100+ datasets found
  1. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  2. 18 excel spreadsheets by species and year giving reproduction and growth...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

  3. Enterprise Survey 2009-2019, Panel Data - Slovenia

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Aug 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (WBG) (2020). Enterprise Survey 2009-2019, Panel Data - Slovenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3762
    Explore at:
    Dataset updated
    Aug 6, 2020
    Dataset provided by
    European Bank for Reconstruction and Developmenthttp://ebrd.com/
    World Bank Grouphttp://www.worldbank.org/
    European Investment Bank (EIB)
    Time period covered
    2008 - 2019
    Area covered
    Slovenia
    Description

    Abstract

    The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.

    The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.

    Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.

    For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.

    For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).

    Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).

    For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.

    For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.

    For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.

    Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.

    For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

    For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.

    For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.

    Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.

  4. m

    Raw data outputs 1-18

    • bridges.monash.edu
    • researchdata.edu.au
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie (2023). Raw data outputs 1-18 [Dataset]. http://doi.org/10.26180/21259491.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Monash University
    Authors
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.

  5. Sample Student Data

    • figshare.com
    xls
    Updated Aug 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carrie Ellis (2022). Sample Student Data [Dataset]. http://doi.org/10.6084/m9.figshare.20419434.v1
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Aug 2, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Carrie Ellis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In "Sample Student Data", there are 6 sheets. There are three sheets with sample datasets, one for each of the three different exercise protocols described (CrP Sample Dataset, Glycolytic Dataset, Oxidative Dataset). Additionally, there are three sheets with sample graphs created using one of the three datasets (CrP Sample Graph, Glycolytic Graph, Oxidative Graph). Each dataset and graph pairs are from different subjects. · CrP Sample Dataset and CrP Sample Graph: This is an example of a dataset and graph created from an exercise protocol designed to stress the creatine phosphate system. Here, the subject was a track and field athlete who threw the shot put for the DeSales University track team. The NIRS monitor was placed on the right triceps muscle, and the student threw the shot put six times with a minute rest in between throws. Data was collected telemetrically by the NIRS device and then downloaded after the student had completed the protocol. · Glycolytic Dataset and Glycolytic Graph: This is an example of a dataset and graph created from an exercise protocol designed to stress the glycolytic energy system. In this example, the subject performed continuous squat jumps for 30 seconds, followed by a 90 second rest period, for a total of three exercise bouts. The NIRS monitor was place on the left gastrocnemius muscle. Here again, data was collected telemetrically by the NIRS device and then downloaded after he had completed the protocol. · Oxidative Dataset and Oxidative Graph: In this example, the dataset and graph are from an exercise protocol designed to stress the oxidative system. Here, the student held a sustained, light-intensity, isometric biceps contraction (pushing against a table). The NIRS monitor was attached to the left biceps muscle belly. Here, data was collected by a student observing the SmO2 values displayed on a secondary device; specifically, a smartphone with the IPSensorMan APP displaying data. The recorder student observed and recorded the data on an Excel Spreadsheet, and marked the times that exercise began and ended on the Spreadsheet.

  6. Streaming Service Data

    • kaggle.com
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chad Wambles (2024). Streaming Service Data [Dataset]. https://www.kaggle.com/datasets/chadwambles/streaming-service-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 19, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Chad Wambles
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    A dataset I generated to showcase a sample set of user data for a fictional streaming service. This data is great for practicing SQL, Excel, Tableau, or Power BI.

    1000 rows and 25 columns of connected data.

    See below for column descriptions.

    Enjoy :)

  7. f

    Excel spreadsheet containing all the data related to soil sampling (sheet 1,...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Courtney, Conor; Holland, Celia V.; Morgan, Eric R.; Brown, Claire; Airs, Paul M.; Keegan, Jason D.; Dingley, Anya Rishi (2025). Excel spreadsheet containing all the data related to soil sampling (sheet 1, Full Dataset) as well as all of the egg related information (sheet 2, Egg information). [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0002066646
    Explore at:
    Dataset updated
    Mar 27, 2025
    Authors
    Courtney, Conor; Holland, Celia V.; Morgan, Eric R.; Brown, Claire; Airs, Paul M.; Keegan, Jason D.; Dingley, Anya Rishi
    Description

    Excel spreadsheet containing all the data related to soil sampling (sheet 1, Full Dataset) as well as all of the egg related information (sheet 2, Egg information).

  8. d

    Data from: Delta Neighborhood Physical Activity Study

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +1more
    Updated Jun 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Delta Neighborhood Physical Activity Study [Dataset]. https://catalog.data.gov/dataset/delta-neighborhood-physical-activity-study-f82d7
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    The Delta Neighborhood Physical Activity Study was an observational study designed to assess characteristics of neighborhood built environments associated with physical activity. It was an ancillary study to the Delta Healthy Sprouts Project and therefore included towns and neighborhoods in which Delta Healthy Sprouts participants resided. The 12 towns were located in the Lower Mississippi Delta region of Mississippi. Data were collected via electronic surveys between August 2016 and September 2017 using the Rural Active Living Assessment (RALA) tools and the Community Park Audit Tool (CPAT). Scale scores for the RALA Programs and Policies Assessment and the Town-Wide Assessment were computed using the scoring algorithms provided for these tools via SAS software programming. The Street Segment Assessment and CPAT do not have associated scoring algorithms and therefore no scores are provided for them. Because the towns were not randomly selected and the sample size is small, the data may not be generalizable to all rural towns in the Lower Mississippi Delta region of Mississippi. Dataset one contains data collected with the RALA Programs and Policies Assessment (PPA) tool. Dataset two contains data collected with the RALA Town-Wide Assessment (TWA) tool. Dataset three contains data collected with the RALA Street Segment Assessment (SSA) tool. Dataset four contains data collected with the Community Park Audit Tool (CPAT). [Note : title changed 9/4/2020 to reflect study name] Resources in this dataset:Resource Title: Dataset One RALA PPA Data Dictionary. File Name: RALA PPA Data Dictionary.csvResource Description: Data dictionary for dataset one collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA Data Dictionary. File Name: RALA TWA Data Dictionary.csvResource Description: Data dictionary for dataset two collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA Data Dictionary. File Name: RALA SSA Data Dictionary.csvResource Description: Data dictionary for dataset three collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT Data Dictionary. File Name: CPAT Data Dictionary.csvResource Description: Data dictionary for dataset four collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset One RALA PPA. File Name: RALA PPA Data.csvResource Description: Data collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA. File Name: RALA TWA Data.csvResource Description: Data collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA. File Name: RALA SSA Data.csvResource Description: Data collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT. File Name: CPAT Data.csvResource Description: Data collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Data Dictionary. File Name: DataDictionary_RALA_PPA_SSA_TWA_CPAT.csvResource Description: This is a combined data dictionary from each of the 4 dataset files in this set.

  9. PCB Data (excel file) and PFAS Data (excel file)

    • s.cnmilf.com
    • catalog.data.gov
    Updated Feb 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2023). PCB Data (excel file) and PFAS Data (excel file) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/pcb-data-excel-file-and-pfas-data-excel-file
    Explore at:
    Dataset updated
    Feb 10, 2023
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Analytical and field sampling data for each 2018-2019 NRSA Fish Tissue Study chemical contaminant are provided, along with a data dictionary that describes the contents of each data file. All results for the fillet tissue concentrations are reported on a wet weight basis. All the fish fillet samples analyzed contained detectable levels of mercury and PCBs, and PFAS were detected in 95% of the fillet samples. This dataset is associated with the following publication: Stahl, L., B.D. Snyder, H.B. McCarty, T. Kincaid, A. Olsen, T.R. Cohen, and J. Healey. Contaminants in Fish from U.S. Rivers: Probability-Based National Assessments. SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 861(25): 160557, (2023).

  10. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  11. N

    Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Excel township from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/excel-township-mn-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Excel Township
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Excel township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Excel township was 300, a 0.99% decrease year-by-year from 2022. Previously, in 2022, Excel township population was 303, a decline of 0.98% compared to a population of 306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Excel township increased by 17. In this period, the peak population was 308 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Excel township is shown in this column.
    • Year on Year Change: This column displays the change in Excel township population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel township Population by Year. You can refer the same here

  12. f

    Data from: How many samples are needed to prove the absence of contamination...

    • geolsoc.figshare.com
    xlsx
    Updated Feb 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John A. Heathcote (2019). How many samples are needed to prove the absence of contamination - an example using arsenic? [Dataset]. http://doi.org/10.6084/m9.figshare.7770920.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 26, 2019
    Dataset provided by
    Geological Society of London
    Authors
    John A. Heathcote
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    An Excel spreadsheet containing the full dataset, showing its sub-sampling

  13. Scooter Sales - Excel Project

    • kaggle.com
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ann Truong (2023). Scooter Sales - Excel Project [Dataset]. https://www.kaggle.com/datasets/bvanntruong/scooter-sales-excel-project
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Kaggle
    Authors
    Ann Truong
    Description

    The link for the Excel project to download can be found on GitHub here. It includes the raw data, Pivot Tables, and an interactive dashboard with Pivot Charts and Slicers. The project also includes business questions and the formulas I used to answer. The image below is included for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F61e460b5f6a1fa73cfaaa33aa8107bd5%2FBusinessQuestions.png?generation=1686190703261971&alt=media" alt=""> The link for the Tableau adjusted dashboard can be found here.

    A screenshot of the interactive Excel dashboard is also included below for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2Fe581f1fce8afc732f7823904da9e4cce%2FScooter%20Dashboard%20Image.png?generation=1686190815608343&alt=media" alt="">

  14. Enterprise Survey 2009-2019, Panel Data - Slovenia

    • catalog.ihsn.org
    Updated Jan 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (WBG) (2021). Enterprise Survey 2009-2019, Panel Data - Slovenia [Dataset]. https://catalog.ihsn.org/catalog/9454
    Explore at:
    Dataset updated
    Jan 19, 2021
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    European Bank for Reconstruction and Development (EBRD)
    European Investment Bank (EIB)
    Time period covered
    2008 - 2019
    Area covered
    Slovenia
    Description

    Abstract

    The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.

    The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.

    Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.

    For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.

    For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).

    Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).

    For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.

    For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.

    For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.

    Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.

    For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

    For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.

    For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.

    Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.

  15. P

    Samoa Business Activity Survey 2009

    • pacificdata.org
    pdf
    Updated Jul 2, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ['Samoa Bureau of Statistics'] (2019). Samoa Business Activity Survey 2009 [Dataset]. https://pacificdata.org/data/dataset/groups/spc_wsm_2009_bas_v01_m
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 2, 2019
    Dataset provided by
    Samoa Bureau of Statistics
    Time period covered
    Jan 1, 2009 - Dec 31, 2009
    Description

    The intention is to collect data for the calendar year 2009 (or the nearest year for which each business keeps its accounts. The survey is considered a one-off survey, although for accurate NAs, such a survey should be conducted at least every five years to enable regular updating of the ratios, etc., needed to adjust the ongoing indicator data (mainly VAGST) to NA concepts. The questionnaire will be drafted by FSD, largely following the previous BAS, updated to current accounting terminology where necessary. The questionnaire will be pilot tested, using some accountants who are likely to complete a number of the forms on behalf of their business clients, and a small sample of businesses. Consultations will also include Ministry of Finance, Ministry of Commerce, Industry and Labour, Central Bank of Samoa (CBS), Samoa Tourism Authority, Chamber of Commerce, and other business associations (hotels, retail, etc.).

    The questionnaire will collect a number of items of information about the business ownership, locations at which it operates and each establishment for which detailed data can be provided (in the case of complex businesses), contact information, and other general information needed to clearly identify each unique business. The main body of the questionnaire will collect data on income and expenses, to enable value added to be derived accurately. The questionnaire will also collect data on capital formation, and will contain supplementary pages for relevant industries to collect volume of production data for selected commodities and to collect information to enable an estimate of value added generated by key tourism activities.

    The principal user of the data will be FSD which will incorporate the survey data into benchmarks for the NA, mainly on the current published production measure of GDP. The information on capital formation and other relevant data will also be incorporated into the experimental estimates of expenditure on GDP. The supplementary data on volumes of production will be used by FSD to redevelop the industrial production index which has recently been transferred under the SBS from the CBS. The general information about the business ownership, etc., will be used to update the Business Register.

    Outputs will be produced in a number of formats, including a printed report containing descriptive information of the survey design, data tables, and analysis of the results. The report will also be made available on the SBS website in “.pdf” format, and the tables will be available on the SBS website in excel tables. Data by region may also be produced, although at a higher level of aggregation than the national data. All data will be fully confidentialised, to protect the anonymity of all respondents. Consideration may also be made to provide, for selected analytical users, confidentialised unit record files (CURFs).

    A high level of accuracy is needed because the principal purpose of the survey is to develop revised benchmarks for the NA. The initial plan was that the survey will be conducted as a stratified sample survey, with full enumeration of large establishments and a sample of the remainder.

    v01: This is the first version of the documentation. Basic raw data, obtained from data entry.

    The scope of the 2009 BAS is all employing businesses in the private sector other than those involved in agricultural activities.

    Included are:
    · Non-governmental organizations (NGOs, not-for profit organizations, etc.);
    · Government Public Bodies

    Excluded are:
    · Non-employing units (e.g., market sellers);
    · Government ministries, constitutional offices and those public bodies involved in public administration and included in the Central Government Budget Sector;
    · Agricultural units (unless large scale/commercial - if the Agriculture census only covers household activities);
    · “Non-resident” bodies such as international agencies, diplomatic missions (e.g., high commissions and embassies, UNDP, FAO, WHO);

    The survey coverage is of all businesses in scope as defined above. Statistical units relevant to the survey are the enterprise and the establishment. The enterprise is an institutional unit and generally corresponds to legal entities such as a company, cooperative, partnership or sole proprietorship. The establishment is an institutional unit or part of an institutional unit, which engages in one, or predominantly one, type of economic activity. Sufficient data must be available to derive or meaningfully estimate value added in order to recognize an establishment. The main statistical unit from which data will be collected in the survey is the establishment. For most businesses there will be a one-to-one relationship between the enterprise and the establishment, i.e., simple enterprises will comprise only one establishment. The purpose of collecting data from establishments (rather than from enterprises) is to enable the most accurate industry estimates of value added possible.

    • Collection start: 2009
    • Collection end: 2009
  16. N

    Excel, AL Age Group Population Dataset: A Complete Breakdown of Excel Age...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel, AL Age Group Population Dataset: A Complete Breakdown of Excel Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/aa8c95e0-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Excel population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Excel. The dataset can be utilized to understand the population distribution of Excel by age. For example, using this dataset, we can identify the largest age group in Excel.

    Key observations

    The largest age group in Excel, AL was for the group of age 45 to 49 years years with a population of 74 (15.64%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Excel, AL was the 85 years and over years with a population of 2 (0.42%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Excel is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Excel total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel Population by Age. You can refer the same here

  17. Data from: Delta Produce Sources Study

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Delta Produce Sources Study [Dataset]. https://catalog.data.gov/dataset/delta-produce-sources-study-51a7a
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    The Delta Produce Sources Study was an observational study designed to measure and compare food environments of farmers markets (n=3) and grocery stores (n=12) in 5 rural towns located in the Lower Mississippi Delta region of Mississippi. Data were collected via electronic surveys from June 2019 to March 2020 using a modified version of the Nutrition Environment Measures Survey (NEMS) Farmers Market Audit tool. The tool was modified to collect information pertaining to source of fresh produce and also for use with both farmers markets and grocery stores. Availability, source, quality, and price information were collected and compared between farmers markets and grocery stores for 13 fresh fruits and 32 fresh vegetables via SAS software programming. Because the towns were not randomly selected and the sample sizes are relatively small, the data may not be generalizable to all rural towns in the Lower Mississippi Delta region of Mississippi. Resources in this dataset:Resource Title: Delta Produce Sources Study dataset . File Name: DPS Data Public.csvResource Description: The dataset contains variables corresponding to availability, source (country, state and town if country is the United States), quality, and price (by weight or volume) of 13 fresh fruits and 32 fresh vegetables sold in farmers markets and grocery stores located in 5 Lower Mississippi Delta towns.Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/en-us/microsoft-365/excel Resource Title: Delta Produce Sources Study data dictionary. File Name: DPS Data Dictionary Public.csvResource Description: This file is the data dictionary corresponding to the Delta Produce Sources Study dataset.Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/en-us/microsoft-365/excel

  18. Z

    Dairy Supply Chain Sales Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christos Chaschatzis (2024). Dairy Supply Chain Sales Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7853252
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Panagiotis Sarigiannidis
    Thomas Lagkas
    Ilias Siniosoglou
    Dimitrios Pliatsios
    Athanasios Liatifis
    Dimitris Iatropoulos
    Anna Triantafyllou
    Konstantinos Georgakidis
    Christos Chaschatzis
    Vasileios Argyriou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    1.Introduction

    Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.

    One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.

    This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.

    1. Citation

    Please cite the following papers when using this dataset:

    I. Siniosoglou, K. Xouveroudis, V. Argyriou, T. Lagkas, S. K. Goudos, K. E. Psannis and P. Sarigiannidis, "Evaluating the Effect of Volatile Federated Timeseries on Modern DNNs: Attention over Long/Short Memory," in the 12th International Conference on Circuits and Systems Technologies (MOCAST 2023), April 2023, Accepted

    1. Dataset Modalities

    The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.

    3.1 Data Collection

    The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.

    The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.

    Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.

    It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.

    The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).

    File

    Period

    Number of Samples (days)

    product 1 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 1 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 1 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 2 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 2 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 2 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 3 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 3 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 3 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 4 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 4 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 4 2022.xlsx

    01/01/2022–31/12/2022

    364

    product 5 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 5 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 5 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 6 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 6 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 6 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 7 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 7 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 7 2022.xlsx

    01/01/2022–31/12/2022

    365

    3.2 Dataset Overview

    The following table enumerates and explains the features included across all of the included files.

    Feature

    Description

    Unit

    Day

    day of the month

    -

    Month

    Month

    -

    Year

    Year

    -

    daily_unit_sales

    Daily sales - the amount of products, measured in units, that during that specific day were sold

    units

    previous_year_daily_unit_sales

    Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year

    units

    percentage_difference_daily_unit_sales

    The percentage difference between the two above values

    %

    daily_unit_sales_kg

    The amount of products, measured in kilograms, that during that specific day were sold

    kg

    previous_year_daily_unit_sales_kg

    Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year

    kg

    percentage_difference_daily_unit_sales_kg

    The percentage difference between the two above values

    kg

    daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned

    %

    previous_year_daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned the previous year

    %

    points_of_distribution

    The amount of sales representatives through which the product was sold to the market for this year

    previous_year_points_of_distribution

    The amount of sales representatives through which the product was sold to the market for the same day for the previous year

    Table 1 – Dataset Feature Description

    1. Structure and Format

    4.1 Dataset Structure

    The provided dataset has the following structure:

    Where:

    Name

    Type

    Property

    Readme.docx

    Report

    A File that contains the documentation of the Dataset.

    product X

    Folder

    A folder containing the data of a product X.

    product X YYYY.xlsx

    Data file

    An excel file containing the sales data of product X for year YYYY.

    Table 2 - Dataset File Description

    1. Acknowledgement

    This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 957406 (TERMINET).

    References

    [1] MEVGAL is a Greek dairy production company

  19. Lane Plating Assessment Soil Data (Excel)

    • lane-plating-removal-1-epa.hub.arcgis.com
    Updated Dec 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA (2022). Lane Plating Assessment Soil Data (Excel) [Dataset]. https://lane-plating-removal-1-epa.hub.arcgis.com/documents/dd00d3c1c30846a189da46011b16166c
    Explore at:
    Dataset updated
    Dec 23, 2022
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Authors
    U.S. EPA
    Description

    As the U.S. Environmental Protection Agency (EPA) pursues its mission to protect human health and the environment, we actively work with communities and local partners all over America to limit the risk of exposure to contaminants that might have negative health impacts. We have been working in Dallas, Texas, at the Lane Plating Works, Inc. Superfund Site to identify and understand any potential risks to human health or the environment and to mitigate those risks.

    In March 2016, the EPA performed a Removal Assessment based on previous investigations conducted by the Texas Commission on Environmental Quality (TCEQ). Based on EPA and TCEQ investigations, it was determined that the Site presented a threat to public health or the environment or the welfare of the United States. EPA conducted additional sampling events from 2016 to 2022 to determine the extent of site-related contaminants of concern (COC) in soil and air. Site COCs in soil included hexavalent chromium, lead, mercury, arsenic, cadmium, and chromium present at concentrations exceeding EPA cleanup levels. Air samples collected from inside the former plating facility EPA exhibited hexavalent chromium levels above health-based standards. Asbestos was identified to be present in the former plating facility. The contaminants identified at the site present a threat to human health and the environment.

    EPA completed the final removal assessment in September 2022. The EPA collected 1,060 samples during the assessments, including 712 soil samples. The overall highest detection levels found in soil and dates are as follows:

    Hexavalent Chromium: 5,620 mg/Kg in April 2016 Lead: 24,500 mg/Kg in April 2016 Mercury: 839 mg/Kg in June 2022 Arsenic: 25.9 mg/Kg in September 2022

    The EPA Site-specific COCs and cleanup levels in soil are:

    Hexavalent Chromium: 30 mg/Kg Lead: 400 mg/Kg Mercury: 11 mg/Kg Arsenic: 35 mg/Kg

    Based on the analytical data from air and soil samples collected, it was determined that the Lane Plating Site does pose a threat to public health and the environment. The Environmental Protection Agency authorized a Time-Critical Removal Action to begin in November 2022. During the course of the Time-Critical Removal Action, perimeter air monitoring will be conducted on site and EPA will notify the community if there are exceedances to the particulate site action level.

  20. S

    Annual Retail Store Data, 2000 [Canada] [Excel]

    • dataverse.scholarsportal.info
    • borealisdata.ca
    • +1more
    pdf, xls
    Updated Nov 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scholars Portal Dataverse (2021). Annual Retail Store Data, 2000 [Canada] [Excel] [Dataset]. https://dataverse.scholarsportal.info/dataset.xhtml;jsessionid=1283d69ee2dd528c9011fe4a2fe3?persistentId=hdl%3A10864%2F11351&version=&q=&fileTypeGroupFacet=&fileAccess=&fileTag=%22Tables%22&fileSortField=&fileSortOrder=
    Explore at:
    xls(2165760), xls(29696), xls(2920448), pdf(76787), pdf(158404), xls(34816), xls(2754048), pdf(81084), pdf(71183), xls(34304), xls(625664), xls(2707968), xls(695808), pdf(70673), pdf(72585), xls(576512), xls(609792), xls(28672), pdf(60236), pdf(30338), pdf(87181), pdf(84140), pdf(92012), xls(610304), pdf(74439), xls(2471424), pdf(73788), xls(30208), pdf(74478), pdf(53645)Available download formats
    Dataset updated
    Nov 17, 2021
    Dataset provided by
    Scholars Portal Dataverse
    Area covered
    Canada, Canada
    Description

    The annual Retail store data CD-ROM is an easy-to-use tool for quickly discovering retail trade patterns and trends. The current product presents results from the 1999 and 2000 Annual Retail Store and Annual Retail Chain surveys. This product contains numerous cross-classified data tables using the North American Industry Classification System (NAICS). The data tables provide access to a wide range of financial variables, such as revenues, expenses, inventory, sales per square footage (chain stores only) and the number of stores. Most data tables contain detailed information on industry (as low as 5-digit NAICS codes), geography (Canada, provinces and territories) and store type (chains, independents, franchises). The electronic product also contains survey metadata, questionnaires, information on industry codes and definitions, and the list of retail chain store respondents.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177

Data Cleaning Sample

Explore at:
162 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jul 13, 2023
Dataset provided by
Borealis
Authors
Rong Luo
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Sample data for exercises in Further Adventures in Data Cleaning.

Search
Clear search
Close search
Google apps
Main menu