100+ datasets found
  1. s

    Web of Science

    • scicrunch.org
    • neuinfo.org
    • +1more
    Updated Jan 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Web of Science [Dataset]. http://identifiers.org/RRID:SCR_022706
    Explore at:
    Dataset updated
    Jan 21, 2025
    Description

    Database of bibliographic citations of multidisciplinary areas that covers various journals of medical, scientific, and social sciences including humanities.Publisher independent global citation database.

  2. d

    Replication Data for: Choices of immediate open access and the relationship...

    • search.dataone.org
    • dataverse.no
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wenaas, Lars; Aasheim, Jens Harald (2024). Replication Data for: Choices of immediate open access and the relationship to journal ranking and publish-and-read deals [Dataset]. http://doi.org/10.18710/TBXXCC
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    DataverseNO
    Authors
    Wenaas, Lars; Aasheim, Jens Harald
    Time period covered
    Jan 1, 2013 - Dec 1, 2021
    Description

    The dataset contains bibliographic information about scientific articles published by researchers from Norwegian research organizations and is an enhanced subset of data from the Cristin database. Cristin (current research information system in Norway) is a database with bibliographic records of all research articles with an Norwegian affiliation with a publicly funded research institution in Norway. The subset is limited to metadata about journal articles reported in the period 2013-2021 (186,621 records), and further limited to information of relevance for the study (see below). Article metadata are enhanced with open access status by several sources, particularly unpaywall, DOAJ and hybrid-information in case an article is part of a publish-and-read-deal.

  3. r

    Journal of theoretical and applied computer science Abstract & Indexing -...

    • researchhelpdesk.org
    Updated Feb 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2023). Journal of theoretical and applied computer science Abstract & Indexing - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/abstract-and-indexing/351/journal-of-theoretical-and-applied-computer-science
    Explore at:
    Dataset updated
    Feb 16, 2023
    Dataset authored and provided by
    Research Help Desk
    Description

    Journal of theoretical and applied computer science Abstract & Indexing - ResearchHelpDesk - Journal of Theoretical and Applied Computer Science is published by the Computer Science Commision, operating within the Gdansk Branch of Polish Academy of Sciences and located in Szczecin, Poland. JTACS is an open access journal, publishing original research and review papers from the variety of subdiscplines connected to theoretical and applied computer science, including the following: Artificial intelligence Computer modelling and simulation Data analysis and classification Pattern recognition Computer graphics and image processing Information systems engineering Software engineering Computer systems architecture Distributed and parallel processing Computer systems security Web technologies Bioinformatics Abstract and indexing Doaj (Dicretroy of open access journals) Index copurnicus Baztech Google scholar

  4. A

    Antigua and Barbuda AG: Scientific and Technical Journal Articles

    • ceicdata.com
    Updated Dec 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). Antigua and Barbuda AG: Scientific and Technical Journal Articles [Dataset]. https://www.ceicdata.com/en/antigua-and-barbuda/governance-technology-and-innovation/ag-scientific-and-technical-journal-articles
    Explore at:
    Dataset updated
    Dec 17, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    Antigua and Barbuda
    Variables measured
    Technology
    Description

    Antigua and Barbuda AG: Scientific and Technical Journal Articles data was reported at 7.020 Unit in 2022. This records a decrease from the previous number of 7.430 Unit for 2021. Antigua and Barbuda AG: Scientific and Technical Journal Articles data is updated yearly, averaging 2.080 Unit from Dec 1996 (Median) to 2022, with 27 observations. The data reached an all-time high of 7.430 Unit in 2021 and a record low of 0.000 Unit in 1996. Antigua and Barbuda AG: Scientific and Technical Journal Articles data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Antigua and Barbuda – Table AG.World Bank.WDI: Governance: Technology and Innovation. Scientific and technical journal articles refer to the number of scientific and engineering articles published in the following fields: physics, biology, chemistry, mathematics, clinical medicine, biomedical research, engineering and technology, and earth and space sciences.;National Science Foundation, Science and Engineering Indicators.;Gap-filled total;

  5. Map of articles about "Teaching Open Science"

    • zenodo.org
    • data.niaid.nih.gov
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Isabel Steinhardt; Isabel Steinhardt (2020). Map of articles about "Teaching Open Science" [Dataset]. http://doi.org/10.5281/zenodo.3371415
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Isabel Steinhardt; Isabel Steinhardt
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This description is part of the blog post "Systematic Literature Review of teaching Open Science" https://sozmethode.hypotheses.org/839

    According to my opinion, we do not pay enough attention to teaching Open Science in higher education. Therefore, I designed a seminar to teach students the practices of Open Science by doing qualitative research.About this seminar, I wrote the article ”Teaching Open Science and qualitative methods“. For the article ”Teaching Open Science and qualitative methods“, I started to review the literature on ”Teaching Open Science“. The result of my literature review is that certain aspects of Open Science are used for teaching. However, Open Science with all its aspects (Open Access, Open Data, Open Methodology, Open Science Evaluation and Open Science Tools) is not an issue in publications about teaching.

    Based on this insight, I have started a systematic literature review. I realized quickly that I need help to analyse and interpret the articles and to evaluate my preliminary findings. Especially different disciplinary cultures of teaching different aspects of Open Science are challenging, as I myself, as a social scientist, do not have enough insight to be able to interpret the results correctly. Therefore, I would like to invite you to participate in this research project!

    I am now looking for people who would like to join a collaborative process to further explore and write the systematic literature review on “Teaching Open Science“. Because I want to turn this project into a Massive Open Online Paper (MOOP). According to the 10 rules of Tennant et al (2019) on MOOPs, it is crucial to find a core group that is enthusiastic about the topic. Therefore, I am looking for people who are interested in creating the structure of the paper and writing the paper together with me. I am also looking for people who want to search for and review literature or evaluate the literature I have already found. Together with the interested persons I would then define, the rules for the project (cf. Tennant et al. 2019). So if you are interested to contribute to the further search for articles and / or to enhance the interpretation and writing of results, please get in touch. For everyone interested to contribute, the list of articles collected so far is freely accessible at Zotero: https://www.zotero.org/groups/2359061/teaching_open_science. The figure shown below provides a first overview of my ongoing work. I created the figure with the free software yEd and uploaded the file to zenodo, so everyone can download and work with it:

    To make transparent what I have done so far, I will first introduce what a systematic literature review is. Secondly, I describe the decisions I made to start with the systematic literature review. Third, I present the preliminary results.

    Systematic literature review – an Introduction

    Systematic literature reviews “are a method of mapping out areas of uncertainty, and identifying where little or no relevant research has been done.” (Petticrew/Roberts 2008: 2). Fink defines the systematic literature review as a “systemic, explicit, and reproducible method for identifying, evaluating, and synthesizing the existing body of completed and recorded work produced by researchers, scholars, and practitioners.” (Fink 2019: 6). The aim of a systematic literature reviews is to surpass the subjectivity of a researchers’ search for literature. However, there can never be an objective selection of articles. This is because the researcher has for example already made a preselection by deciding about search strings, for example “Teaching Open Science”. In this respect, transparency is the core criteria for a high-quality review.

    In order to achieve high quality and transparency, Fink (2019: 6-7) proposes the following seven steps:

    1. Selecting a research question.
    2. Selecting the bibliographic database.
    3. Choosing the search terms.
    4. Applying practical screening criteria.
    5. Applying methodological screening criteria.
    6. Doing the review.
    7. Synthesizing the results.

    I have adapted these steps for the “Teaching Open Science” systematic literature review. In the following, I will present the decisions I have made.

    Systematic literature review – decisions I made

    1. Research question: I am interested in the following research questions: How is Open Science taught in higher education? Is Open Science taught in its full range with all aspects like Open Access, Open Data, Open Methodology, Open Science Evaluation and Open Science Tools? Which aspects are taught? Are there disciplinary differences as to which aspects are taught and, if so, why are there such differences?
    2. Databases: I started my search at the Directory of Open Science (DOAJ). “DOAJ is a community-curated online directory that indexes and provides access to high quality, open access, peer-reviewed journals.” (https://doaj.org/) Secondly, I used the Bielefeld Academic Search Engine (base). Base is operated by Bielefeld University Library and “one of the world’s most voluminous search engines especially for academic web resources” (base-search.net). Both platforms are non-commercial and focus on Open Access publications and thus differ from the commercial publication databases, such as Web of Science and Scopus. For this project, I deliberately decided against commercial providers and the restriction of search in indexed journals. Thus, because my explicit aim was to find articles that are open in the context of Open Science.
    3. Search terms: To identify articles about teaching Open Science I used the following search strings: “teaching open science” OR teaching “open science” OR teach „open science“. The topic search looked for the search strings in title, abstract and keywords of articles. Since these are very narrow search terms, I decided to broaden the method. I searched in the reference lists of all articles that appear from this search for further relevant literature. Using Google Scholar I checked which other authors cited the articles in the sample. If the so checked articles met my methodological criteria, I included them in the sample and looked through the reference lists and citations at Google Scholar. This process has not yet been completed.
    4. Practical screening criteria: I have included English and German articles in the sample, as I speak these languages (articles in other languages are very welcome, if there are people who can interpret them!). In the sample only journal articles, articles in edited volumes, working papers and conference papers from proceedings were included. I checked whether the journals were predatory journals – such articles were not included. I did not include blogposts, books or articles from newspapers. I only included articles that fulltexts are accessible via my institution (University of Kassel). As a result, recently published articles at Elsevier could not be included because of the special situation in Germany regarding the Project DEAL (https://www.projekt-deal.de/about-deal/). For articles that are not freely accessible, I have checked whether there is an accessible version in a repository or whether preprint is available. If this was not the case, the article was not included. I started the analysis in May 2019.
    5. Methodological criteria: The method described above to check the reference lists has the problem of subjectivity. Therefore, I hope that other people will be interested in this project and evaluate my decisions. I have used the following criteria as the basis for my decisions: First, the articles must focus on teaching. For example, this means that articles must describe how a course was designed and carried out. Second, at least one aspect of Open Science has to be addressed. The aspects can be very diverse (FOSS, repositories, wiki, data management, etc.) but have to comply with the principles of openness. This means, for example, I included an article when it deals with the use of FOSS in class and addresses the aspects of openness of FOSS. I did not include articles when the authors describe the use of a particular free and open source software for teaching but did not address the principles of openness or re-use.
    6. Doing the review: Due to the methodical approach of going through the reference lists, it is possible to create a map of how the articles relate to each other. This results in thematic clusters and connections between clusters. The starting point for the map were four articles (Cook et al. 2018; Marsden, Thompson, and Plonsky 2017; Petras et al. 2015; Toelch and Ostwald 2018) that I found using the databases and criteria described above. I used yEd to generate the network. „yEd is a powerful desktop application that can be used to quickly and effectively generate high-quality diagrams.” (https://www.yworks.com/products/yed) In the network, arrows show, which articles are cited in an article and which articles are cited by others as well. In addition, I made an initial rough classification of the content using colours. This classification is based on the contents mentioned in the articles’ title and abstract. This rough content classification requires a more exact, i.e., content-based subdivision and

  6. Data articles in journals

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, txt
    Updated Sep 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlota Balsa-Sanchez; Carlota Balsa-Sanchez; Vanesa Loureiro; Vanesa Loureiro (2023). Data articles in journals [Dataset]. http://doi.org/10.5281/zenodo.8367960
    Explore at:
    bin, csv, txtAvailable download formats
    Dataset updated
    Sep 22, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Carlota Balsa-Sanchez; Carlota Balsa-Sanchez; Vanesa Loureiro; Vanesa Loureiro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Version: 5

    Authors: Carlota Balsa-Sánchez, Vanesa Loureiro

    Date of data collection: 2023/09/05

    General description: The publication of datasets according to the FAIR principles, could be reached publishing a data paper (or software paper) in data journals or in academic standard journals. The excel and CSV file contains a list of academic journals that publish data papers and software papers.
    File list:

    - data_articles_journal_list_v5.xlsx: full list of 140 academic journals in which data papers or/and software papers could be published
    - data_articles_journal_list_v5.csv: full list of 140 academic journals in which data papers or/and software papers could be published

    Relationship between files: both files have the same information. Two different formats are offered to improve reuse

    Type of version of the dataset: final processed version

    Versions of the files: 5th version
    - Information updated: number of journals, URL, document types associated to a specific journal.

    Version: 4

    Authors: Carlota Balsa-Sánchez, Vanesa Loureiro

    Date of data collection: 2022/12/15

    General description: The publication of datasets according to the FAIR principles, could be reached publishing a data paper (or software paper) in data journals or in academic standard journals. The excel and CSV file contains a list of academic journals that publish data papers and software papers.
    File list:

    - data_articles_journal_list_v4.xlsx: full list of 140 academic journals in which data papers or/and software papers could be published
    - data_articles_journal_list_v4.csv: full list of 140 academic journals in which data papers or/and software papers could be published

    Relationship between files: both files have the same information. Two different formats are offered to improve reuse

    Type of version of the dataset: final processed version

    Versions of the files: 4th version
    - Information updated: number of journals, URL, document types associated to a specific journal, publishers normalization and simplification of document types
    - Information added : listed in the Directory of Open Access Journals (DOAJ), indexed in Web of Science (WOS) and quartile in Journal Citation Reports (JCR) and/or Scimago Journal and Country Rank (SJR), Scopus and Web of Science (WOS), Journal Master List.

    Version: 3

    Authors: Carlota Balsa-Sánchez, Vanesa Loureiro

    Date of data collection: 2022/10/28

    General description: The publication of datasets according to the FAIR principles, could be reached publishing a data paper (or software paper) in data journals or in academic standard journals. The excel and CSV file contains a list of academic journals that publish data papers and software papers.
    File list:

    - data_articles_journal_list_v3.xlsx: full list of 124 academic journals in which data papers or/and software papers could be published
    - data_articles_journal_list_3.csv: full list of 124 academic journals in which data papers or/and software papers could be published

    Relationship between files: both files have the same information. Two different formats are offered to improve reuse

    Type of version of the dataset: final processed version

    Versions of the files: 3rd version
    - Information updated: number of journals, URL, document types associated to a specific journal, publishers normalization and simplification of document types
    - Information added : listed in the Directory of Open Access Journals (DOAJ), indexed in Web of Science (WOS) and quartile in Journal Citation Reports (JCR) and/or Scimago Journal and Country Rank (SJR).

    Erratum - Data articles in journals Version 3:

    Botanical Studies -- ISSN 1999-3110 -- JCR (JIF) Q2
    Data -- ISSN 2306-5729 -- JCR (JIF) n/a
    Data in Brief -- ISSN 2352-3409 -- JCR (JIF) n/a

    Version: 2

    Author: Francisco Rubio, Universitat Politècnia de València.

    Date of data collection: 2020/06/23

    General description: The publication of datasets according to the FAIR principles, could be reached publishing a data paper (or software paper) in data journals or in academic standard journals. The excel and CSV file contains a list of academic journals that publish data papers and software papers.
    File list:

    - data_articles_journal_list_v2.xlsx: full list of 56 academic journals in which data papers or/and software papers could be published
    - data_articles_journal_list_v2.csv: full list of 56 academic journals in which data papers or/and software papers could be published

    Relationship between files: both files have the same information. Two different formats are offered to improve reuse

    Type of version of the dataset: final processed version

    Versions of the files: 2nd version
    - Information updated: number of journals, URL, document types associated to a specific journal, publishers normalization and simplification of document types
    - Information added : listed in the Directory of Open Access Journals (DOAJ), indexed in Web of Science (WOS) and quartile in Scimago Journal and Country Rank (SJR)

    Total size: 32 KB

    Version 1: Description

    This dataset contains a list of journals that publish data articles, code, software articles and database articles.

    The search strategy in DOAJ and Ulrichsweb was the search for the word data in the title of the journals.
    Acknowledgements:
    Xaquín Lores Torres for his invaluable help in preparing this dataset.

  7. d

    Replication Data for: Data policies of highly-ranked social science journals...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crosas, Mercè; Gautier, Julian; Karcher, Sebastian; Kirilova, Dessi; Otalora, Gerard; Schwartz, Abby (2023). Replication Data for: Data policies of highly-ranked social science journals [Dataset]. https://search.dataone.org/view/sha256:abea23473df08a024fd58ca97c69d1237e7c2adb86e4b006e7532fa0b409b10e
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Crosas, Mercè; Gautier, Julian; Karcher, Sebastian; Kirilova, Dessi; Otalora, Gerard; Schwartz, Abby
    Time period covered
    Jan 1, 2003 - Dec 12, 2017
    Description

    By encouraging and requiring that authors share their data in order to publish articles, scholarly journals have become an important actor in the movement to improve the openness of data and the reproducibility of research. But how many social science journals encourage or mandate that authors share the data supporting their research findings? How does the share of journal data policies vary by discipline? What influences these journals’ decisions to adopt such policies and instructions? And what do those policies and instructions look like? We discuss the results of our analysis of the instructions and policies of 291 highly-ranked journals publishing social science research, where we studied the contents of journal data policies and instructions across 14 variables, such as when and how authors are asked to share their data, and what role journal ranking and age play in the existence and quality of data policies and instructions. We also attempt to compare our results to the results of other studies that have analyzed the policies of social science journals, although differences in the journals chosen and how each study defines what constitutes a data policy limit this comparison. We conclude that a little more than half of the journals in our study have data policies. A greater share of the economics journals have data policies and mandate sharing, followed by political science/international relations and psychology journals. Finally, we use our findings to make several recommendations: Policies should include the terms “data”, “dataset” or more specific terms that make it clear what to make available; policies should include the benefits of data sharing; journals, publishers, and associations need to collaborate more to clarify data policies; and policies should explicitly ask for qualitative data.

  8. B

    Open data requirements of library and information science journals

    • borealisdata.ca
    Updated Apr 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian Jackson (2021). Open data requirements of library and information science journals [Dataset]. http://doi.org/10.5683/SP2/TQLZ6G
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 22, 2021
    Dataset provided by
    Borealis
    Authors
    Brian Jackson
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset contains information about the open data policies of library and information science journals. Journal requirements for public data archiving and data availability statements, collected from journal websites, are included for 201 LIS publications.

  9. Z

    Which journal characteristics are crucial for scientists when selecting...

    • data.niaid.nih.gov
    • zenodo.org
    Updated May 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eppelin, Anita (2022). Which journal characteristics are crucial for scientists when selecting journals for their publications? Results tables of an online survey [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_5728147
    Explore at:
    Dataset updated
    May 9, 2022
    Dataset provided by
    Hartwig, Josephine
    Eppelin, Anita
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As part of the BMBF-funded project "B!SON - Bibliometric and Semantic Open Access Recommender Network", an online survey was conducted among scientists using SoSci Survey (Leiner, 2019). The aim of the survey was to determine the importance of various characteristics of scientific journals in the decision for a publication venue by scientists. The characteristics were determined by analysis of other recommender systems, literature research and discussion with scientists. The data published here are based on 884 completed questionnaires (only questionnaires in which at least 90% of the questions had been answered were included in the analysis).

    In the questionnaire, a distinction was made between those characteristics that scientists would like to use to limit the selection of eligible journals from the outset (table "B!SON_Survey_Filter_Criteria_EN") and those that scientists need for their final decision from a list of recommended journals ("B!SON_Survey_Journal_Selection_EN"). For each journal property, the respondents could choose between the categories of a 5-point Likert scale: "not at all important - not very important - somewhat important - very important - extremely important". If the scientists were not able to evaluate a characteristic, they could also select "I can't say".

    In the two tables of results, the approval percentage and the rank based on it are listed for all journal properties queried in the respective part of the survey. The approval percentage is calculated from the percentage of people who rated the respective property as "very important" or "extremely important". Approval rate and rank are presented across all respondents (overall column), as well as within the 4 science disciplines by DFG (Natural Sciences, Engineering Sciences, Life Sciences, Humanities and Social Sciences) and the category "Other Sciences".

    Both tables can be sorted by approval rate and rank per scientific discipline or across disciplines.

    Note on the use of the HTML files: These can be downloaded via the download button and then opened and viewed with any web browser.

    A German version of the results tables is available under https://doi.org/10.5281/zenodo.5412197.

  10. d

    Data from: Data sharing in sociology journals - Dataset - B2FIND

    • b2find.dkrz.de
    Updated Oct 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Data from: Data sharing in sociology journals - Dataset - B2FIND [Dataset]. https://b2find.dkrz.de/dataset/21ec6144-a582-5356-aa2d-07603f7ecae5
    Explore at:
    Dataset updated
    Oct 28, 2023
    Description

    Data sharing is key for replication and re-use in empirical research. Scientific journals can play a central role by establishing data policies and providing technologies. In this study factors of influence for data sharing are analyzed by investigating journal data policies and author behavior in sociology. The websites of 140 journals from sociology were consulted to check their data policy. The results are compared with similar studies from political science and economics. For five selected journals with a broad variety all articles from two years are examined to see if authors really cite and share their data, and which factors are related to this. Full selection of the journals in the 2013 Social Science Citation Index in the category "sociology"; All articles from 5 selected journals in 2012 and 2013.

  11. d

    Data from: A study of the impact of data sharing on article citations using...

    • search.dataone.org
    • dataverse.harvard.edu
    • +2more
    Updated Nov 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Garret Christensen; Allan Dafoe; Edward Miguel; Don A. Moore; Andrew K. Rose (2023). A study of the impact of data sharing on article citations using journal policies as a natural experiment [Dataset]. http://doi.org/10.7910/DVN/ORTJT5
    Explore at:
    Dataset updated
    Nov 23, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Garret Christensen; Allan Dafoe; Edward Miguel; Don A. Moore; Andrew K. Rose
    Description

    This study estimates the effect of data sharing on the citations of academic articles, using journal policies as a natural experiment. We begin by examining 17 high-impact journals that have adopted the requirement that data from published articles be publicly posted. We match these 17 journals to 13 journals without policy changes and find that empirical articles published just before their change in editorial policy have citation rates with no statistically significant difference from those published shortly after the shift. We then ask whether this null result stems from poor compliance with data sharing policies, and use the data sharing policy changes as instrumental variables to examine more closely two leading journals in economics and political science with relatively strong enforcement of new data policies. We find that articles that make their data available receive 97 additional citations (estimate standard error of 34). We conclude that: a) authors who share data may be rewarded eventually with additional scholarly citations, and b) data-posting policies alone do not increase the impact of articles published in a journal unless those policies are enforced.

  12. Data from: The Publishing Delay in Scholarly Peer-Reviewed Journals

    • figshare.com
    txt
    Updated Jan 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bo‐Christer Björk; David Solomon (2016). The Publishing Delay in Scholarly Peer-Reviewed Journals [Dataset]. http://doi.org/10.6084/m9.figshare.797523.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Bo‐Christer Björk; David Solomon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data describe was the basis for an article titled “The publishing delay in scholarly peer-reviewed journals” published in Journal of Informetrics doi:10.1016/j.joi.2013.09.00. This is the CSV file a codebook is also available

  13. s

    Scimago Journal Rankings

    • scimagojr.com
    • vnufulimi.com
    • +9more
    csv
    Updated Jun 26, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scimago Lab (2017). Scimago Journal Rankings [Dataset]. https://www.scimagojr.com/journalrank.php
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 26, 2017
    Dataset authored and provided by
    Scimago Lab
    Description

    Academic journals indicators developed from the information contained in the Scopus database (Elsevier B.V.). These indicators can be used to assess and analyze scientific domains.

  14. Material Science Titles Data Set

    • figshare.com
    txt
    Updated Feb 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zach Jensen; Alex van Grootel (2019). Material Science Titles Data Set [Dataset]. http://doi.org/10.6084/m9.figshare.7725920.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 15, 2019
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Zach Jensen; Alex van Grootel
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Open source data set of materials science journal article titles and metadata.

  15. Z

    An analysis of the current overlay journals

    • data.niaid.nih.gov
    • zenodo.org
    Updated Oct 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rousi, Antti M. (2022). An analysis of the current overlay journals [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6420517
    Explore at:
    Dataset updated
    Oct 18, 2022
    Dataset provided by
    Laakso, Mikael
    Rousi, Antti M.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Research data to accommodate the article "Overlay journals: a study of the current landscape" (https://doi.org/10.1177/09610006221125208)

    Identifying the sample of overlay journals was an explorative process (occurring during April 2021 to February 2022). The sample of investigated overlay journals were identified by using the websites of Episciences.org (2021), Scholastica (2021), Free Journal Network (2021), Open Journals (2021), PubPub (2022), and Wikipedia (2021). In total, this study identified 34 overlay journals. Please see the paper for more details about the excluded journal types.

    The journal ISSN numbers, manuscript source repositories, first overlay volumes, article volumes, publication languages, peer-review type, licence for published articles, author costs, publisher types, submission policy, and preprint availability policy were observed by inspecting journal editorial policies and submission guidelines found from journal websites. The overlay journals’ ISSN numbers were identified by examining journal websites and cross-checking this information with the Ulrich’s periodicals database (Ulrichsweb, 2021). Journals that published review reports, either with reviewers’ names or anonymously, were classified as operating with open peer-review. Publisher types defined by Laakso and Björk (2013) were used to categorise the findings concerning the publishers. If the journal website did not include publisher information, the editorial board was interpreted to publish the journal.

    The Organisation for Economic Co-operation and Development (OECD) field of science classification was used to categorise the journals into different domains of science. The journals’ primary OECD field of sciences were defined by the authors through examining the journal websites.

    Whether the journals were indexed in the Directory of Open Access Journals (DOAJ), Scopus, or Clarivate Analytics’ Web of Science Core collection’s journal master list was examined by searching the services with journal ISSN numbers and journal titles.

    The identified overlay journals were examined from the viewpoint of both qualitative and quantitative journal metrics. The qualitative metrics comprised the Nordic expert panel rankings of scientific journals, namely the Finnish Publication Forum, the Danish Bibliometric Research Indicator and the Norwegian Register for Scientific Journals, Series and Publishers. Searches were conducted from the web portals of the above services with both ISSN numbers and journal titles. Clarivate Analytics’ Journal Citation Reports database was searched with the use of both ISSN numbers and journal titles to identify whether the journals had a Journal Citation Indicator (JCI), Two-Year Impact Factor (IF) and an Impact Factor ranking (IF rank). The examined Journal Impact Factors and Impact Factor rankings were for the year 2020 (as released in 2021).

  16. d

    Open access practices of selected library science journals

    • search.dataone.org
    Updated Nov 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer Jordan; Blair Solon; Stephanie Beene (2024). Open access practices of selected library science journals [Dataset]. https://search.dataone.org/view/sha256%3A4f09710a9eecccb96608b04fed0cbe85acb5be19776110a7dfd4eee88eca674a
    Explore at:
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    Dryad Digital Repository
    Authors
    Jennifer Jordan; Blair Solon; Stephanie Beene
    Description

    The data in this set was culled from the Directory of Open Access Journals (DOAJ), the Proquest database Library and Information Science Abstracts (LISA), and a sample of peer reviewed scholarly journals in the field of Library Science. The data include journals that are open access, which was first defined by the Budapest Open Access Initiative: By ‘open access’ to [scholarly] literature, we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Starting with a batch of 377 journals, we focused our dataset to include journals that met the following criteria: 1) peer-reviewed 2) written in English or abstracted in English, 3) actively published at the time of..., Data Collection In the spring of 2023, researchers gathered 377 scholarly journals whose content covered the work of librarians, archivists, and affiliated information professionals. This data encompassed 221 journals from the Proquest database Library and Information Science Abstracts (LISA), widely regarded as an authoritative database in the field of librarianship. From the Directory of Open Access Journals, we included 144 LIS journals. We also included 12 other journals not indexed in DOAJ or LISA, based on the researchers’ knowledge of existing OA library journals. The data is separated into several different sets representing the different indices and journals we searched. The first set includes journals from the database LISA. The following fields are in this dataset:

    Journal: title of the journal

    Publisher: title of the publishing company

    Open Data Policy: lists whether an open data exists and what the policy is

    Country of publication: country where the journal is publ..., , # Open access practices of selected library science journals

    The data in this set was culled from the Directory of Open Access Journals (DOAJ), the Proquest database Library and Information Science Abstracts (LISA), and a sample of peer reviewed scholarly journals in the field of Library Science.

    The data include journals that are open access, which was first defined by the Budapest Open Access Initiative:Â

    By ‘open access’ to [scholarly] literature, we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself.

    Starting with a batch of 377 journals, we focused our dataset to include journals that met the following criteria: 1) peer-reviewed 2) written in Engli...

  17. r

    ✅ International Journal of Engineering and Advanced Technology ISSN -...

    • researchhelpdesk.org
    Updated Feb 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). ✅ International Journal of Engineering and Advanced Technology ISSN - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/issn/552/international-journal-of-engineering-and-advanced-technology
    Explore at:
    Dataset updated
    Feb 23, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    ✅ International Journal of Engineering and Advanced Technology ISSN - ResearchHelpDesk - International Journal of Engineering and Advanced Technology (IJEAT) is having Online-ISSN 2249-8958, bi-monthly international journal, being published in the months of February, April, June, August, October, and December by Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP) Bhopal (M.P.), India since the year 2011. It is academic, online, open access, double-blind, peer-reviewed international journal. It aims to publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. All submitted papers will be reviewed by the board of committee of IJEAT. Aim of IJEAT Journal disseminate original, scientific, theoretical or applied research in the field of Engineering and allied fields. dispense a platform for publishing results and research with a strong empirical component. aqueduct the significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. seek original and unpublished research papers based on theoretical or experimental works for the publication globally. publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. impart a platform for publishing results and research with a strong empirical component. create a bridge for a significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. solicit original and unpublished research papers, based on theoretical or experimental works. Scope of IJEAT International Journal of Engineering and Advanced Technology (IJEAT) covers all topics of all engineering branches. Some of them are Computer Science & Engineering, Information Technology, Electronics & Communication, Electrical and Electronics, Electronics and Telecommunication, Civil Engineering, Mechanical Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. The main topic includes but not limited to: 1. Smart Computing and Information Processing Signal and Speech Processing Image Processing and Pattern Recognition WSN Artificial Intelligence and machine learning Data mining and warehousing Data Analytics Deep learning Bioinformatics High Performance computing Advanced Computer networking Cloud Computing IoT Parallel Computing on GPU Human Computer Interactions 2. Recent Trends in Microelectronics and VLSI Design Process & Device Technologies Low-power design Nanometer-scale integrated circuits Application specific ICs (ASICs) FPGAs Nanotechnology Nano electronics and Quantum Computing 3. Challenges of Industry and their Solutions, Communications Advanced Manufacturing Technologies Artificial Intelligence Autonomous Robots Augmented Reality Big Data Analytics and Business Intelligence Cyber Physical Systems (CPS) Digital Clone or Simulation Industrial Internet of Things (IIoT) Manufacturing IOT Plant Cyber security Smart Solutions – Wearable Sensors and Smart Glasses System Integration Small Batch Manufacturing Visual Analytics Virtual Reality 3D Printing 4. Internet of Things (IoT) Internet of Things (IoT) & IoE & Edge Computing Distributed Mobile Applications Utilizing IoT Security, Privacy and Trust in IoT & IoE Standards for IoT Applications Ubiquitous Computing Block Chain-enabled IoT Device and Data Security and Privacy Application of WSN in IoT Cloud Resources Utilization in IoT Wireless Access Technologies for IoT Mobile Applications and Services for IoT Machine/ Deep Learning with IoT & IoE Smart Sensors and Internet of Things for Smart City Logic, Functional programming and Microcontrollers for IoT Sensor Networks, Actuators for Internet of Things Data Visualization using IoT IoT Application and Communication Protocol Big Data Analytics for Social Networking using IoT IoT Applications for Smart Cities Emulation and Simulation Methodologies for IoT IoT Applied for Digital Contents 5. Microwaves and Photonics Microwave filter Micro Strip antenna Microwave Link design Microwave oscillator Frequency selective surface Microwave Antenna Microwave Photonics Radio over fiber Optical communication Optical oscillator Optical Link design Optical phase lock loop Optical devices 6. Computation Intelligence and Analytics Soft Computing Advance Ubiquitous Computing Parallel Computing Distributed Computing Machine Learning Information Retrieval Expert Systems Data Mining Text Mining Data Warehousing Predictive Analysis Data Management Big Data Analytics Big Data Security 7. Energy Harvesting and Wireless Power Transmission Energy harvesting and transfer for wireless sensor networks Economics of energy harvesting communications Waveform optimization for wireless power transfer RF Energy Harvesting Wireless Power Transmission Microstrip Antenna design and application Wearable Textile Antenna Luminescence Rectenna 8. Advance Concept of Networking and Database Computer Network Mobile Adhoc Network Image Security Application Artificial Intelligence and machine learning in the Field of Network and Database Data Analytic High performance computing Pattern Recognition 9. Machine Learning (ML) and Knowledge Mining (KM) Regression and prediction Problem solving and planning Clustering Classification Neural information processing Vision and speech perception Heterogeneous and streaming data Natural language processing Probabilistic Models and Methods Reasoning and inference Marketing and social sciences Data mining Knowledge Discovery Web mining Information retrieval Design and diagnosis Game playing Streaming data Music Modelling and Analysis Robotics and control Multi-agent systems Bioinformatics Social sciences Industrial, financial and scientific applications of all kind 10. Advanced Computer networking Computational Intelligence Data Management, Exploration, and Mining Robotics Artificial Intelligence and Machine Learning Computer Architecture and VLSI Computer Graphics, Simulation, and Modelling Digital System and Logic Design Natural Language Processing and Machine Translation Parallel and Distributed Algorithms Pattern Recognition and Analysis Systems and Software Engineering Nature Inspired Computing Signal and Image Processing Reconfigurable Computing Cloud, Cluster, Grid and P2P Computing Biomedical Computing Advanced Bioinformatics Green Computing Mobile Computing Nano Ubiquitous Computing Context Awareness and Personalization, Autonomic and Trusted Computing Cryptography and Applied Mathematics Security, Trust and Privacy Digital Rights Management Networked-Driven Multicourse Chips Internet Computing Agricultural Informatics and Communication Community Information Systems Computational Economics, Digital Photogrammetric Remote Sensing, GIS and GPS Disaster Management e-governance, e-Commerce, e-business, e-Learning Forest Genomics and Informatics Healthcare Informatics Information Ecology and Knowledge Management Irrigation Informatics Neuro-Informatics Open Source: Challenges and opportunities Web-Based Learning: Innovation and Challenges Soft computing Signal and Speech Processing Natural Language Processing 11. Communications Microstrip Antenna Microwave Radar and Satellite Smart Antenna MIMO Antenna Wireless Communication RFID Network and Applications 5G Communication 6G Communication 12. Algorithms and Complexity Sequential, Parallel And Distributed Algorithms And Data Structures Approximation And Randomized Algorithms Graph Algorithms And Graph Drawing On-Line And Streaming Algorithms Analysis Of Algorithms And Computational Complexity Algorithm Engineering Web Algorithms Exact And Parameterized Computation Algorithmic Game Theory Computational Biology Foundations Of Communication Networks Computational Geometry Discrete Optimization 13. Software Engineering and Knowledge Engineering Software Engineering Methodologies Agent-based software engineering Artificial intelligence approaches to software engineering Component-based software engineering Embedded and ubiquitous software engineering Aspect-based software engineering Empirical software engineering Search-Based Software engineering Automated software design and synthesis Computer-supported cooperative work Automated software specification Reverse engineering Software Engineering Techniques and Production Perspectives Requirements engineering Software analysis, design and modelling Software maintenance and evolution Software engineering tools and environments Software engineering decision support Software design patterns Software product lines Process and workflow management Reflection and metadata approaches Program understanding and system maintenance Software domain modelling and analysis Software economics Multimedia and hypermedia software engineering Software engineering case study and experience reports Enterprise software, middleware, and tools Artificial intelligent methods, models, techniques Artificial life and societies Swarm intelligence Smart Spaces Autonomic computing and agent-based systems Autonomic computing Adaptive Systems Agent architectures, ontologies, languages and protocols Multi-agent systems Agent-based learning and knowledge discovery Interface agents Agent-based auctions and marketplaces Secure mobile and multi-agent systems Mobile agents SOA and Service-Oriented Systems Service-centric software engineering Service oriented requirements engineering Service oriented architectures Middleware for service based systems Service discovery and composition Service level agreements

  18. Data from: Data Journals april 2015

    • figshare.com
    • recerca.uoc.edu
    xlsx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alicia García-García; Alexandre López-borrull; Fernanda Peset (2023). Data Journals april 2015 [Dataset]. http://doi.org/10.6084/m9.figshare.1549666.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Alicia García-García; Alexandre López-borrull; Fernanda Peset
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was produced to make an overview of data journals around the world at april 2015. Please, see the Leeme excel sheet. Contact: mpesetm@upv.es Fernanda Peset - Universidad Politécnica de Valencia. Cite as García-García, Alicia; López-Borrull, Alexandre; Peset, Fernanda (2015). Análisis de Data Journals: la eclosión de nuevas revistas especializadas en datos. El profesional de la información http://www.elprofesionaldelainformacion.com (dataset).http://dx.doi.org/10.6084/m9.figshare.1549666 This article refers to the relation of journals with data; not because science is dealing with data for the first time, but for two main reasons: a) the amount of data that scientists are able to manage has increased hugely recently and b) the pressure for transparency and economic efficiency of budgets public. We present the compilation and analysis of data journals identified with the following objectives: to determine its origin, their evolution and their distinctive features. In conclusion, the aim is to identify the role Data Journals can play in the ecosystem of scientific communication.

  19. Data from: Data Papers as a New Form of Knowledge Organization in the Field...

    • ssh.datastations.nl
    • datacatalogue.cessda.eu
    ods, pdf, zip
    Updated Jun 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DANS Data Station Social Sciences and Humanities (2019). Data Papers as a New Form of Knowledge Organization in the Field of Research Data [Dataset]. http://doi.org/10.17026/dans-zk3-jkyb
    Explore at:
    pdf(216582), zip(18880), ods(15303)Available download formats
    Dataset updated
    Jun 7, 2019
    Dataset provided by
    Data Archiving and Networked Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    In order to analyse specific features of data papers, we established a representative sample of data journals, based on lists from the European FOSTER Plus project , the German wiki forschungsdaten.org hosted by the University of Konstanz and two French research organizations.The complete list consists of 82 data journals, i.e. journals which publish data papers. They represent less than 0,5% of academic and scholarly journals. For each of these 82 data journals, we gathered information about the discipline, the global business model, the publisher, peer reviewing etc. The analysis is partly based on data from ProQuest’s Ulrichsweb database, enriched and completed by information available on the journals’ home pages.One part of the data journals are presented as “pure” data journals stricto sensu , i.e. journals which publish exclusively or mainly data papers. We identified 28 journals of this category (34%). For each journal, we assessed through direct search on the journals’ homepages (information about the journal, author’s guidelines etc.) the use of identifiers and metadata, the mode of selection and the business model, and we assessed different parameters of the data papers themselves, such as length, structure, linking etc.The results of this analysis are compared with other research journals (“mixed” data journals) which publish data papers along with regular research articles, in order to identify possible differences between both journal categories, on the level of data papers as well as on the level of the regular research papers. Moreover, the results are discussed against concepts of knowledge organization.

  20. u

    Data from: Transparency analysis among Communications and Library and...

    • recerca.uoc.edu
    Updated 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    López-borrull, Alexandre; Pérez-Montoro, Mario; Ollé, Candela; Vallez, Mari; López-borrull, Alexandre; Pérez-Montoro, Mario; Ollé, Candela; Vallez, Mari (2021). Transparency analysis among Communications and Library and Information Science Journals [Dataset]. https://recerca.uoc.edu/documentos/67321ebdaea56d4af0485c2a
    Explore at:
    Dataset updated
    2021
    Authors
    López-borrull, Alexandre; Pérez-Montoro, Mario; Ollé, Candela; Vallez, Mari; López-borrull, Alexandre; Pérez-Montoro, Mario; Ollé, Candela; Vallez, Mari
    Description

    The principal goal of the research study is to analyze the transparency of a selection of academic journals based on an analysis model with 20 indicators grouped into 6 parameters. Given the evident interest in and commitment to transparency among quality academic journals and researchers’ difficulties in choosing journals that meet a set of criteria, we present indicators that may help researchers choose journals while also helping journals to consider what information from the editorial process to publish, or not, on their websites to attract authors in the highly competitive environment of today’s scholarly communication. To test the validity of the indicators, we analyze a small sample: the Spanish Communications and Library and Information Science journals listed in the Scimago Journal Rank. The results confirm that our analysis model is valid and can be extrapolated to other disciplines and journals.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Web of Science [Dataset]. http://identifiers.org/RRID:SCR_022706

Web of Science

RRID:SCR_022706, Web of Science (RRID:SCR_022706), Web of Knowledge

Explore at:
17 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 21, 2025
Description

Database of bibliographic citations of multidisciplinary areas that covers various journals of medical, scientific, and social sciences including humanities.Publisher independent global citation database.

Search
Clear search
Close search
Google apps
Main menu