Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Discover the booming market for data scraping tools! This comprehensive analysis reveals a $2789.5 million market in 2025, growing at a 27.8% CAGR. Explore key trends, regional insights, and leading companies shaping this dynamic sector. Learn how to leverage data scraping for your business.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Explore the expanding global Data Extraction Software Tools market (valued at $1185M, CAGR 2.3%), driven by AI, cloud adoption, and increasing data volumes for SMEs and large organizations. Discover key trends, restraints, and regional insights for 2025-2033.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The data scraping tools market is experiencing robust growth, driven by the increasing need for businesses to extract valuable insights from vast amounts of online data. The market, estimated at $2 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching an estimated value of $6 billion by 2033. This growth is fueled by several key factors, including the exponential rise of big data, the demand for improved business intelligence, and the need for enhanced market research and competitive analysis. Businesses across various sectors, including e-commerce, finance, and marketing, are leveraging data scraping tools to automate data collection, improve decision-making, and gain a competitive edge. The increasing availability of user-friendly tools and the growing adoption of cloud-based solutions further contribute to market expansion. However, the market also faces certain challenges. Data privacy concerns and the legal complexities surrounding web scraping remain significant restraints. The evolving nature of websites and the implementation of anti-scraping measures by websites also pose hurdles for data extraction. Furthermore, the need for skilled professionals to effectively utilize and manage these tools presents another challenge. Despite these restraints, the market's overall outlook remains positive, driven by continuous innovation in scraping technologies, and the growing understanding of the strategic value of data-driven decision-making. Key segments within the market include cloud-based solutions, on-premise solutions, and specialized scraping tools for specific data types. Leading players such as Scraper API, Octoparse, ParseHub, Scrapy, Diffbot, Cheerio, BeautifulSoup, Puppeteer, and Mozenda are shaping market competition through ongoing product development and expansion into new regions.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The booming data extraction service market is projected to reach $47.4 Billion by 2033, growing at a 15% CAGR. Discover key market trends, leading companies, and regional insights in this comprehensive analysis of web scraping, API extraction, and more. Learn how to leverage data for better decision-making.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global data scraping tools market, valued at $15.57 billion in 2025, is experiencing robust growth. While the provided CAGR is missing, a reasonable estimate, considering the expanding need for data-driven decision-making across various sectors and the increasing sophistication of web scraping techniques, would be between 15-20% annually. This strong growth is driven by the proliferation of e-commerce platforms generating vast amounts of data, the rising adoption of data analytics and business intelligence tools, and the increasing demand for market research and competitive analysis. Businesses leverage these tools to extract valuable insights from websites, enabling efficient price monitoring, lead generation, market trend analysis, and customer sentiment monitoring. The market segmentation shows a significant preference for "Pay to Use" tools reflecting the need for reliable, scalable, and often legally compliant solutions. The application segments highlight the high demand across diverse industries, notably e-commerce, investment analysis, and marketing analysis, driving the overall market expansion. Challenges include ongoing legal complexities related to web scraping, the constant evolution of website structures requiring adaptation of scraping tools, and the need for robust data cleaning and processing capabilities post-scraping. Looking forward, the market is expected to witness continued growth fueled by advancements in artificial intelligence and machine learning, enabling more intelligent and efficient scraping. The integration of data scraping tools with existing business intelligence platforms and the development of user-friendly, no-code/low-code scraping solutions will further boost adoption. The increasing adoption of cloud-based scraping services will also contribute to market growth, offering scalability and accessibility. However, the market will also need to address ongoing concerns about ethical scraping practices, data privacy regulations, and the potential for misuse of scraped data. The anticipated growth trajectory, based on the estimated CAGR, points to a significant expansion in market size over the forecast period (2025-2033), making it an attractive sector for both established players and new entrants.
Facebook
Twitterhttps://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global web crawler tool market is experiencing robust growth, driven by the increasing need for data extraction and analysis across diverse sectors. The market's expansion is fueled by the exponential growth of online data, the rise of big data analytics, and the increasing adoption of automation in business processes. Businesses leverage web crawlers for market research, competitive intelligence, price monitoring, and lead generation, leading to heightened demand. While cloud-based solutions dominate due to scalability and cost-effectiveness, on-premises deployments remain relevant for organizations prioritizing data security and control. The large enterprise segment currently leads in adoption, but SMEs are increasingly recognizing the value proposition of web crawling tools for improving business decisions and operations. Competition is intense, with established players like UiPath and Scrapy alongside a growing number of specialized solutions. Factors such as data privacy regulations and the complexity of managing web crawlers pose challenges to market growth, but ongoing innovation in areas such as AI-powered crawling and enhanced data processing capabilities are expected to mitigate these restraints. We estimate the market size in 2025 to be $1.5 billion, growing at a CAGR of 15% over the forecast period (2025-2033). The geographical distribution of the market reflects the global nature of internet usage, with North America and Europe currently holding the largest market share. However, the Asia-Pacific region is anticipated to witness significant growth driven by increasing internet penetration and digital transformation initiatives across countries like China and India. The ongoing development of more sophisticated and user-friendly web crawling tools, coupled with decreasing implementation costs, is projected to further stimulate market expansion. Future growth will depend heavily on the ability of vendors to adapt to evolving web technologies, address increasing data privacy concerns, and provide robust solutions that cater to the specific needs of various industry verticals. Further research and development into AI-driven crawling techniques will be pivotal in optimizing efficiency and accuracy, which in turn will encourage wider adoption.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The analysis of occupants’ perception can improve building indoor environmental quality (IEQ). Going beyond conventional surveys, this study presents an innovative analysis of occupants’ feedback about the IEQ of different workplaces based on web-scraping and text-mining of online job reviews. A total of 1,158,706 job reviews posted on Glassdoor about 257 large organizations (with more than 10,000 employees) are scraped and analyzed. Within these reviews, 10,593 include complaints about at least one IEQ aspect. The analysis of this large number of feedbacks referring to several workplaces is the first of its kind and leads to two main results: (1) IEQ complaints mostly arise in workplaces that are not office buildings, especially regarding poor thermal and indoor air quality conditions in warehouses, stores, kitchens, and trucks; (2) reviews containing IEQ complaints are more negative than reviews without IEQ complaints. The first result highlights the need for IEQ investigations beyond office buildings. The second result strengthens the potential detrimental effect that uncomfortable IEQ conditions can have on job satisfaction. This study demonstrates the potential of User-Generated Content and text-mining techniques to analyze the IEQ of workplaces as an alternative to conventional surveys, for scientific and practical purposes.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 2.37(USD Billion) |
| MARKET SIZE 2025 | 2.6(USD Billion) |
| MARKET SIZE 2035 | 6.5(USD Billion) |
| SEGMENTS COVERED | Application, Deployment Type, Technology, End Use Sector, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Increased data generation, Growing demand for analytics, Rising cloud computing adoption, Advancements in AI technologies, Enhanced focus on data security |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | IBM, Amazon Web Services, Domo, TIBCO Software, Palantir Technologies, Oracle, MicroStrategy, SAP, Microsoft, Tableau Software, Cloudera, Google, SAS Institute, Alteryx, Qlik, DataRobot |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Increased demand for big data analytics, Growth in e-commerce personalization, Rising adoption of AI-driven insights, Enhanced focus on customer experience, Need for competitive intelligence solutions |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 9.6% (2025 - 2035) |
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 1.3(USD Billion) |
| MARKET SIZE 2025 | 1.47(USD Billion) |
| MARKET SIZE 2035 | 5.0(USD Billion) |
| SEGMENTS COVERED | Application, Service Type, End Use, Deployment Type, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Increasing demand for anonymity, Rising cybersecurity threats, Growth in data scraping, Expanding digital marketing strategies, Competitive pricing models |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Mysterium Network, Oxylabs, NetProxy, Bright Data, Shifter, GeoSurf, ProxyEmpire, Storm Proxies, Zyte, HighProxies, Webshare, Smartproxy, ProxyRack, Luminati Networks, Proxify |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Increasing demand for anonymity, Growth in web scraping needs, Expansion of data collection activities, Rising cybersecurity threats, Surge in e-commerce platforms |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 13.1% (2025 - 2035) |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LSC (Leicester Scientific Corpus)
April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data are extracted from the Web of Science [1]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.[Version 2] A further cleaning is applied in Data Processing for LSC Abstracts in Version 1*. Details of cleaning procedure are explained in Step 6.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v1.Getting StartedThis text provides the information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the meaning of research texts and make it available for use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. The corpus contains only documents in English. Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper 3. Abstract: The abstract of the paper 4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’. 5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’. 6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4] 7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018. We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,350.Data ProcessingStep 1: Downloading of the Data Online
The dataset is collected manually by exporting documents as Tab-delimitated files online. All documents are available online.Step 2: Importing the Dataset to R
The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryAs our research is based on the analysis of abstracts and categories, all documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsEspecially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc. Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. The detection and identification of such words is done by sampling of medicine-related publications with human intervention. Detected concatenate words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.The section headings in such abstracts are listed below:
Background Method(s) Design Theoretical Measurement(s) Location Aim(s) Methodology Process Abstract Population Approach Objective(s) Purpose(s) Subject(s) Introduction Implication(s) Patient(s) Procedure(s) Hypothesis Measure(s) Setting(s) Limitation(s) Discussion Conclusion(s) Result(s) Finding(s) Material (s) Rationale(s) Implications for health and nursing policyStep 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction, the lengths of abstracts are calculated. ‘Length’ indicates the total number of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. In LSC, we decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis.
Step 6: [Version 2] Cleaning Copyright Notices, Permission polices, Journal Names and Conference Names from LSC Abstracts in Version 1Publications can include a footer of copyright notice, permission policy, journal name, licence, author’s right or conference name below the text of abstract by conferences and journals. Used tool for extracting and processing abstracts in WoS database leads to attached such footers to the text. For example, our casual observation yields that copyright notices such as ‘Published by Elsevier ltd.’ is placed in many texts. To avoid abnormal appearances of words in further analysis of words such as bias in frequency calculation, we performed a cleaning procedure on such sentences and phrases in abstracts of LSC version 1. We removed copyright notices, names of conferences, names of journals, authors’ rights, licenses and permission policies identified by sampling of abstracts.Step 7: [Version 2] Re-extracting (Sub-setting) the Data Based on Lengths of AbstractsThe cleaning procedure described in previous step leaded to some abstracts having less than our minimum length criteria (30 words). 474 texts were removed.Step 8: Saving the Dataset into CSV FormatDocuments are saved into 34 CSV files. In CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/ [2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html [4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US [5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3 [6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 2.69(USD Billion) |
| MARKET SIZE 2025 | 2.92(USD Billion) |
| MARKET SIZE 2035 | 6.5(USD Billion) |
| SEGMENTS COVERED | Application, Deployment Type, End User, Technology, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | rising social media influence, increasing demand for real-time insights, growing importance of brand reputation, advancements in AI analytics, expanding global internet penetration |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Brandwatch, Gnip, Meltwater, SAP, Sysomos, Cision, Hootsuite, BuzzSumo, NetBase Quid, Socialbakers, Crimson Hexagon, Talkwalker, Keyhole, Sprinklr, IBM, Oracle |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Increased social media usage, Demand for real-time analytics, Rising political and business awareness, Growth in consumer sentiment tracking, Advancement in AI and machine learning technologies |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 8.4% (2025 - 2035) |
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global Web Screen Scraping Tools market size was valued at USD XX million in 2025 and is projected to reach USD XX million by 2033, exhibiting a CAGR of XX% during the forecast period. The growth of the market is attributed to the increasing adoption of web scraping tools for data extraction, data analysis, and market research. Businesses are increasingly relying on web scraping tools to gather data from websites to gain insights into their competitors, customer behavior, and market trends. The market is segmented based on application and type. In terms of application, the market is divided into business intelligence, data mining, competitive analysis, market research, and others. In terms of type, the market is divided into cloud-based and on-premises. The cloud-based segment is expected to dominate the market during the forecast period due to its benefits such as scalability, flexibility, and cost-effectiveness. Major players in the market include Import.io, HelpSystems, eGrabber, Octoparse, Mozenda, Octopus Data, Diffbot, Scrapinghub, Datahut, Diggernaut, Prowebscraper, Apify, ParseHub, and Helium Scraper.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains PDF-to-text conversions of scientific research articles, prepared for the task of data citation mining. The goal is to identify references to research datasets within full-text scientific papers and classify them as Primary (data generated in the study) or Secondary (data reused from external sources).
The PDF articles were processed using MinerU, which converts scientific PDFs into structured machine-readable formats (JSON, Markdown, images). This ensures participants can access both the raw text and layout information needed for fine-grained information extraction.
Each paper directory contains the following files:
*_origin.pdf
The original PDF file of the scientific article.
*_content_list.json
Structured extraction of the PDF content, where each object represents a text or figure element with metadata.
Example entry:
{
"type": "text",
"text": "10.1002/2017JC013030",
"text_level": 1,
"page_idx": 0
}
full.md
The complete article content in Markdown format (linearized for easier reading).
images/
Folder containing figures and extracted images from the article.
layout.json
Page layout metadata, including positions of text blocks and images.
The aim is to detect dataset references in the article text and classify them:
DOIs (Digital Object Identifiers):
https://doi.org/[prefix]/[suffix]
Example: https://doi.org/10.5061/dryad.r6nq870
Accession IDs: Used by data repositories. Format varies by repository. Examples:
GSE12345 (NCBI GEO)PDB 1Y2T (Protein Data Bank)E-MEXP-568 (ArrayExpress)Each dataset mention must be labeled as:
train_labels.csv).train_labels.csv → Ground truth with:
article_id: Research paper DOI.dataset_id: Extracted dataset identifier.type: Citation type (Primary / Secondary).sample_submission.csv → Example submission format.
Paper: https://doi.org/10.1098/rspb.2016.1151 Data: https://doi.org/10.5061/dryad.6m3n9 In-text span:
"The data we used in this publication can be accessed from Dryad at doi:10.5061/dryad.6m3n9." Citation type: Primary
This dataset enables participants to develop and test NLP systems for:
Facebook
Twitterhttps://exactitudeconsultancy.com/privacy-policyhttps://exactitudeconsultancy.com/privacy-policy
Error: Market size or CAGR data missing from stored procedure.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background and methodsSystematic reviews, i.e., research summaries that address focused questions in a structured and reproducible manner, are a cornerstone of evidence-based medicine and research. However, certain steps in systematic reviews, such as data extraction, are labour-intensive, which hampers their feasibility, especially with the rapidly expanding body of biomedical literature. To bridge this gap, we aimed to develop a data mining tool in the R programming environment to automate data extraction from neuroscience in vivo publications. The function was trained on a literature corpus (n = 45 publications) of animal motor neuron disease studies and tested in two validation corpora (motor neuron diseases, n = 31 publications; multiple sclerosis, n = 244 publications).ResultsOur data mining tool, STEED (STructured Extraction of Experimental Data), successfully extracted key experimental parameters such as animal models and species, as well as risk of bias items like randomization or blinding, from in vivo studies. Sensitivity and specificity were over 85% and 80%, respectively, for most items in both validation corpora. Accuracy and F1-score were above 90% and 0.9 for most items in the validation corpora, respectively. Time savings were above 99%.ConclusionsOur text mining tool, STEED, can extract key experimental parameters and risk of bias items from the neuroscience in vivo literature. This enables the tool’s deployment for probing a field in a research improvement context or replacing one human reader during data extraction, resulting in substantial time savings and contributing towards the automation of systematic reviews.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LScDC (Leicester Scientific Dictionary-Core Dictionary)April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk/suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny Mirkes[Version 3] The third version of LScDC (Leicester Scientific Dictionary-Core) is formed using the updated LScD (Leicester Scientific Dictionary) - Version 3*. All steps applied to build the new version of core dictionary are the same as in Version 2** and can be found in description of Version 2 below. We did not repeat the explanation. The files provided with this description are also same as described as for LScDC Version 2. The numbers of words in the 3rd versions of LScD and LScDC are summarized below. # of wordsLScD (v3) 972,060LScDC (v3) 103,998 * Suzen, Neslihan (2019): LScD (Leicester Scientific Dictionary). figshare. Dataset. https://doi.org/10.25392/leicester.data.9746900.v3 ** Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). figshare. Dataset. https://doi.org/10.25392/leicester.data.9896579.v2[Version 2] Getting StartedThis file describes a sorted and cleaned list of words from LScD (Leicester Scientific Dictionary), explains steps for sub-setting the LScD and basic statistics of words in the LSC (Leicester Scientific Corpus), to be found in [1, 2]. The LScDC (Leicester Scientific Dictionary-Core) is a list of words ordered by the number of documents containing the words, and is available in the CSV file published. There are 104,223 unique words (lemmas) in the LScDC. This dictionary is created to be used in future work on the quantification of the sense of research texts. The objective of sub-setting the LScD is to discard words which appear too rarely in the corpus. In text mining algorithms, usage of enormous number of text data brings the challenge to the performance and the accuracy of data mining applications. The performance and the accuracy of models are heavily depend on the type of words (such as stop words and content words) and the number of words in the corpus. Rare occurrence of words in a collection is not useful in discriminating texts in large corpora as rare words are likely to be non-informative signals (or noise) and redundant in the collection of texts. The selection of relevant words also holds out the possibility of more effective and faster operation of text mining algorithms.To build the LScDC, we decided the following process on LScD: removing words that appear in no more than 10 documents (
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LScDC Word-Category RIG MatrixApril 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk / suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny MirkesGetting StartedThis file describes the Word-Category RIG Matrix for theLeicester Scientific Corpus (LSC) [1], the procedure to build the matrix and introduces the Leicester Scientific Thesaurus (LScT) with the construction process. The Word-Category RIG Matrix is a 103,998 by 252 matrix, where rows correspond to words of Leicester Scientific Dictionary-Core (LScDC) [2] and columns correspond to 252 Web of Science (WoS) categories [3, 4, 5]. Each entry in the matrix corresponds to a pair (category,word). Its value for the pair shows the Relative Information Gain (RIG) on the belonging of a text from the LSC to the category from observing the word in this text. The CSV file of Word-Category RIG Matrix in the published archive is presented with two additional columns of the sum of RIGs in categories and the maximum of RIGs over categories (last two columns of the matrix). So, the file ‘Word-Category RIG Matrix.csv’ contains a total of 254 columns.This matrix is created to be used in future research on quantifying of meaning in scientific texts under the assumption that words have scientifically specific meanings in subject categories and the meaning can be estimated by information gains from word to categories. LScT (Leicester Scientific Thesaurus) is a scientific thesaurus of English. The thesaurus includes a list of 5,000 words from the LScDC. We consider ordering the words of LScDC by the sum of their RIGs in categories. That is, words are arranged in their informativeness in the scientific corpus LSC. Therefore, meaningfulness of words evaluated by words’ average informativeness in the categories. We have decided to include the most informative 5,000 words in the scientific thesaurus. Words as a Vector of Frequencies in WoS CategoriesEach word of the LScDC is represented as a vector of frequencies in WoS categories. Given the collection of the LSC texts, each entry of the vector consists of the number of texts containing the word in the corresponding category.It is noteworthy that texts in a corpus do not necessarily belong to a single category, as they are likely to correspond to multidisciplinary studies, specifically in a corpus of scientific texts. In other words, categories may not be exclusive. There are 252 WoS categories and a text can be assigned to at least 1 and at most 6 categories in the LSC. Using the binary calculation of frequencies, we introduce the presence of a word in a category. We create a vector of frequencies for each word, where dimensions are categories in the corpus.The collection of vectors, with all words and categories in the entire corpus, can be shown in a table, where each entry corresponds to a pair (word,category). This table is build for the LScDC with 252 WoS categories and presented in published archive with this file. The value of each entry in the table shows how many times a word of LScDC appears in a WoS category. The occurrence of a word in a category is determined by counting the number of the LSC texts containing the word in a category. Words as a Vector of Relative Information Gains Extracted for CategoriesIn this section, we introduce our approach to representation of a word as a vector of relative information gains for categories under the assumption that meaning of a word can be quantified by their information gained for categories.For each category, a function is defined on texts that takes the value 1, if the text belongs to the category, and 0 otherwise. For each word, a function is defined on texts that takes the value 1 if the word belongs to the text, and 0 otherwise. Consider LSC as a probabilistic sample space (the space of equally probable elementary outcomes). For the Boolean random variables, the joint probability distribution, the entropy and information gains are defined.The information gain about the category from the word is the amount of information on the belonging of a text from the LSC to the category from observing the word in the text [6]. We used the Relative Information Gain (RIG) providing a normalised measure of the Information Gain. This provides the ability of comparing information gains for different categories. The calculations of entropy, Information Gains and Relative Information Gains can be found in the README file in the archive published. Given a word, we created a vector where each component of the vector corresponds to a category. Therefore, each word is represented as a vector of relative information gains. It is obvious that the dimension of vector for each word is the number of categories. The set of vectors is used to form the Word-Category RIG Matrix, in which each column corresponds to a category, each row corresponds to a word and each component is the relative information gain from the word to the category. In Word-Category RIG Matrix, a row vector represents the corresponding word as a vector of RIGs in categories. We note that in the matrix, a column vector represents RIGs of all words in an individual category. If we choose an arbitrary category, words can be ordered by their RIGs from the most informative to the least informative for the category. As well as ordering words in each category, words can be ordered by two criteria: sum and maximum of RIGs in categories. The top n words in this list can be considered as the most informative words in the scientific texts. For a given word, the sum and maximum of RIGs are calculated from the Word-Category RIG Matrix.RIGs for each word of LScDC in 252 categories are calculated and vectors of words are formed. We then form the Word-Category RIG Matrix for the LSC. For each word, the sum (S) and maximum (M) of RIGs in categories are calculated and added at the end of the matrix (last two columns of the matrix). The Word-Category RIG Matrix for the LScDC with 252 categories, the sum of RIGs in categories and the maximum of RIGs over categories can be found in the database.Leicester Scientific Thesaurus (LScT)Leicester Scientific Thesaurus (LScT) is a list of 5,000 words form the LScDC [2]. Words of LScDC are sorted in descending order by the sum (S) of RIGs in categories and the top 5,000 words are selected to be included in the LScT. We consider these 5,000 words as the most meaningful words in the scientific corpus. In other words, meaningfulness of words evaluated by words’ average informativeness in the categories and the list of these words are considered as a ‘thesaurus’ for science. The LScT with value of sum can be found as CSV file with the published archive. Published archive contains following files:1) Word_Category_RIG_Matrix.csv: A 103,998 by 254 matrix where columns are 252 WoS categories, the sum (S) and the maximum (M) of RIGs in categories (last two columns of the matrix), and rows are words of LScDC. Each entry in the first 252 columns is RIG from the word to the category. Words are ordered as in the LScDC.2) Word_Category_Frequency_Matrix.csv: A 103,998 by 252 matrix where columns are 252 WoS categories and rows are words of LScDC. Each entry of the matrix is the number of texts containing the word in the corresponding category. Words are ordered as in the LScDC.3) LScT.csv: List of words of LScT with sum (S) values. 4) Text_No_in_Cat.csv: The number of texts in categories. 5) Categories_in_Documents.csv: List of WoS categories for each document of the LSC.6) README.txt: Description of Word-Category RIG Matrix, Word-Category Frequency Matrix and LScT and forming procedures.7) README.pdf (same as 6 in PDF format)References[1] Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v2[2] Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). figshare. Dataset. https://doi.org/10.25392/leicester.data.9896579.v3[3] Web of Science. (15 July). Available: https://apps.webofknowledge.com/[4] WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [5] Suzen, N., Mirkes, E. M., & Gorban, A. N. (2019). LScDC-new large scientific dictionary. arXiv preprint arXiv:1912.06858. [6] Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Gross Domestic Product: Mining, Quarrying, and Oil and Gas Extraction (21) in Oklahoma (OKMINNGSP) from 1997 to 2024 about OK, mining, GSP, private industries, private, industry, GDP, and USA.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by our in-house Web Scraping and Data Mining teams at PromptCloud and DataStock. You can download the full dataset here. This sample contains 30K records. You can download the full dataset here
Total Records Count : 2470771 Domain Name : careerbuilder.usa.com Date Range : 01st Jul 2021 - 30th Sep 2021 File Extension : ldjson
Available Fields : url, job_title, category, company_name, logo_url, city, state, country, post_date, test_months_of_experience, test_educational_credential, occupation_category, job_description, job_type, valid_through, html_job_description, extra_fields, test_onetsoc_code, test_onetsoc_name, uniq_id, crawl_timestamp, apply_url, job_board, geo, job_post_lang, inferred_iso2_lang_code, is_remote, test1_cities, test1_states, test1_countries, site_name, domain, postdate_yyyymmdd, predicted_language, inferred_iso3_lang_code, test1_inferred_city, test1_inferred_state, test1_inferred_country, inferred_city, inferred_state, inferred_country, has_expired, last_expiry_check_date, latest_expiry_check_date, dataset, postdate_in_indexname_format, segment_name, duplicate_status, job_desc_char_count, fitness_score
We wouldn't be here without the help of our in house web scraping and data mining teams at PromptCloud, DataStock and live job data from JobsPikr.
This dataset was created keeping in mind our data scientists and researchers across the world.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by our in-house Web Scraping and Data Mining teams at PromptCloud and DataStock. You can download the full dataset here. This sample contains 30K records. You can download the full dataset here
Total Records Count : 1093713 Domain Name : monter.usa.com Date Range : 01st April 2022 - 31st June 2022 File Extension : ldjson
Available Fields : url, job_title, category, company_name, city, state, country, post_date, occupation_category, job_description, job_type, valid_through, html_job_description, extra_fields, uniq_id, crawl_timestamp, job_board, geo, job_post_lang, inferred_iso2_lang_code, is_remote, test1_cities, test1_states, test1_countries, site_name, domain, postdate_yyyymmdd, predicted_language, inferred_iso3_lang_code, test1_inferred_city, test1_inferred_state, test1_inferred_country, inferred_city, inferred_state, inferred_country, has_expired, last_expiry_check_date, latest_expiry_check_date, dataset, postdate_in_indexname_format, segment_name, duplicate_status, job_desc_char_count, ijp_reprocessed_flag_1, ijp_reprocessed_flag_2, ijp_reprocessed_flag_3, ijp_is_production_ready, fitness_score
We wouldn't be here without the help of our in house web scraping and data mining teams at PromptCloud, DataStock and live job data from JobsPikr.
This dataset was created keeping in mind our data scientists and researchers across the world.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Discover the booming market for data scraping tools! This comprehensive analysis reveals a $2789.5 million market in 2025, growing at a 27.8% CAGR. Explore key trends, regional insights, and leading companies shaping this dynamic sector. Learn how to leverage data scraping for your business.