Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1430847%2F29f7950c3b7daf11175aab404725542c%2FGettyImages-1187621904-600x360.jpg?generation=1601115151722854&alt=media" alt="">
Data visualization is the graphical representation of information and data. By using visual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data.
In the world of Big Data, data visualization tools and technologies are essential to analyze massive amounts of information and make data-driven decisions
32 cheat sheets: This includes A-Z about the techniques and tricks that can be used for visualization, Python and R visualization cheat sheets, Types of charts, and their significance, Storytelling with data, etc..
32 Charts: The corpus also consists of a significant amount of data visualization charts information along with their python code, d3.js codes, and presentations relation to the respective charts explaining in a clear manner!
Some recommended books for data visualization every data scientist's should read:
In case, if you find any books, cheat sheets, or charts missing and if you would like to suggest some new documents please let me know in the discussion sections!
A kind request to kaggle users to create notebooks on different visualization charts as per their interest by choosing a dataset of their own as many beginners and other experts could find it useful!
To create interactive EDA using animation with a combination of data visualization charts to give an idea about how to tackle data and extract the insights from the data
Feel free to use the discussion platform of this data set to ask questions or any queries related to the data visualization corpus and data visualization techniques
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Public speaking is an important skill, the acquisition of which requires dedicated and time consuming training. In recent years, researchers have started to investigate automatic methods to support public speaking skills training. These methods include assessment of the trainee's oral presentation delivery skills which may be accomplished through automatic understanding and processing of social and behavioral cues displayed by the presenter. In this study, we propose an automatic scoring system for presentation delivery skills using a novel active data representation method to automatically rate segments of a full video presentation. While most approaches have employed a two step strategy consisting of detecting multiple events followed by classification, which involve the annotation of data for building the different event detectors and generating a data representation based on their output for classification, our method does not require event detectors. The proposed data representation is generated unsupervised using low-level audiovisual descriptors and self-organizing mapping and used for video classification. This representation is also used to analyse video segments within a full video presentation in terms of several characteristics of the presenter's performance. The audio representation provides the best prediction results for self-confidence and enthusiasm, posture and body language, structure and connection of ideas, and overall presentation delivery. The video data representation provides the best results for presentation of relevant information with good pronunciation, usage of language according to audience, and maintenance of adequate voice volume for the audience. The fusion of audio and video data provides the best results for eye contact. Applications of the method to provision of feedback to teachers and trainees are discussed.
Facebook
TwitterResearch dissemination and knowledge translation are imperative in social work. Methodological developments in data visualization techniques have improved the ability to convey meaning and reduce erroneous conclusions. The purpose of this project is to examine: (1) How are empirical results presented visually in social work research?; (2) To what extent do top social work journals vary in the publication of data visualization techniques?; (3) What is the predominant type of analysis presented in tables and graphs?; (4) How can current data visualization methods be improved to increase understanding of social work research? Method: A database was built from a systematic literature review of the four most recent issues of Social Work Research and 6 other highly ranked journals in social work based on the 2009 5-year impact factor (Thomson Reuters ISI Web of Knowledge). Overall, 294 articles were reviewed. Articles without any form of data visualization were not included in the final database. The number of articles reviewed by journal includes : Child Abuse & Neglect (38), Child Maltreatment (30), American Journal of Community Psychology (31), Family Relations (36), Social Work (29), Children and Youth Services Review (112), and Social Work Research (18). Articles with any type of data visualization (table, graph, other) were included in the database and coded sequentially by two reviewers based on the type of visualization method and type of analyses presented (descriptive, bivariate, measurement, estimate, predicted value, other). Additional revi ew was required from the entire research team for 68 articles. Codes were discussed until 100% agreement was reached. The final database includes 824 data visualization entries.
Facebook
Twitterhttps://www.usa.gov/government-works/https://www.usa.gov/government-works/
Data visualization using Python (Pandas, Plotly).
Data was used to visualization of the infection rate and the death rate from 01/20 to 04/22.
The data was made available on Github: https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This synthetic dataset is designed specifically for practicing data visualization and exploratory data analysis (EDA) using popular Python libraries like Seaborn, Matplotlib, and Pandas.
Unlike most public datasets, this one includes a diverse mix of column types:
đ Date columns (for time series and trend plots) đ˘ Numerical columns (for histograms, boxplots, scatter plots) đˇď¸ Categorical columns (for bar charts, group analysis)
Whether you are a beginner learning how to visualize data or an intermediate user testing new charting techniques, this dataset offers a versatile playground.
Feel free to:
Create EDA notebooks Practice plotting techniques Experiment with filtering, grouping, and aggregations đ ď¸ No missing values, no data cleaning needed â just download and start exploring!
Hope you find this helpful. Looking forward to hearing from you all.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
A recent proteomics-grade (95%+ sequence reliability) high-throughput de novo sequencing method utilizes the benefits of high resolution, high mass accuracy, and the use of two complementary fragmentation techniques collision-activated dissociation (CAD) and electron capture dissociation (ECD). With this high-fidelity sequencing approach, hundreds of peptides can be sequenced de novo in a single LCâMS/MS experiment. The high productivity of the new analysis technique has revealed a new bottleneck which occurs in data representation. Here we suggest a new method of data analysis and visualization that presents a comprehensive picture of the peptide content including relative abundances and grouping into families. The 2D mass mapping consists of putting the molecular masses onto a two-dimensional bubble plot, with the relative monoisotopic mass defect and isotopic shift being the axes and with the bubble area proportional to the peptide abundance. Peptides belonging to the same family form a compact group on such a plot, so that the family identity can in many cases be determined from the molecular mass alone. The performance of the method is demonstrated on the high-throughput analysis of skin secretion from three frogs, Rana ridibunda, Rana arvalis, and Rana temporaria. Two dimensional mass maps simplify the task of global comparison between the species and make obvious the similarities and differences in the peptide contents that are obscure in traditional data presentation methods. Even biological activity of the peptide can sometimes be inferred from its position on the plot. Two dimensional mass mapping is a general method applicable to any complex mixture, peptide and nonpeptide alike.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains a list of 186 Digital Humanities projects leveraging information visualisation techniques. Each project has been classified according to visualisation and interaction methods, narrativity and narrative solutions, domain, methods for the representation of uncertainty and interpretation, and the employment of critical and custom approaches to visually represent humanities data.
The project_id column contains unique internal identifiers assigned to each project. Meanwhile, the last_access column records the most recent date (in DD/MM/YYYY format) on which each project was reviewed based on the web address specified in the url column.
The remaining columns can be grouped into descriptive categories aimed at characterising projects according to different aspects:
Narrativity. It reports the presence of information visualisation techniques employed within narrative structures. Here, the term narrative encompasses both author-driven linear data stories and more user-directed experiences where the narrative sequence is determined by user exploration [1]. We define 2 columns to identify projects using visualisation techniques in narrative, or non-narrative sections. Both conditions can be true for projects employing visualisations in both contexts. Columns:
non_narrative (boolean)
narrative (boolean)
Domain. The humanities domain to which the project is related. We rely on [2] and the chapters of the first part of [3] to abstract a set of general domains. Column:
domain (categorical):
History and archaeology
Art and art history
Language and literature
Music and musicology
Multimedia and performing arts
Philosophy and religion
Other: both extra-list domains and cases of collections without a unique or specific thematic focus.
Visualisation of uncertainty and interpretation. Buiding upon the frameworks proposed by [4] and [5], a set of categories was identified, highlighting a distinction between precise and impressional communication of uncertainty. Precise methods explicitly represent quantifiable uncertainty such as missing, unknown, or uncertain data, precisely locating and categorising it using visual variables and positioning. Two sub-categories are interactive distinction, when uncertain data is not visually distinguishable from the rest of the data but can be dynamically isolated or included/excluded categorically through interaction techniques (usually filters); and visual distinction, when uncertainty visually âemergesâ from the representation by means of dedicated glyphs and spatial or visual cues and variables. On the other hand, impressional methods communicate the constructed and situated nature of data [6], exposing the interpretative layer of the visualisation and indicating more abstract and unquantifiable uncertainty using graphical aids or interpretative metrics. Two sub-categories are: ambiguation, when the use of graphical expedientsâlike permeable glyph boundaries or broken linesâvisually convey the ambiguity of a phenomenon; and interpretative metrics, when expressive, non-scientific, or non-punctual metrics are used to build a visualisation. Column:
uncertainty_interpretation (categorical):
Interactive distinction
Visual distinction
Ambiguation
Interpretative metrics
Critical adaptation. We identify projects in which, with regards to at least a visualisation, the following criteria are fulfilled: 1) avoid repurposing of prepackaged, generic-use, or ready-made solutions; 2) being tailored and unique to reflect the peculiarities of the phenomena at hand; 3) avoid simplifications to embrace and depict complexity, promoting time-consuming visualisation-based inquiry. Column:
critical_adaptation (boolean)
Non-temporal visualisation techniques. We adopt and partially adapt the terminology and definitions from [7]. A column is defined for each type of visualisation and accounts for its presence within a project, also including stacked layouts and more complex variations. Columns and inclusion criteria:
plot (boolean): visual representations that map data points onto a two-dimensional coordinate system.
cluster_or_set (boolean): sets or cluster-based visualisations used to unveil possible inter-object similarities.
map (boolean): geographical maps used to show spatial insights. While we do not specify the variants of maps (e.g., pin maps, dot density maps, flow maps, etc.), we make an exception for maps where each data point is represented by another visualisation (e.g., a map where each data point is a pie chart) by accounting for the presence of both in their respective columns.
network (boolean): visual representations highlighting relational aspects through nodes connected by links or edges.
hierarchical_diagram (boolean): tree-like structures such as tree diagrams, radial trees, but also dendrograms. They differ from networks for their strictly hierarchical structure and absence of closed connection loops.
treemap (boolean): still hierarchical, but highlighting quantities expressed by means of area size. It also includes circle packing variants.
word_cloud (boolean): clouds of words, where each instanceâs size is proportional to its frequency in a related context
bars (boolean): includes bar charts, histograms, and variants. It coincides with âbar chartsâ in [7] but with a more generic term to refer to all bar-based visualisations.
line_chart (boolean): the display of information as sequential data points connected by straight-line segments.
area_chart (boolean): similar to a line chart but with a filled area below the segments. It also includes density plots.
pie_chart (boolean): circular graphs divided into slices which can also use multi-level solutions.
plot_3d (boolean): plots that use a third dimension to encode an additional variable.
proportional_area (boolean): representations used to compare values through area size. Typically, using circle- or square-like shapes.
other (boolean): it includes all other types of non-temporal visualisations that do not fall into the aforementioned categories.
Temporal visualisations and encodings. In addition to non-temporal visualisations, a group of techniques to encode temporality is considered in order to enable comparisons with [7]. Columns:
timeline (boolean): the display of a list of data points or spans in chronological order. They include timelines working either with a scale or simply displaying events in sequence. As in [7], we also include structured solutions resembling Gantt chart layouts.
temporal_dimension (boolean): to report when time is mapped to any dimension of a visualisation, with the exclusion of timelines. We use the term âdimensionâ and not âaxisâ as in [7] as more appropriate for radial layouts or more complex representational choices.
animation (boolean): temporality is perceived through an animation changing the visualisation according to time flow.
visual_variable (boolean): another visual encoding strategy is used to represent any temporality-related variable (e.g., colour).
Interactions. A set of categories to assess affordable interactions based on the concept of user intent [8] and user-allowed perceptualisation data actions [9]. The following categories roughly match the manipulative subset of methods of the âhowâ an interaction is performed in the conception of [10]. Only interactions that affect the aspect of the visualisation or the visual representation of its data points, symbols, and glyphs are taken into consideration. Columns:
basic_selection (boolean): the demarcation of an element either for the duration of the interaction or more permanently until the occurrence of another selection.
advanced_selection (boolean): the demarcation involves both the selected element and connected elements within the visualisation or leads to brush and link effects across views. Basic selection is tacitly implied.
navigation (boolean): interactions that allow moving, zooming, panning, rotating, and scrolling the view but only when applied to the visualisation and not to the web page. It also includes âdrillâ interactions (to navigate through different levels or portions of data detail, often generating a new view that replaces or accompanies the original) and âexpandâ interactions generating new perspectives on data by expanding and collapsing nodes.
arrangement (boolean): the organisation of visualisation elements (symbols, glyphs, etc.) or multi-visualisation layouts spatially through drag and drop or
Facebook
Twitter
According to our latest research, the global Data Visualization Software market size reached USD 8.2 billion in 2024, reflecting the sectorĂâs rapid adoption across industries. With a robust CAGR of 10.8% projected from 2025 to 2033, the market is expected to grow significantly, attaining a value of USD 20.3 billion by 2033. This dynamic expansion is primarily driven by the increasing demand for actionable business insights, the proliferation of big data analytics, and the growing need for real-time decision-making tools across enterprises worldwide.
One of the most powerful growth factors for the Data Visualization Software market is the surge in big data generation and the corresponding need for advanced analytics solutions. Organizations are increasingly dealing with massive and complex datasets that traditional reporting tools cannot handle efficiently. Modern data visualization software enables users to interpret these vast datasets quickly, presenting trends, patterns, and anomalies in intuitive graphical formats. This empowers organizations to make informed decisions faster, boosting overall operational efficiency and competitive advantage. Furthermore, the integration of artificial intelligence and machine learning capabilities into data visualization platforms is enhancing their analytical power, allowing for predictive and prescriptive insights that were previously unattainable.
Another significant driver of the Data Visualization Software market is the widespread digital transformation initiatives across various sectors. Enterprises are investing heavily in digital technologies to streamline operations, improve customer experiences, and unlock new revenue streams. Data visualization tools have become integral to these transformations, serving as a bridge between raw data and strategic business outcomes. By offering interactive dashboards, real-time reporting, and customizable analytics, these solutions enable users at all organizational levels to engage with data meaningfully. The democratization of data access facilitated by user-friendly visualization software is fostering a data-driven culture, encouraging innovation and agility across industries such as BFSI, healthcare, retail, and manufacturing.
The increasing adoption of cloud-based data visualization solutions is also fueling market growth. Cloud deployment offers scalability, flexibility, and cost-effectiveness, making advanced analytics accessible to organizations of all sizes, including small and medium enterprises (SMEs). Cloud-based platforms support seamless integration with other business applications, facilitate remote collaboration, and provide robust security features. As businesses continue to embrace remote and hybrid work models, the demand for cloud-based data visualization tools is expected to rise, further accelerating market expansion. Vendors are responding with enhanced offerings, including AI-driven analytics, embedded BI, and self-service visualization capabilities, catering to the evolving needs of modern enterprises.
In the realm of warehouse management systems (WMS), the integration of WMS Data Visualization Tools is becoming increasingly vital. These tools offer a comprehensive view of warehouse operations, enabling managers to visualize data related to inventory levels, order processing, and shipment tracking in real-time. By leveraging advanced visualization techniques, WMS data visualization tools help in identifying bottlenecks, optimizing resource allocation, and improving overall efficiency. The ability to transform complex data sets into intuitive visual formats empowers warehouse managers to make informed decisions swiftly, thereby enhancing productivity and reducing operational costs. As the demand for streamlined logistics and supply chain management continues to grow, the adoption of WMS data visualization tools is expected to rise, driving further innovation in the sector.
Regionally, North America continues to dominate the Data Visualization Software market due to early technology adoption, a strong presence of leading vendors, and a mature analytics landscape. However, the Asia Pacific region is witnessing the fastest growth, driven by rapid digitalization, increasing IT investments, and the emergence of data-centric business models in countries like China, India
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Explore the future of data visualization through Bret Victor's groundbreaking HCI software, revolutionizing how humans interact with data analysis tools. Key insights for tech leaders.
Facebook
TwitterThis dataset was created by Bharat Kumar
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Recent advances in experimental techniques have led to a rapid growth in complexity, size, and number of macromolecular structures that are made available through the Protein Data Bank. This creates a challenge for macromolecular visualization and analysis. Macromolecular structure files, such as PDB or PDBx/mmCIF files can be slow to transfer, parse, and hard to incorporate into third-party software tools. Here, we present a new binary and compressed data representation, the MacroMolecular Transmission Format, MMTF, as well as software implementations in several languages that have been developed around it, which address these issues. We describe the new format and its APIs and demonstrate that it is several times faster to parse, and about a quarter of the file size of the current standard format, PDBx/mmCIF. As a consequence of the new data representation, it is now possible to visualize structures with millions of atoms in a web browser, keep the whole PDB archive in memory or parse it within few minutes on average computers, which opens up a new way of thinking how to design and implement efficient algorithms in structural bioinformatics. The PDB archive is available in MMTF file format through web services and data that are updated on a weekly basis.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Knowledge Domain Visualization market is experiencing robust growth, driven by the increasing need for organizations to effectively manage and understand complex information landscapes. The market's expansion is fueled by several key factors. Firstly, the proliferation of big data necessitates advanced visualization techniques to extract meaningful insights and facilitate data-driven decision-making. Secondly, advancements in artificial intelligence (AI) and machine learning (ML) are enabling the development of more sophisticated visualization tools capable of handling vast datasets and providing deeper analytical capabilities. Thirdly, the rising adoption of cloud-based solutions is improving accessibility and scalability, further contributing to market growth. While precise figures are unavailable, a reasonable estimation based on industry trends suggests a market size of approximately $2.5 billion in 2025, with a Compound Annual Growth Rate (CAGR) of 15% projected through 2033. This growth trajectory is expected to continue as organizations across diverse sectors, including healthcare, finance, and education, increasingly recognize the value of effective knowledge visualization in enhancing operational efficiency and strategic planning. Significant regional variations are anticipated, with North America and Europe leading the market initially, due to higher levels of technology adoption and the presence of established players. However, rapid growth is expected in the Asia-Pacific region, particularly in China and India, driven by increasing digitalization and investment in advanced technologies. Market segmentation reveals strong demand across various applications, including business intelligence, research and development, and education. The dominant types of visualization tools include interactive dashboards, network graphs, and 3D visualizations, each catering to specific analytical needs. Restraints to market growth primarily include the complexities associated with data integration and the requirement for specialized expertise in data visualization techniques. However, ongoing developments in user-friendly interfaces and the increasing availability of skilled professionals are mitigating these challenges, paving the way for sustained market expansion.
Facebook
Twitterhttps://www.law.cornell.edu/uscode/text/17/106https://www.law.cornell.edu/uscode/text/17/106
Medical image analysis is critical to biological studies, health research, computer- aided diagnoses, and clinical applications. Recently, deep learning (DL) techniques have achieved remarkable successes in medical image analysis applications. However, these techniques typically require large amounts of annotations to achieve satisfactory performance. Therefore, in this dissertation, we seek to address this critical problem: How can we develop efficient and effective DL algorithms for medical image analysis while reducing annotation efforts? To address this problem, we have outlined two specific aims: (A1) Utilize existing annotations effectively from advanced models; (A2) extract generic knowledge directly from unannotated images.
To achieve the aim (A1): First, we introduce a new data representation called TopoImages, which encodes the local topology of all the image pixels. TopoImages can be complemented with the original images to improve medical image analysis tasks. Second, we propose a new augmentation method, SAMAug-C, that lever- ages the Segment Anything Model (SAM) to augment raw image input and enhance medical image classification. Third, we propose two advanced DL architectures, kCBAC-Net and ConvFormer, to enhance the performance of 2D and 3D medical image segmentation. We also present a gate-regularized network training (GrNT) approach to improve multi-scale fusion in medical image segmentation. To achieve the aim (A2), we propose a novel extension of known Masked Autoencoders (MAEs) for self pre-training, i.e., models pre-trained on the same target dataset, specifically for 3D medical image segmentation.
Scientific visualization is a powerful approach for understanding and analyzing various physical or natural phenomena, such as climate change or chemical reactions. However, the cost of scientific simulations is high when factors like time, ensemble, and multivariate analyses are involved. Additionally, scientists can only afford to sparsely store the simulation outputs (e.g., scalar field data) or visual representations (e.g., streamlines) or visualization images due to limited I/O bandwidths and storage space. Therefore, in this dissertation, we seek to address this critical problem: How can we develop efficient and effective DL algorithms for scientific data generation and compression while reducing simulation and storage costs?
To tackle this problem: First, we propose a DL framework that generates un- steady vector fields data from a set of streamlines. Based on this method, domain scientists only need to store representative streamlines at simulation time and recon- struct vector fields during post-processing. Second, we design a novel DL method that translates scalar fields to vector fields. Using this approach, domain scientists only need to store scalar field data at simulation time and generate vector fields from their scalar field counterparts afterward. Third, we present a new DL approach that compresses a large collection of visualization images generated from time-varying data for communicating volume visualization results.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vocabulary for Linked Data Visualization Model (LDVM) serves for description and configuration of components and pipelines according to LDVM @en
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article introduces a new kind of histogram-based representation for univariate random variables, named the phistogram because of its perceptual qualities. The technique relies on shifted groupings of data, creating a color-gradient zone that evidences the uncertainty from smoothing and highlights sampling issues. In this way, the phistogram offers a deep and visually appealing perspective on the finite sample peculiarities, being capable of depicting the underlying distribution as well, thus, becoming an useful complement to histograms and other statistical summaries. Although not limited to it, the present construction is derived from the equal-area histogram, a variant that differs conceptually from the traditional one. As such a distinction is not greatly emphasized in the literature, the graphical fundamentals are described in detail, and an alternative terminology is proposed to separate some concepts. Additionally, a compact notation is adopted to integrate the representationâs metadata into the graphic itself.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Taking projections of high-dimensional data is a common analytical and visualization technique in statistics for working with high-dimensional problems. Sectioning, or slicing, through high dimensions is less common, but can be useful for visualizing data with concavities, or nonlinear structure. It is associated with conditional distributions in statistics, and also linked brushing between plots in interactive data visualization. This short technical note describes a simple approach for slicing in the orthogonal space of projections obtained when running a tour, thus presenting the viewer with an interpolated sequence of sliced projections. The method has been implemented in R as an extension to the tourr package, and can be used to explore for concave and nonlinear structures in multivariate distributions. Supplementary materials for this article are available online.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset for Linear Regression with two Independent variables and one Dependent variable. Focused on Testing, Visualization and Statistical Analysis. The dataset is synthetic and contains 100 instances.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data visualization is of increasing importance in the Biosciences. During the past 15 years, a great number of novel methods and tools for the visualization of biological data have been developed and published in various journals and conference proceedings. As a consequence, keeping an overview of state-of-the-art visualization research has become increasingly challenging for both biology researchers and visualization researchers. To address this challenge, we have reviewed visualization research especially performed for the Biosciences and created an interactive web-based visualization tool, the BioVis Explorer. BioVis Explorer allows the exploration of published visualization methods in interactive and intuitive ways, including faceted browsing and associations with related methods. The tool is publicly available online and has been designed as community-based system which allows users to add their works easily.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The theoretical foundations of Big Data Science are not fully developed, yet. This study proposes a new scalable framework for Big Data representation, high-throughput analytics (variable selection and noise reduction), and model-free inference. Specifically, we explore the core principles of distribution-free and model-agnostic methods for scientific inference based on Big Data sets. Compressive Big Data analytics (CBDA) iteratively generates random (sub)samples from a big and complex dataset. This subsampling with replacement is conducted on the feature and case levels and results in samples that are not necessarily consistent or congruent across iterations. The approach relies on an ensemble predictor where established model-based or model-free inference techniques are iteratively applied to preprocessed and harmonized samples. Repeating the subsampling and prediction steps many times, yields derived likelihoods, probabilities, or parameter estimates, which can be used to assess the algorithm reliability and accuracy of findings via bootstrapping methods, or to extract important features via controlled variable selection. CBDA provides a scalable algorithm for addressing some of the challenges associated with handling complex, incongruent, incomplete and multi-source data and analytics challenges. Albeit not fully developed yet, a CBDA mathematical framework will enable the study of the ergodic properties and the asymptotics of the specific statistical inference approaches via CBDA. We implemented the high-throughput CBDA method using pure R as well as via the graphical pipeline environment. To validate the technique, we used several simulated datasets as well as a real neuroimaging-genetics of Alzheimerâs disease case-study. The CBDA approach may be customized to provide generic representation of complex multimodal datasets and to provide stable scientific inference for large, incomplete, and multisource datasets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The technological advancements of the modern era have enabled the collection of huge amounts of data in science and beyond. Extracting useful information from such massive datasets is an ongoing challenge as traditional data visualization tools typically do not scale well in high-dimensional settings. An existing visualization technique that is particularly well suited to visualizing large datasets is the heatmap. Although heatmaps are extremely popular in fields such as bioinformatics, they remain a severely underutilized visualization tool in modern data analysis. This article introduces superheat, a new R package that provides an extremely flexible and customizable platform for visualizing complex datasets. Superheat produces attractive and extendable heatmaps to which the user can add a response variable as a scatterplot, model results as boxplots, correlation information as barplots, and more. The goal of this article is two-fold: (1) to demonstrate the potential of the heatmap as a core visualization method for a range of data types, and (2) to highlight the customizability and ease of implementation of the superheat R package for creating beautiful and extendable heatmaps. The capabilities and fundamental applicability of the superheat package will be explored via three reproducible case studies, each based on publicly available data sources.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1430847%2F29f7950c3b7daf11175aab404725542c%2FGettyImages-1187621904-600x360.jpg?generation=1601115151722854&alt=media" alt="">
Data visualization is the graphical representation of information and data. By using visual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data.
In the world of Big Data, data visualization tools and technologies are essential to analyze massive amounts of information and make data-driven decisions
32 cheat sheets: This includes A-Z about the techniques and tricks that can be used for visualization, Python and R visualization cheat sheets, Types of charts, and their significance, Storytelling with data, etc..
32 Charts: The corpus also consists of a significant amount of data visualization charts information along with their python code, d3.js codes, and presentations relation to the respective charts explaining in a clear manner!
Some recommended books for data visualization every data scientist's should read:
In case, if you find any books, cheat sheets, or charts missing and if you would like to suggest some new documents please let me know in the discussion sections!
A kind request to kaggle users to create notebooks on different visualization charts as per their interest by choosing a dataset of their own as many beginners and other experts could find it useful!
To create interactive EDA using animation with a combination of data visualization charts to give an idea about how to tackle data and extract the insights from the data
Feel free to use the discussion platform of this data set to ask questions or any queries related to the data visualization corpus and data visualization techniques