified poor data quality as the leading challenge in adopting big data technologies. Therefore, the growing dependence on big data and IoT ecosystems is directly driving the need for robust, scalable, and intelligent data quality tools to ensure accurate and actionable analytics. Another major factor fueling the growth of the data quality tools market is the increasing proliferation of enterprise data across sectors. As organizations accelerate their digital transformation journeys, they generate and collect enormous volumes of structured and unstructured data daily—from internal systems like ERPs and CRMs to external sources like social media, IoT devices, and third-party APIs. If not managed properly, this data can become fragmented, outdated, and error-prone, leading to poor analytics and misguided business decisions. Data quality tools are essential for profiling, cleansing, deduplicating, and enriching data to ensure it remains trustworthy and usable. For Instance, Walmart implemented enterprise-wide data quality solutions to clean and harmonize inventory and customer data across global operations. This initiative improved demand forecasting and streamlined its massive supply chain. (Source: https://tech.walmart.com/content/walmart-global-tech/en_us/blog/post/walmarts-ai-powered-inventory-system-brightens-the-holidays.html). According to a Dresner Advisory Services report, data quality ranks among the top priorities for companies focusing on data governance.(Source: https://www.informatica.com/blogs/2024-dresner-advisory-services-data-analytics-and-governance-and-catalog-market-studies.html) In conclusion, as data volumes continue to skyrocket and data environments grow more complex, the demand for data quality tools becomes critical for enabling informed decision-making, enhancing operational efficiency, and ensuring compliance.  Restraints One of the primary challenges restraining the growth of the data quality tools market is the lack of skilled personnel wit...

  11. MULTI-SITE EVALUATION OF A DATA QUALITY TOOL FOR BIG DATA IN HEALTHCARE

    • figshare.com
    xlsx
    Updated Jan 20, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vojtech Huser (2016). MULTI-SITE EVALUATION OF A DATA QUALITY TOOL FOR BIG DATA IN HEALTHCARE [Dataset]. http://doi.org/10.6084/m9.figshare.1497942.v4
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 20, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Vojtech Huser
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Evaluation of data quality in large healthcare datasets.

    abstract: Data quality and fitness for analysis are crucial if outputs of big data analyses should be trusted by the public and the research community. Here we analyze the output from a data quality tool called Achilles Heel as it was applied to 24 datasets across seven different organizations. We highlight 12 data quality rules that identified issues in at least 10 of the 24 datasets and provide a full set of 71 rules identified in at least one dataset. Achilles Heel is developed by Observational Health Data Sciences and Informatics (OHDSI) community and is a freely available software that provides a useful starter set of data quality rules. Our analysis represents the first data quality comparison of multiple datasets across several countries in America, Europe and Asia.

  12. Data Integration and Data Quality Tools Market by End-user and Geography -...

    • technavio.com
    Updated Dec 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2020). Data Integration and Data Quality Tools Market by End-user and Geography - Forecast and Analysis 2020-2024 [Dataset]. https://www.technavio.com/report/data-integration-and-data-quality-tools-market-industry-analysis
    Explore at:
    Dataset updated
    Dec 23, 2020
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    The data integration and data quality tools market size has the potential to grow by USD 843.29 million during 2020-2024, and the market’s growth momentum will decelerate during the forecast period.

    This report provides a detailed analysis of the market by end-user (large enterprises, government organizations, and SME) and geography (North America, Europe, APAC, South America, and MEA). Also, the report analyzes the market’s competitive landscape and offers information on several market vendors, including Data Ladder, Experian Plc, HCL Technologies Ltd., International Business Machines Corp., Informatica LLC, Oracle Corp., Precisely, SAP SE, SAS Institute Inc., and Talend SA.

    Market Overview

    Browse TOC and LoE with selected illustrations and example pages of Data Integration and Data Quality Tools Market

    Request a FREE sample now!

    Market Competitive Analysis

    The market is fragmented. Data Ladder, Experian Plc, HCL Technologies Ltd., International Business Machines Corp., Informatica LLC, Oracle Corp., Precisely, SAP SE, SAS Institute Inc., and Talend SA are some of the major market participants. Factors such as the rising adoption of data integration in the life sciences industry will offer immense growth opportunities. However, high cost and long deployment time may impede market growth. To make the most of the opportunities, vendors should focus on growth prospects in the fast-growing segments, while maintaining their positions in the slow-growing segments.

    To help clients improve their market position, this data integration and data quality tools market forecast report provides a detailed analysis of the market leaders and offers information on the competencies and capacities of these companies. The report also covers details on the market’s competitive landscape and offers information on the products offered by various companies. Moreover, this data integration and data quality tools market analysis report provides information on the upcoming trends and challenges that will influence market growth. This will help companies create strategies to make the most of their future growth opportunities.

    This report provides information on the production, sustainability, and prospects of several leading companies, including:

    Data Ladder
    Experian Plc
    HCL Technologies Ltd.
    International Business Machines Corp.
    Informatica LLC
    Oracle Corp.
    Precisely
    SAP SE
    SAS Institute Inc.
    Talend SA
    

    Data Integration and Data Quality Tools Market: Segmentation by Geography

    For more insights on the market share of various regions Request for a FREE sample now!

    The report offers an up-to-date analysis regarding the current global market scenario, the latest trends and drivers, and the overall market environment. North America will offer several growth opportunities to market vendors during the forecast period. The increasing demand for cloud-based data quality tools will significantly influence the data integration and data quality tools market's growth in this region.

    44% of the market’s growth will originate from North America during the forecast period. The US is one of the key markets for data integration and data quality tools in North America. This report provides an accurate prediction of the contribution of all segments to the growth of the data integration and data quality tools market size.

    Data Integration and Data Quality Tools Market: Key Highlights of the Report for 2020-2024

    CAGR of the market during the forecast period 2020-2024
    Detailed information on factors that will data integration and data quality tools market growth during the next five years
    Precise estimation of the data integration and data quality tools market size and its contribution to the parent market
    Accurate predictions on upcoming trends and changes in consumer behavior
    The growth of the data integration and data quality tools industry across North America, Europe, APAC, South America, and MEA
    A thorough analysis of the market’s competitive landscape and detailed information on vendors
    Comprehensive details of factors that will challenge the growth of data integration and data quality tools market vendors
    

    We can help! Our analysts can customize this report to meet your requirements. Get in touch

        Data Integration And Data Quality Tools Market Scope
    
    
    
    
        Report Coverage
    
    
        Details
    
    
    
    
        Page number
    
    
        120
    
    
    
    
        Base year
    
    
        2019
    
    
    
    
        Forecast period
    
    
        2020-2024
    
    
    
    
        Growth momentum & CAGR
    
    
        Decelerate at a CAGR of 3%
    
    
    
    
        Market growth 2020-2024
    
    
        $ 843.29 million
    
    
    
    
        Market structure
    
    
        Fragmented
    
    
    
    
        YoY growth (%)
    
    
        3.81
    
    
    
    
        Regional analysis
    
    
        North America, Europe, APAC, South America, and MEA
    
    
    
    
        Performing market contr
    
  13. D

    Data Preparation Tools Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Data Preparation Tools Report [Dataset]. https://www.archivemarketresearch.com/reports/data-preparation-tools-52055
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 6, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for data preparation tools is experiencing robust growth, driven by the increasing volume and complexity of data generated by businesses across diverse sectors. The market, valued at approximately $11 billion in 2025 (assuming this is the value unit specified as "million"), is projected to exhibit significant expansion over the forecast period (2025-2033). While a precise CAGR isn't provided, considering the rapid adoption of data analytics and cloud-based solutions, a conservative estimate would place the annual growth rate between 15% and 20%. This growth is fueled by several key factors. The rising need for efficient data integration across various sources, the imperative for improved data quality to enhance business intelligence, and the increasing adoption of self-service data preparation tools by non-technical users are all significant drivers. Furthermore, the expansion of cloud computing and the proliferation of big data are creating significant opportunities for vendors in this space. The market is segmented by type (self-service and data integration) and application (IT and Telecom, Retail and E-commerce, BFSI, Manufacturing, and Others), with the self-service segment expected to witness faster growth due to its ease of use and accessibility. Geographically, North America and Europe currently hold substantial market share, but the Asia-Pacific region is anticipated to experience rapid growth, driven by increasing digitalization and adoption of advanced analytics in developing economies like India and China. The competitive landscape is characterized by a mix of established players like Microsoft, IBM, and SAP, alongside specialized data preparation tool providers such as Tableau, Trifacta, and Alteryx. These vendors are continually innovating, incorporating features like artificial intelligence (AI) and machine learning (ML) to automate data preparation processes and improve accuracy. This competitive environment is likely to intensify, with mergers and acquisitions, strategic partnerships, and product enhancements driving the market evolution. The key challenges facing the market include the complexity of integrating data from disparate sources, ensuring data security and privacy, and addressing the skills gap in data preparation expertise. Despite these challenges, the overall outlook for the data preparation tools market remains extremely positive, with strong growth prospects anticipated throughout the forecast period.

  14. l

    CalOES NG9-1-1 GIS Data Quality Control Plan April 18, 2022

    • data.lacounty.gov
    • geohub.lacity.org
    • +2more
    Updated Jul 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2022). CalOES NG9-1-1 GIS Data Quality Control Plan April 18, 2022 [Dataset]. https://data.lacounty.gov/documents/lacounty::caloes-ng9-1-1-gis-data-quality-control-plan-april-18-2022/about
    Explore at:
    Dataset updated
    Jul 19, 2022
    Dataset authored and provided by
    County of Los Angeles
    Description

    GIS quality control checks are intended to identify issues in the source data that may impact a variety of9-1-1 end use systems.The primary goal of the initial CalOES NG9-1-1 implementation is to facilitate 9-1-1 call routing. Thesecondary goal is to use the data for telephone record validation through the LVF and the GIS-derivedMSAG.With these goals in mind, the GIS QC checks, and the impact of errors found by them are categorized asfollows in this document:Provisioning Failure Errors: GIS data issues resulting in ingest failures (results in no provisioning of one or more layers)Tier 1 Critical errors: Impact on initial 9-1-1 call routing and discrepancy reportingTier 2 Critical errors: Transition to GIS derived MSAGTier 3 Warning-level errors: Impact on routing of call transfersTier 4 Other errors: Impact on PSAP mapping and CAD systemsGeoComm's GIS Data Hub is configurable to stop GIS data that exceeds certain quality control check error thresholdsfrom provisioning to the SI (Spatial Interface) and ultimately to the ECRFs, LVFs and the GIS derivedMSAG.

  15. d

    Operational Forecasting (SPEN_011) Data Quality Checks - Dataset - Datopian...

    • demo.dev.datopian.com
    Updated May 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Operational Forecasting (SPEN_011) Data Quality Checks - Dataset - Datopian CKAN instance [Dataset]. https://demo.dev.datopian.com/dataset/sp-energy-networks--spen_data_quality_operational_forecasting
    Explore at:
    Dataset updated
    May 27, 2025
    Description

    This data table provides the detailed data quality assessment scores for the Operational Forecasting dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks. We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.

  16. o

    Long Term Development Statement (SPEN_002) Data Quality Checks

    • spenergynetworks.opendatasoft.com
    Updated Mar 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Long Term Development Statement (SPEN_002) Data Quality Checks [Dataset]. https://spenergynetworks.opendatasoft.com/explore/dataset/spen_data_quality_ltds/
    Explore at:
    Dataset updated
    Mar 28, 2025
    Description

    This data table provides the detailed data quality assessment scores for the Long Term Development Statement dataset. The quality assessment was carried out on 31st March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality; to demonstrate our progress we conduct annual assessments of our data quality in line with the dataset refresh rate. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks. We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.

  17. i

    Data Quality and Governance Cloud Market - In-Depth Analysis

    • imrmarketreports.com
    Updated Dec 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swati Kalagate; Akshay Patil; Vishal Kumbhar (2023). Data Quality and Governance Cloud Market - In-Depth Analysis [Dataset]. https://www.imrmarketreports.com/reports/data-quality-and-governance-cloud-market
    Explore at:
    Dataset updated
    Dec 2023
    Dataset provided by
    IMR Market Reports
    Authors
    Swati Kalagate; Akshay Patil; Vishal Kumbhar
    License

    https://www.imrmarketreports.com/privacy-policy/https://www.imrmarketreports.com/privacy-policy/

    Description

    The report offers Data Quality and Governance Cloud Market Dynamics, Comprises Industry development drivers, challenges, opportunities, threats and limitations. A report also incorporates Cost Trend of products, Mergers & Acquisitions, Expansion, Crucial Suppliers of products, Concentration Rate of Steel Coupling Economy. Global Data Quality and Governance Cloud Market Research Report covers Market Effect Factors investigation chiefly included Technology Progress, Consumer Requires Trend, External Environmental Change.

  18. C

    Cloud Data Quality Monitoring Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Cloud Data Quality Monitoring Report [Dataset]. https://www.datainsightsmarket.com/reports/cloud-data-quality-monitoring-1431345
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jun 21, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Cloud Data Quality Monitoring market is experiencing robust growth, driven by the increasing reliance on cloud-based data storage and processing, coupled with the rising demand for reliable and accurate data insights for informed business decision-making. The market's expansion is fueled by several key factors, including the growing adoption of big data analytics, stringent data governance regulations (like GDPR and CCPA), and the need to ensure data integrity across diverse cloud platforms. Businesses are increasingly investing in sophisticated cloud data quality monitoring solutions to proactively identify and address data quality issues, prevent costly errors, and maintain regulatory compliance. The market is segmented by deployment (cloud, on-premise), organization size (small, medium, large enterprises), and industry vertical (BFSI, healthcare, retail, etc.), with the cloud deployment segment showing significant traction due to its scalability, cost-effectiveness, and accessibility. Competition is fierce, with established players like Microsoft and Informatica vying for market share alongside specialized vendors focusing on specific niche solutions. The forecast period (2025-2033) anticipates sustained market expansion, propelled by ongoing technological advancements in AI-powered data quality tools and the broader adoption of cloud computing across industries. However, challenges remain, including the complexities of integrating data quality monitoring solutions with existing cloud infrastructure, the need for skilled professionals to manage these systems effectively, and the potential for data security breaches if proper safeguards aren't implemented. Despite these obstacles, the long-term outlook for the Cloud Data Quality Monitoring market remains positive, with continuous innovation and increasing industry awareness expected to drive sustained growth in the coming years. A projected CAGR (assuming a reasonable CAGR of 15% based on industry trends) indicates significant market expansion.

  19. f

    Characteristics of the 27 facilities that participated in both baseline and...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Veronica Muthee; Aaron F. Bochner; Allison Osterman; Nzisa Liku; Willis Akhwale; James Kwach; Mehta Prachi; Joyce Wamicwe; Jacob Odhiambo; Fredrick Onyango; Nancy Puttkammer (2023). Characteristics of the 27 facilities that participated in both baseline and follow-up RDQAs. [Dataset]. http://doi.org/10.1371/journal.pone.0195362.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Veronica Muthee; Aaron F. Bochner; Allison Osterman; Nzisa Liku; Willis Akhwale; James Kwach; Mehta Prachi; Joyce Wamicwe; Jacob Odhiambo; Fredrick Onyango; Nancy Puttkammer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Characteristics of the 27 facilities that participated in both baseline and follow-up RDQAs.

  20. D

    Data Quality Tools Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Dec 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2024). Data Quality Tools Market Report [Dataset]. https://www.marketresearchforecast.com/reports/data-quality-tools-market-5240
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Dec 20, 2024
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data quality tools market mainly consists of systems and programs under which the quality and reliability of data on various sources and structures can be achieved. They offer functionalities such as data subsetting, data cleaning, data de-duplication, and data validation, which are useful in assessing and rectifying the quality of data in organizations. Key business activity areas include data integration, migration, and governance, with decision-making, analytics, and compliance being viewed as major use cases. prominent sectors include finance, health, and social care, retail and wholesale, manufacturing, and construction. Market issues include the attempt to apply machine learning or artificial intelligence for better data quality, the attempt to apply cloud solutions for scalability and availability, and the need to be concerned with data privacy and regulations. Its employ has been subject to more focus given its criticality in business these days in addition to the increasing market need for enhancing data quality. Key drivers for this market are: Increased Digitization and High Adoption of Automation to Propel Market Growth. Potential restraints include: Privacy and Security Issues to Hamper Market Growth. Notable trends are: Growing Implementation of Touch-based and Voice-based Infotainment Systems to Increase Adoption of Intelligent Cars.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2016). Problems of poor data quality for enterprises in North America 2015 [Dataset]. https://www.statista.com/statistics/520490/north-america-survey-enterprise-poor-data-quality-problems/
Organization logo

Problems of poor data quality for enterprises in North America 2015

Explore at:
Dataset updated
Jan 26, 2016
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2015
Area covered
United States, Canada
Description

The statistic shows the problems caused by poor quality data for enterprises in North America, according to a survey of North American IT executives conducted by 451 Research in 2015. As of 2015, ** percent of respondents indicated that having poor quality data can result in extra costs for the business.

Search
Clear search
Close search
Google apps
Main menu