100+ datasets found
  1. Retail Transactions Dataset

    • kaggle.com
    Updated May 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prasad Patil (2024). Retail Transactions Dataset [Dataset]. https://www.kaggle.com/datasets/prasad22/retail-transactions-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 18, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Prasad Patil
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset was created to simulate a market basket dataset, providing insights into customer purchasing behavior and store operations. The dataset facilitates market basket analysis, customer segmentation, and other retail analytics tasks. Here's more information about the context and inspiration behind this dataset:

    Context:

    Retail businesses, from supermarkets to convenience stores, are constantly seeking ways to better understand their customers and improve their operations. Market basket analysis, a technique used in retail analytics, explores customer purchase patterns to uncover associations between products, identify trends, and optimize pricing and promotions. Customer segmentation allows businesses to tailor their offerings to specific groups, enhancing the customer experience.

    Inspiration:

    The inspiration for this dataset comes from the need for accessible and customizable market basket datasets. While real-world retail data is sensitive and often restricted, synthetic datasets offer a safe and versatile alternative. Researchers, data scientists, and analysts can use this dataset to develop and test algorithms, models, and analytical tools.

    Dataset Information:

    The columns provide information about the transactions, customers, products, and purchasing behavior, making the dataset suitable for various analyses, including market basket analysis and customer segmentation. Here's a brief explanation of each column in the Dataset:

    • Transaction_ID: A unique identifier for each transaction, represented as a 10-digit number. This column is used to uniquely identify each purchase.
    • Date: The date and time when the transaction occurred. It records the timestamp of each purchase.
    • Customer_Name: The name of the customer who made the purchase. It provides information about the customer's identity.
    • Product: A list of products purchased in the transaction. It includes the names of the products bought.
    • Total_Items: The total number of items purchased in the transaction. It represents the quantity of products bought.
    • Total_Cost: The total cost of the purchase, in currency. It represents the financial value of the transaction.
    • Payment_Method: The method used for payment in the transaction, such as credit card, debit card, cash, or mobile payment.
    • City: The city where the purchase took place. It indicates the location of the transaction.
    • Store_Type: The type of store where the purchase was made, such as a supermarket, convenience store, department store, etc.
    • Discount_Applied: A binary indicator (True/False) representing whether a discount was applied to the transaction.
    • Customer_Category: A category representing the customer's background or age group.
    • Season: The season in which the purchase occurred, such as spring, summer, fall, or winter.
    • Promotion: The type of promotion applied to the transaction, such as "None," "BOGO (Buy One Get One)," or "Discount on Selected Items."

    Use Cases:

    • Market Basket Analysis: Discover associations between products and uncover buying patterns.
    • Customer Segmentation: Group customers based on purchasing behavior.
    • Pricing Optimization: Optimize pricing strategies and identify opportunities for discounts and promotions.
    • Retail Analytics: Analyze store performance and customer trends.

    Note: This dataset is entirely synthetic and was generated using the Python Faker library, which means it doesn't contain real customer data. It's designed for educational and research purposes.

  2. T

    US Retail Sales

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). US Retail Sales [Dataset]. https://tradingeconomics.com/united-states/retail-sales
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Jul 17, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 29, 1992 - Jun 30, 2025
    Area covered
    United States
    Description

    Retail Sales in the United States increased 0.60 percent in June of 2025 over the previous month. This dataset provides - U.S. December Retail Sales Increased More Than Forecast - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  3. Retail Data | Retail Sector in North America | Comprehensive Contact...

    • datarade.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai, Retail Data | Retail Sector in North America | Comprehensive Contact Profiles | Best Price Guaranteed [Dataset]. https://datarade.ai/data-products/retail-data-retail-sector-in-north-america-comprehensive-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset provided by
    Area covered
    United States of America, Honduras, El Salvador, Guatemala, Greenland, Costa Rica, Belize, Canada, Bermuda, Saint Pierre and Miquelon, North America
    Description

    Success.ai’s Retail Data for the Retail Sector in North America offers a comprehensive dataset designed to connect businesses with key players across the diverse retail industry. Covering everything from department stores and supermarkets to specialty shops and e-commerce platforms, this dataset provides verified contact details, business locations, and leadership profiles for retail companies in the United States, Canada, and Mexico.

    With access to over 170 million verified professional profiles and 30 million company profiles, Success.ai ensures your outreach, marketing, and business development efforts are powered by accurate, continuously updated, and AI-validated data.

    Backed by our Best Price Guarantee, this solution empowers businesses to thrive in North America’s competitive retail landscape.

    Why Choose Success.ai’s Retail Data for North America?

    1. Verified Contact Data for Precision Outreach

      • Access verified phone numbers, work emails, and LinkedIn profiles of retail executives, store managers, and decision-makers.
      • AI-driven validation ensures 99% accuracy, enabling confident communication and efficient campaign execution.
    2. Comprehensive Coverage Across Retail Segments

      • Includes profiles of retail businesses across major markets, from large department stores and grocery chains to boutique retailers and online platforms.
      • Gain insights into the operational dynamics of retail hubs in cities such as New York, Los Angeles, Toronto, and Mexico City.
    3. Continuously Updated Datasets

      • Real-time updates reflect leadership changes, new store openings, market expansions, and shifts in consumer preferences.
      • Stay aligned with evolving industry trends and emerging opportunities in the North American retail sector.
    4. Ethical and Compliant

      • Adheres to GDPR, CCPA, and other privacy regulations, ensuring responsible and lawful use of data in your campaigns.

    Data Highlights:

    • 170M+ Verified Professional Profiles: Engage with executives, marketing directors, and operations managers across the North American retail sector.
    • 30M Company Profiles: Access firmographic data, including revenue ranges, store counts, and geographic footprints.
    • Store Location Data: Pinpoint retail outlets, regional offices, and distribution centers to refine supply chain and marketing strategies.
    • Leadership Contact Details: Connect with CEOs, CMOs, and procurement officers influencing retail operations and vendor selections.

    Key Features of the Dataset:

    1. Retail Decision-Maker Profiles

      • Identify and engage with store owners, category managers, and marketing directors shaping customer experiences and product strategies.
      • Target professionals responsible for inventory planning, vendor contracts, and store performance.
    2. Advanced Filters for Precision Targeting

      • Filter companies by industry segment (luxury, grocery, e-commerce), geographic location, company size, or revenue range.
      • Tailor outreach to align with regional market trends, customer demographics, and operational priorities.
    3. Market Trends and Operational Insights

      • Analyze trends such as online shopping growth, sustainability practices, and supply chain optimization.
      • Leverage insights to refine product offerings, identify partnership opportunities, and design effective campaigns.
    4. AI-Driven Enrichment

      • Profiles enriched with actionable data enable personalized messaging, highlight unique value propositions, and enhance engagement outcomes.

    Strategic Use Cases:

    1. Sales and Lead Generation

      • Present products, services, or technology solutions to retail procurement teams, marketing departments, and operations managers.
      • Build relationships with retailers seeking innovative tools, efficient supply chain solutions, or unique product offerings.
    2. Market Research and Consumer Insights

      • Analyze retail trends, customer behaviors, and seasonal demands to inform marketing strategies and product launches.
      • Benchmark against competitors to identify gaps, emerging niches, and growth opportunities.
    3. E-Commerce and Digital Strategy Development

      • Target e-commerce managers and digital transformation teams driving online retail initiatives and omnichannel integration.
      • Offer solutions to enhance online shopping experiences, logistics, and customer loyalty programs.
    4. Recruitment and Workforce Solutions

      • Engage HR professionals and hiring managers in recruiting talent for store operations, customer service, or marketing roles.
      • Provide workforce optimization tools, training platforms, or staffing services tailored to retail environments.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality retail data at competitive prices, ensuring strong ROI for your marketing and outreach efforts in North America.
    2. Seamless Integration
      ...

  4. Retail Food Stores

    • data.ny.gov
    • data.buffalony.gov
    • +3more
    Updated Sep 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of Agriculture and Markets (2024). Retail Food Stores [Dataset]. https://data.ny.gov/Economic-Development/Retail-Food-Stores/9a8c-vfzj
    Explore at:
    application/rdfxml, csv, tsv, application/rssxml, xml, kmz, application/geo+json, kmlAvailable download formats
    Dataset updated
    Sep 9, 2024
    Dataset authored and provided by
    New York State Department of Agriculture and Marketshttp://www.agriculture.ny.gov/
    Description

    A listing of all retail food stores which are licensed by the Department of Agriculture and Markets.

  5. m

    Big Data Analytics in Retail Market - Trends & Industry Analysis

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Dec 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2024). Big Data Analytics in Retail Market - Trends & Industry Analysis [Dataset]. https://www.mordorintelligence.com/industry-reports/big-data-analytics-in-retail-marketing-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Dec 11, 2024
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2021 - 2030
    Area covered
    Global
    Description

    The Data Analytics in Retail Industry is segmented by Application (Merchandising and Supply Chain Analytics, Social Media Analytics, Customer Analytics, Operational Intelligence, Other Applications), by Business Type (Small and Medium Enterprises, Large-scale Organizations), and Geography. The market size and forecasts are provided in terms of value (USD billion) for all the above segments.

  6. Data usage in consumer products and retail industry 2020

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Data usage in consumer products and retail industry 2020 [Dataset]. https://www.statista.com/statistics/1262066/data-usage-in-consumer-products-and-retail-industry/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 2020
    Area covered
    Worldwide
    Description

    A global survey from Capgemini showed that retail companies were lagging behind consumer products enterprises in the use of data. The gap was significant in the automation of processes and in data collecting: only ** percent of retailers automated data collection, against ** percent of consumer goods companies. However, one in **** organizations in both categories reported to have implemented practices involving data engineering, machine learning, and DevOps.

  7. Retail Sales - Table 620-67001 : Total Retail Sales | DATA.GOV.HK

    • data.gov.hk
    Updated Mar 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk (2023). Retail Sales - Table 620-67001 : Total Retail Sales | DATA.GOV.HK [Dataset]. https://data.gov.hk/en-data/dataset/hk-censtatd-tablechart-620-67001
    Explore at:
    Dataset updated
    Mar 30, 2023
    Dataset provided by
    data.gov.hk
    Description

    Retail Sales - Table 620-67001 : Total Retail Sales

  8. Electricity Data - Retail Sales

    • catalog.data.gov
    • data.wu.ac.at
    Updated Jul 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Energy Information Administration (2021). Electricity Data - Retail Sales [Dataset]. https://catalog.data.gov/dataset/electricity-data-retail-sales
    Explore at:
    Dataset updated
    Jul 6, 2021
    Dataset provided by
    Energy Information Administrationhttp://www.eia.gov/
    Description

    This API provides data on retail sales of electricity by major end-use sectors, i.e., residential, commercial, industrial, and transportation. Based on Form EIA-826 and Form EIA-861 data. Annual, quarterly, and monthly data available.

  9. F

    Retailers Sales

    • fred.stlouisfed.org
    json
    Updated Jul 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Retailers Sales [Dataset]. https://fred.stlouisfed.org/series/RETAILSMSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 17, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Retailers Sales (RETAILSMSA) from Jan 1992 to May 2025 about retail trade, sales, retail, and USA.

  10. x

    Retail Store Location Data | Retail Location Data | Xtract.io

    • xtract.io
    Updated Nov 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xtract.io Technology Solutions (2022). Retail Store Location Data | Retail Location Data | Xtract.io [Dataset]. https://www.xtract.io/cmp/poidata/retail
    Explore at:
    Dataset updated
    Nov 4, 2022
    Dataset provided by
    Xtract.Io Technology Solutions Private Limited
    Authors
    Xtract.io Technology Solutions
    License

    https://www.xtract.io/privacy-policyhttps://www.xtract.io/privacy-policy

    Area covered
    United States
    Description

    This core point of interest dataset consists of 1M location information of retail stores in the US and Canada. The POI database includes electronic stores, supermarkets and groceries, specialty retailers, home improvement and convenience stores, and apparel and accessories shops.

  11. G

    Retail e-commerce sales, inactive

    • open.canada.ca
    • ouvert.canada.ca
    • +1more
    csv, html, xml
    Updated Mar 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Retail e-commerce sales, inactive [Dataset]. https://open.canada.ca/data/en/dataset/0ffbe1ee-7fa7-4369-ac78-a01c8175e1a6
    Explore at:
    html, csv, xmlAvailable download formats
    Dataset updated
    Mar 24, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    This table contains 3 series, with data for years 2016 - 2017 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada); Sales (3 items: Retail trade; Electronic shopping and mail-order houses; Retail E-commerce sales).

  12. c

    ZARA US retail products dataset

    • crawlfeeds.com
    csv, zip
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). ZARA US retail products dataset [Dataset]. https://crawlfeeds.com/datasets/zara-us-retail-products-dataset
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    ZARA is one of the world's largest apparel and fashion retailers. The CrawlFeeds team has successfully extracted over 10,000 product records from ZARA USA, including titles, prices, images, availability, and more.

    You can customize the dataset to match your specific needs, such as format adjustments, re-extraction, or additional data points.

    If you're looking for retail data solutions, you can customize the current dataset or extract ZARA product data from other countries like Spain, the UK, and India.

    Find here latest zara us products listings (https://crawlfeeds.com/datasets/download-the-complete-zara-product-dataset)

  13. T

    United States - Retailers Sales

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Feb 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). United States - Retailers Sales [Dataset]. https://tradingeconomics.com/united-states/retailers-sales-percent-change-fed-data.html
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Feb 18, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    United States
    Description

    United States - Retailers Sales was -3.90000 % Chg. in February of 2025, according to the United States Federal Reserve. Historically, United States - Retailers Sales reached a record high of 29.10000 in March of 2021 and a record low of -29.50000 in January of 1994. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - Retailers Sales - last updated from the United States Federal Reserve on July of 2025.

  14. F

    Retailers Inventories

    • fred.stlouisfed.org
    json
    Updated Jul 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Retailers Inventories [Dataset]. https://fred.stlouisfed.org/series/RETAILIMSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 17, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Retailers Inventories (RETAILIMSA) from Jan 1992 to May 2025 about inventories, retail, and USA.

  15. United States Retail Sales: sa: Department stores ex Leased Departments (DS)...

    • ceicdata.com
    Updated Feb 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States Retail Sales: sa: Department stores ex Leased Departments (DS) [Dataset]. https://www.ceicdata.com/en/united-states/retail-sales-by-naic-system/retail-sales-sa-department-stores-ex-leased-departments-ds
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 2017 - Mar 1, 2018
    Area covered
    United States
    Variables measured
    Domestic Trade
    Description

    United States Retail Sales: sa: Department stores ex Leased Departments (DS) data was reported at 12.360 USD bn in Sep 2018. This records a decrease from the previous number of 12.454 USD bn for Aug 2018. United States Retail Sales: sa: Department stores ex Leased Departments (DS) data is updated monthly, averaging 16.813 USD bn from Jan 1992 (Median) to Sep 2018, with 321 observations. The data reached an all-time high of 19.904 USD bn in Jan 2001 and a record low of 12.325 USD bn in Nov 2016. United States Retail Sales: sa: Department stores ex Leased Departments (DS) data remains active status in CEIC and is reported by US Census Bureau. The data is categorized under Global Database’s USA – Table US.H001: Retail Sales: By NAIC System. All estimates for department stores exclude leased departments.

  16. m

    Supply Chain Demand Forecasting Dataset of Bangladeshi Retailer

    • data.mendeley.com
    Updated May 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Abrar Jahin (2024). Supply Chain Demand Forecasting Dataset of Bangladeshi Retailer [Dataset]. http://doi.org/10.17632/xwmbk7n3c8.1
    Explore at:
    Dataset updated
    May 21, 2024
    Authors
    Md Abrar Jahin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh
    Description

    The historical sales dataset for this research is obtained from a Bangladeshi retailer. The dataset covers a period of 1826 days and includes daily sales data for a particular product from 01 January 2013 to 31 December 2017. The raw sales data has 2 columns: the first column contains timestamps, while the remaining column reflects the quantity sold.

  17. Retail Credit Bank Data

    • kaggle.com
    Updated Sep 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SR (2021). Retail Credit Bank Data [Dataset]. https://www.kaggle.com/datasets/surekharamireddy/credit-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 10, 2021
    Dataset provided by
    Kaggle
    Authors
    SR
    Description

    Context

    A retail bank would like to hire you to build a credit default model for their credit card portfolio. The bank expects the model to identify the consumers who are likely to default on their credit card payments over the next 12 months. This model will be used to reduce the bank’s future losses. The bank is willing to provide you with some sample datathat they can currently extract from their systems. This data set (credit_data.csv) consists of 13,444 observations with 14 variables.

    Content

    Based on the bank’s experience, the number of derogatory reports is a strong indicator of default. This is all that the information you are able to get from the bank at the moment. Currently, they do not have the expertise to provide any clarification on this data and are also unsure about other variables captured by their systems

  18. Envestnet | Yodlee's De-Identified Consumer Transaction Data | Row/Aggregate...

    • datarade.ai
    .sql, .txt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Envestnet | Yodlee, Envestnet | Yodlee's De-Identified Consumer Transaction Data | Row/Aggregate Level | USA Consumer Data covering 3600+ public and private corporations [Dataset]. https://datarade.ai/data-products/envestnet-yodlee-s-consumer-transaction-data-row-aggrega-envestnet-yodlee
    Explore at:
    .sql, .txtAvailable download formats
    Dataset provided by
    Envestnethttp://envestnet.com/
    Yodlee
    Authors
    Envestnet | Yodlee
    Area covered
    United States of America
    Description

    Envestnet®| Yodlee®'s Consumer Transaction Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.

    Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.

    We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.

    Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?

    Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.

    Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking

    1. Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)

    2. Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence

    3. Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis

  19. F

    Retail Sales: Book Stores

    • fred.stlouisfed.org
    json
    Updated Jul 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Retail Sales: Book Stores [Dataset]. https://fred.stlouisfed.org/series/MRTSSM451211USN
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 17, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Retail Sales: Book Stores (MRTSSM451211USN) from Jan 1992 to May 2025 about book, retail trade, sales, retail, and USA.

  20. Nielsen Retail Scanner Data (Public Use Version)

    • archive.ciser.cornell.edu
    Updated Jan 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    A.C. Nielsen Company (2020). Nielsen Retail Scanner Data (Public Use Version) [Dataset]. https://archive.ciser.cornell.edu/studies/2834
    Explore at:
    Dataset updated
    Jan 21, 2020
    Dataset provided by
    Nielsen Holdingshttp://nielsen.com/
    NielsenIQhttp://nielseniq.com/
    Authors
    A.C. Nielsen Company
    Description

    Retail sales of specific packaged goods (coffee, laundry detergent, shampoo) broken out by U.S. region, brand, size, packaging material, UPC, and price.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Prasad Patil (2024). Retail Transactions Dataset [Dataset]. https://www.kaggle.com/datasets/prasad22/retail-transactions-dataset
Organization logo

Retail Transactions Dataset

For market basket analysis, customer segmentation & other retail analytics tasks

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
May 18, 2024
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Prasad Patil
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

This dataset was created to simulate a market basket dataset, providing insights into customer purchasing behavior and store operations. The dataset facilitates market basket analysis, customer segmentation, and other retail analytics tasks. Here's more information about the context and inspiration behind this dataset:

Context:

Retail businesses, from supermarkets to convenience stores, are constantly seeking ways to better understand their customers and improve their operations. Market basket analysis, a technique used in retail analytics, explores customer purchase patterns to uncover associations between products, identify trends, and optimize pricing and promotions. Customer segmentation allows businesses to tailor their offerings to specific groups, enhancing the customer experience.

Inspiration:

The inspiration for this dataset comes from the need for accessible and customizable market basket datasets. While real-world retail data is sensitive and often restricted, synthetic datasets offer a safe and versatile alternative. Researchers, data scientists, and analysts can use this dataset to develop and test algorithms, models, and analytical tools.

Dataset Information:

The columns provide information about the transactions, customers, products, and purchasing behavior, making the dataset suitable for various analyses, including market basket analysis and customer segmentation. Here's a brief explanation of each column in the Dataset:

  • Transaction_ID: A unique identifier for each transaction, represented as a 10-digit number. This column is used to uniquely identify each purchase.
  • Date: The date and time when the transaction occurred. It records the timestamp of each purchase.
  • Customer_Name: The name of the customer who made the purchase. It provides information about the customer's identity.
  • Product: A list of products purchased in the transaction. It includes the names of the products bought.
  • Total_Items: The total number of items purchased in the transaction. It represents the quantity of products bought.
  • Total_Cost: The total cost of the purchase, in currency. It represents the financial value of the transaction.
  • Payment_Method: The method used for payment in the transaction, such as credit card, debit card, cash, or mobile payment.
  • City: The city where the purchase took place. It indicates the location of the transaction.
  • Store_Type: The type of store where the purchase was made, such as a supermarket, convenience store, department store, etc.
  • Discount_Applied: A binary indicator (True/False) representing whether a discount was applied to the transaction.
  • Customer_Category: A category representing the customer's background or age group.
  • Season: The season in which the purchase occurred, such as spring, summer, fall, or winter.
  • Promotion: The type of promotion applied to the transaction, such as "None," "BOGO (Buy One Get One)," or "Discount on Selected Items."

Use Cases:

  • Market Basket Analysis: Discover associations between products and uncover buying patterns.
  • Customer Segmentation: Group customers based on purchasing behavior.
  • Pricing Optimization: Optimize pricing strategies and identify opportunities for discounts and promotions.
  • Retail Analytics: Analyze store performance and customer trends.

Note: This dataset is entirely synthetic and was generated using the Python Faker library, which means it doesn't contain real customer data. It's designed for educational and research purposes.

Search
Clear search
Close search
Google apps
Main menu