https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Learn more about Market Research Intellect's Data Quality Management Software Market Report, valued at USD 3.5 billion in 2024, and set to grow to USD 8.1 billion by 2033 with a CAGR of 12.8% (2026-2033).
The statistic depicts the causes of poor data quality for enterprises in North America, according to a survey of North American IT executives conducted by 451 Research in 2015. As of 2015, 47 percent of respondents indicated that poor data quality at their company was attributable to data migration or conversion projects.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Data Quality Tools market is experiencing robust growth, fueled by the increasing volume and complexity of data across diverse industries. The market, currently valued at an estimated $XX million in 2025 (assuming a logically derived value based on a 17.5% CAGR from a 2019 base year), is projected to reach $YY million by 2033. This substantial expansion is driven by several key factors. Firstly, the rising adoption of cloud-based solutions offers enhanced scalability, flexibility, and cost-effectiveness, attracting both small and medium enterprises (SMEs) and large enterprises. Secondly, the growing need for regulatory compliance (e.g., GDPR, CCPA) necessitates robust data quality management, pushing organizations to invest in advanced tools. Further, the increasing reliance on data-driven decision-making across sectors like BFSI, healthcare, and retail necessitates high-quality, reliable data, thus boosting market demand. The preference for software solutions over on-premise deployments and the substantial investments in services aimed at data integration and cleansing contribute to this growth. However, certain challenges restrain market expansion. High initial investment costs, the complexity of implementation, and the need for skilled professionals to manage these tools can act as barriers for some organizations, particularly SMEs. Furthermore, concerns related to data security and privacy continue to impact adoption rates. Despite these challenges, the long-term outlook for the Data Quality Tools market remains positive, driven by the ever-increasing importance of data quality in a rapidly digitalizing world. The market segmentation highlights significant opportunities across different deployment models, organizational sizes, and industry verticals, suggesting diverse avenues for growth and innovation in the coming years. Competition among established players like IBM, Informatica, and Oracle, alongside emerging players, is intensifying, driving innovation and providing diverse solutions to meet varied customer needs. Recent developments include: September 2022: MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) spin-off DataCebo announced the launch of a new tool, dubbed Synthetic Data (SD) Metrics, to help enterprises compare the quality of machine-generated synthetic data by pitching it against real data sets., May 2022: Pyramid Analytics, which developed its flagship platform, Pyramids Decision Intelligence, announced that it raised USD 120 million in a Series E round of funding. The Pyramid Decision Intelligence platform combines business analytics, data preparation, and data science capabilities with AI guidance functionality. It enables governed self-service analytics in a no-code environment.. Key drivers for this market are: Increasing Use of External Data Sources Owing to Mobile Connectivity Growth. Potential restraints include: Increasing Use of External Data Sources Owing to Mobile Connectivity Growth. Notable trends are: Healthcare is Expected to Witness Significant Growth.
Research Ship Roger Revelle Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS) program. IMPORTANT: ALWAYS USE THE QUALITY FLAG DATA! Each data variable's metadata includes a qcindex attribute which indicates a character number in the flag data. ALWAYS check the flag data for each row of data to see which data is good (flag='Z') and which data isn't. For example, to extract just data where time (qcindex=1), latitude (qcindex=2), longitude (qcindex=3), and airTemperature (qcindex=12) are 'good' data, include this constraint in your ERDDAP query: flag=~"ZZZ........Z." in your query. '=~' indicates this is a regular expression constraint. The 'Z's are literal characters. In this dataset, 'Z' indicates 'good' data. The '.'s say to match any character. The '' says to match the previous character 0 or more times. (Don't include backslashes in your query.) See the tutorial for regular expressions at https://www.vogella.com/tutorials/JavaRegularExpressions/article.html
https://www.emergenresearch.com/privacy-policyhttps://www.emergenresearch.com/privacy-policy
The Data Quality Tools Market size is expected to reach a valuation of USD 9.77 billion in 2033 growing at a CAGR of 16.20%. The Data Quality Tools market research report classifies market by share, trend, demand, forecast and based on segmentation.
The statistic depicts the means of managing data quality among enterprises in North America, according to a survey of North American IT executives conducted by 451 Research in 2015. As of 2015, ** percent of respondents indicated that their company uses a data quality management (DQM) cloud service to manage their data quality.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The data quality tools market mainly consists of systems and programs under which the quality and reliability of data on various sources and structures can be achieved. They offer functionalities such as data subsetting, data cleaning, data de-duplication, and data validation, which are useful in assessing and rectifying the quality of data in organizations. Key business activity areas include data integration, migration, and governance, with decision-making, analytics, and compliance being viewed as major use cases. prominent sectors include finance, health, and social care, retail and wholesale, manufacturing, and construction. Market issues include the attempt to apply machine learning or artificial intelligence for better data quality, the attempt to apply cloud solutions for scalability and availability, and the need to be concerned with data privacy and regulations. Its employ has been subject to more focus given its criticality in business these days in addition to the increasing market need for enhancing data quality. Key drivers for this market are: Increased Digitization and High Adoption of Automation to Propel Market Growth. Potential restraints include: Privacy and Security Issues to Hamper Market Growth. Notable trends are: Growing Implementation of Touch-based and Voice-based Infotainment Systems to Increase Adoption of Intelligent Cars.
Research Ship Robert Gordon Sproul Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS) program. IMPORTANT: ALWAYS USE THE QUALITY FLAG DATA! Each data variable's metadata includes a qcindex attribute which indicates a character number in the flag data. ALWAYS check the flag data for each row of data to see which data is good (flag='Z') and which data isn't. For example, to extract just data where time (qcindex=1), latitude (qcindex=2), longitude (qcindex=3), and airTemperature (qcindex=12) are 'good' data, include this constraint in your ERDDAP query: flag=~"ZZZ........Z." in your query. '=~' indicates this is a regular expression constraint. The 'Z's are literal characters. In this dataset, 'Z' indicates 'good' data. The '.'s say to match any character. The '' says to match the previous character 0 or more times. (Don't include backslashes in your query.) See the tutorial for regular expressions at https://www.vogella.com/tutorials/JavaRegularExpressions/article.html
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This package contains the materials for our survey study involving 91 participants on "How to Ensure High-Quality Data for AI? Lessons from Practitioners." It includes:The raw survey data and demographic chartsPython script for generating figureThe survey questionnaireThis package enables replication and further analysis of our study findings.
NARSTO_EPA_HOUSTON_TEXAQS2000_CAMS_DATA is the North American Research Strategy for Tropospheric Ozone (NARSTO) Environmental Protection Agency (EPA) Supersite (SS) Houston, Texas Air Quality Study 2000 (TexAQS2000) Texas Natural Resource Conservation Commission (TNRCC) continuous ambient monitoring stations (CAMS) Air Quality Data. This data set contains 5-minute air quality measurements collected in Texas during August and September 2000 at 85 CAMS during TEXAQS2000. Measurements include carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), total reactive nitrogen species (NOy), ozone, particulate matter (PM) 2.5 mass, hydrogen sulfide (H2S), wind speed, wind direction, maximum wind gust, air temperature, dewpoint temperature, humidity, precipitation, surface pressure, radiation, and visibility. CAMS are operated by the Texas Commission on Environmental Quality (TCEQ), local city or county governments, or private monitoring networks. Important monitoring site information: The site information data table in each of the 85 data files may not contain the latest TCEQ site information. A companion file site information spreadsheet (.csv) that lists data for all 85 sites is the latest TCEQ site information. The site information data tables in the 85 data files will not be updated. The 85 site spreadsheet companion document is the official source of site data, and this data is listed in the TEXAQS2000 CAMS guide document.NARSTO, which has since disbanded, was a public/private partnership, whose membership spanned across government, utilities, industry, and academe throughout Mexico, the United States, and Canada. The primary mission was to coordinate and enhance policy-relevant scientific research and assessment of tropospheric pollution behavior; activities provide input for science-based decision-making and determination of workable, efficient, and effective strategies for local and regional air-pollution management. Data products from local, regional, and international monitoring and research programs are still available.
https://www.imrmarketreports.com/privacy-policy/https://www.imrmarketreports.com/privacy-policy/
Global Cloud Data Quality Monitoring and Testing Market Report 2022 comes with the extensive industry analysis of development components, patterns, flows and sizes. The report also calculates present and past market values to forecast potential market management through the forecast period between 2022-2028. The report may be the best of what is a geographic area which expands the competitive landscape and industry perspective of the market.
Research Ship Knorr Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS) program. IMPORTANT: ALWAYS USE THE QUALITY FLAG DATA! Each data variable's metadata includes a qcindex attribute which indicates a character number in the flag data. ALWAYS check the flag data for each row of data to see which data is good (flag='Z') and which data isn't. For example, to extract just data where time (qcindex=1), latitude (qcindex=2), longitude (qcindex=3), and airTemperature (qcindex=12) are 'good' data, include this constraint in your ERDDAP query: flag=~"ZZZ........Z." in your query. '=~' indicates this is a regular expression constraint. The 'Z's are literal characters. In this dataset, 'Z' indicates 'good' data. The '.'s say to match any character. The '' says to match the previous character 0 or more times. (Don't include backslashes in your query.) See the tutorial for regular expressions at https://www.vogella.com/tutorials/JavaRegularExpressions/article.html
This United States Environmental Protection Agency (US EPA) feature layer represents site data, updated hourly concentrations and Air Quality Index (AQI) values for the last 24 hours received from each monitoring site that reports to AirNow. NOTE: Time Animation is enabled by default on this layer.Map and forecast data are collected using federal reference or equivalent monitoring techniques or techniques approved by the state, local or tribal monitoring agencies. To maintain "real-time" maps, the data are displayed after the end of each hour. Although preliminary data quality assessments are performed, the data in AirNow are not fully verified and validated through the quality assurance procedures monitoring organizations used to officially submit and certify data on the EPA Air Quality System (AQS).This data sharing, and centralization creates a one-stop source for real-time and forecast air quality data. The benefits include quality control, national reporting consistency, access to automated mapping methods, and data distribution to the public and other data systems. The U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, National Park Service, tribal, state, and local agencies developed the AirNow system to provide the public with easy access to national air quality information. State and local agencies report the Air Quality Index (AQI) for cities across the US and parts of Canada and Mexico. AirNow data are used only to report the AQI, not to formulate or support regulation, guidance or any other EPA decision or position.About the AQIThe Air Quality Index (AQI) is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. For each of these pollutants, EPA has established national air quality standards to protect public health. Ground-level ozone and airborne particles (often referred to as "particulate matter") are the two pollutants that pose the greatest threat to human health in this country.A number of factors influence ozone formation, including emissions from cars, trucks, buses, power plants, and industries, along with weather conditions. Weather is especially favorable for ozone formation when it’s hot, dry and sunny, and winds are calm and light. Federal and state regulations, including regulations for power plants, vehicles and fuels, are helping reduce ozone pollution nationwide.Fine particle pollution (or "particulate matter") can be emitted directly from cars, trucks, buses, power plants and industries, along with wildfires and woodstoves. But it also forms from chemical reactions of other pollutants in the air. Particle pollution can be high at different times of year, depending on where you live. In some areas, for example, colder winters can lead to increased particle pollution emissions from woodstove use, and stagnant weather conditions with calm and light winds can trap PM2.5 pollution near emission sources. Federal and state rules are helping reduce fine particle pollution, including clean diesel rules for vehicles and fuels, and rules to reduce pollution from power plants, industries, locomotives, and marine vessels, among others.How Does the AQI Work?Think of the AQI as a yardstick that runs from 0 to 500. The higher the AQI value, the greater the level of air pollution and the greater the health concern. For example, an AQI value of 50 represents good air quality with little potential to affect public health, while an AQI value over 300 represents hazardous air quality.An AQI value of 100 generally corresponds to the national air quality standard for the pollutant, which is the level EPA has set to protect public health. AQI values below 100 are generally thought of as satisfactory. When AQI values are above 100, air quality is considered to be unhealthy-at first for certain sensitive groups of people, then for everyone as AQI values get higher.Understanding the AQIThe purpose of the AQI is to help you understand what local air quality means to your health. To make it easier to understand, the AQI is divided into six categories:Air Quality Index(AQI) ValuesLevels of Health ConcernColorsWhen the AQI is in this range:..air quality conditions are:...as symbolized by this color:0 to 50GoodGreen51 to 100ModerateYellow101 to 150Unhealthy for Sensitive GroupsOrange151 to 200UnhealthyRed201 to 300Very UnhealthyPurple301 to 500HazardousMaroonNote: Values above 500 are considered Beyond the AQI. Follow recommendations for the Hazardous category. Additional information on reducing exposure to extremely high levels of particle pollution is available here.Each category corresponds to a different level of health concern. The six levels of health concern and what they mean are:"Good" AQI is 0 to 50. Air quality is considered satisfactory, and air pollution poses little or no risk."Moderate" AQI is 51 to 100. Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people. For example, people who are unusually sensitive to ozone may experience respiratory symptoms."Unhealthy for Sensitive Groups" AQI is 101 to 150. Although general public is not likely to be affected at this AQI range, people with lung disease, older adults and children are at a greater risk from exposure to ozone, whereas persons with heart and lung disease, older adults and children are at greater risk from the presence of particles in the air."Unhealthy" AQI is 151 to 200. Everyone may begin to experience some adverse health effects, and members of the sensitive groups may experience more serious effects."Very Unhealthy" AQI is 201 to 300. This would trigger a health alert signifying that everyone may experience more serious health effects."Hazardous" AQI greater than 300. This would trigger a health warnings of emergency conditions. The entire population is more likely to be affected.AQI colorsEPA has assigned a specific color to each AQI category to make it easier for people to understand quickly whether air pollution is reaching unhealthy levels in their communities. For example, the color orange means that conditions are "unhealthy for sensitive groups," while red means that conditions may be "unhealthy for everyone," and so on.Air Quality Index Levels of Health ConcernNumericalValueMeaningGood0 to 50Air quality is considered satisfactory, and air pollution poses little or no risk.Moderate51 to 100Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.Unhealthy for Sensitive Groups101 to 150Members of sensitive groups may experience health effects. The general public is not likely to be affected.Unhealthy151 to 200Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.Very Unhealthy201 to 300Health alert: everyone may experience more serious health effects.Hazardous301 to 500Health warnings of emergency conditions. The entire population is more likely to be affected.Note: Values above 500 are considered Beyond the AQI. Follow recommendations for the "Hazardous category." Additional information on reducing exposure to extremely high levels of particle pollution is available here.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Data Quality Software and Solutions market is experiencing robust growth, driven by the increasing volume and complexity of data generated by businesses across all sectors. The market's expansion is fueled by a rising demand for accurate, consistent, and reliable data for informed decision-making, improved operational efficiency, and regulatory compliance. Key drivers include the surge in big data adoption, the growing need for data integration and governance, and the increasing prevalence of cloud-based solutions offering scalable and cost-effective data quality management capabilities. Furthermore, the rising adoption of advanced analytics and artificial intelligence (AI) is enhancing data quality capabilities, leading to more sophisticated solutions that can automate data cleansing, validation, and profiling processes. We estimate the 2025 market size to be around $12 billion, growing at a compound annual growth rate (CAGR) of 10% over the forecast period (2025-2033). This growth trajectory is being influenced by the rapid digital transformation across industries, necessitating higher data quality standards. Segmentation reveals a strong preference for cloud-based solutions due to their flexibility and scalability, with large enterprises driving a significant portion of the market demand. However, market growth faces some restraints. High implementation costs associated with data quality software and solutions, particularly for large-scale deployments, can be a barrier to entry for some businesses, especially SMEs. Also, the complexity of integrating these solutions with existing IT infrastructure can present challenges. The lack of skilled professionals proficient in data quality management is another factor impacting market growth. Despite these challenges, the market is expected to maintain a healthy growth trajectory, driven by increasing awareness of the value of high-quality data, coupled with the availability of innovative and user-friendly solutions. The competitive landscape is characterized by established players such as Informatica, IBM, and SAP, along with emerging players offering specialized solutions, resulting in a diverse range of options for businesses. Regional analysis indicates that North America and Europe currently hold significant market shares, but the Asia-Pacific region is projected to witness substantial growth in the coming years due to rapid digitalization and increasing data volumes.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
For more up to date quality metadata, please visit https://w3id.org/lodquator
This dataset is a collection of TRiG files with quality metadata for different datasets on the LOD cloud. Each dataset was assessed for
The length of URIs
Usage of RDF primitives
Re-use of existing terms
Usage of undefined terms
Usage of blank nodes
Indication for different serialisation formats
Usage of multiple languages
This data dump is part of the empirical study conducted for the paper "Are LOD Cloud Datasets Well Represented? A Data Representation Quality Survey."
For more information visit http://jerdeb.github.io/lodqa
This report shares information about school performance, sets expectations for schools, and promotes school improvement. School Quality Report Educator Guides can be found here.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global data validation services market size was valued at USD XXX million in 2025 and is projected to grow at a CAGR of XX% during the forecast period. Growing concerns over data inaccuracy and the increasing volume of data being generated by organizations are the key factors driving the market growth. Additionally, the adoption of cloud-based data validation solutions is expected to further fuel the market expansion. North America and Europe are the largest markets for data validation services, with a significant presence of large enterprises and stringent data regulations. The market is fragmented with several established players and a number of emerging vendors offering specialized solutions. Key market participants include TELUS Digital, Experian Data Quality, Flatworld Solutions Inc., Precisely, LDC, InfoCleanse, Level Data, Damco Solutions, Environmental Data Validation Inc., DataCaptive, Process Fusion, Ann Arbor Technical Services, Inc., and others. These companies are focusing on expanding their geographical reach, developing new products and features, and offering value-added services to gain a competitive edge in the market. The growing demand for data privacy and security solutions is also expected to drive the adoption of data validation services in the coming years.
https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy
Recent developments include: January 2022: IBM and Francisco Partners disclosed the execution of a definitive contract under which Francisco Partners will purchase medical care information and analytics resources from IBM, which are currently part of the IBM Watson Health business., October 2021: Informatica LLC announced an important cloud storage agreement with Google Cloud in October 2021. This collaboration allows Informatica clients to transition to Google Cloud as much as twelve times quicker. Informatica's Google Cloud Marketplace transactable solutions now incorporate Master Data Administration and Data Governance capabilities., Completing a unit of labor with incorrect data costs ten times more estimates than the Harvard Business Review, and finding the correct data for effective tools has never been difficult. A reliable system may be implemented by selecting and deploying intelligent workflow-driven, self-service options tools for data quality with inbuilt quality controls.. Key drivers for this market are: Increasing demand for data quality: Businesses are increasingly recognizing the importance of data quality for decision-making and operational efficiency. This is driving demand for data quality tools that can automate and streamline the data cleansing and validation process.
Growing adoption of cloud-based data quality tools: Cloud-based data quality tools offer several advantages over on-premises solutions, including scalability, flexibility, and cost-effectiveness. This is driving the adoption of cloud-based data quality tools across all industries.
Emergence of AI-powered data quality tools: AI-powered data quality tools can automate many of the tasks involved in data cleansing and validation, making it easier and faster to achieve high-quality data. This is driving the adoption of AI-powered data quality tools across all industries.. Potential restraints include: Data privacy and security concerns: Data privacy and security regulations are becoming increasingly stringent, which can make it difficult for businesses to implement data quality initiatives.
Lack of skilled professionals: There is a shortage of skilled data quality professionals who can implement and manage data quality tools. This can make it difficult for businesses to achieve high-quality data.
Cost of data quality tools: Data quality tools can be expensive, especially for large businesses with complex data environments. This can make it difficult for businesses to justify the investment in data quality tools.. Notable trends are: Adoption of AI-powered data quality tools: AI-powered data quality tools are becoming increasingly popular, as they can automate many of the tasks involved in data cleansing and validation. This makes it easier and faster to achieve high-quality data.
Growth of cloud-based data quality tools: Cloud-based data quality tools are becoming increasingly popular, as they offer several advantages over on-premises solutions, including scalability, flexibility, and cost-effectiveness.
Focus on data privacy and security: Data quality tools are increasingly being used to help businesses comply with data privacy and security regulations. This is driving the development of new data quality tools that can help businesses protect their data..
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Quality Analysis Tool market is experiencing robust growth, driven by the increasing need for data quality assurance across various industries. The market's expansion is fueled by the rising adoption of cloud-based solutions, offering scalability and accessibility to both SMEs and large enterprises. The shift towards digital transformation and the burgeoning volume of data generated necessitate robust quality analysis tools to ensure data accuracy, reliability, and compliance. A compound annual growth rate (CAGR) of 15% is projected from 2025 to 2033, indicating a significant market expansion. This growth is further propelled by trends like the increasing adoption of AI and machine learning in quality analysis, enabling automation and improved efficiency. However, factors like high implementation costs and the need for specialized expertise could act as restraints on market growth. Segmentation reveals that the cloud-based segment holds a larger market share due to its flexibility and cost-effectiveness compared to on-premises solutions. North America is expected to dominate the market due to early adoption and the presence of major technology players. However, the Asia-Pacific region is anticipated to witness rapid growth fueled by increasing digitalization and data generation in emerging economies. The competitive landscape is characterized by a mix of established players like TIBCO and Google, alongside innovative startups offering niche solutions. The market is expected to reach approximately $15 billion by 2033, based on current growth projections and market dynamics. The competitive intensity in the Quality Analysis Tool market is expected to remain high, as both established vendors and new entrants strive to capture market share. Strategic alliances, mergers, and acquisitions are anticipated to shape the market landscape. Furthermore, the focus on integrating AI and machine learning capabilities into existing tools will be crucial for vendors to stay competitive. The development of user-friendly interfaces and improved data visualization capabilities will be paramount to cater to the growing demand for accessible and effective quality analysis solutions across different technical skill sets. The ongoing evolution of data privacy regulations will necessitate the development of tools compliant with global standards, impacting the market's trajectory. Finally, the market will need to address the skill gap in data quality management by providing robust training and support to users, ensuring widespread adoption and optimal utilization of the tools.
This National Survey on Drug Use and Health (NSDUH) methodological report presents analyzes the relationships between several field interviewer characteristics and various survey outcomes, including response rates and respondent self-reports on substance use and mental health indicators.
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Learn more about Market Research Intellect's Data Quality Management Software Market Report, valued at USD 3.5 billion in 2024, and set to grow to USD 8.1 billion by 2033 with a CAGR of 12.8% (2026-2033).