100+ datasets found
  1. s

    Online Feature Selection and Its Applications

    • researchdata.smu.edu.sg
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HOI Steven; Jialei WANG; Peilin ZHAO; Rong JIN (2023). Online Feature Selection and Its Applications [Dataset]. http://doi.org/10.25440/smu.12062733.v1
    Explore at:
    Dataset updated
    May 31, 2023
    Dataset provided by
    SMU Research Data Repository (RDR)
    Authors
    HOI Steven; Jialei WANG; Peilin ZHAO; Rong JIN
    License

    https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html

    Description

    Feature selection is an important technique for data mining before a machine learning algorithm is applied. Despite its importance, most studies of feature selection are restricted to batch learning. Unlike traditional batch learning methods, online learning represents a promising family of efficient and scalable machine learning algorithms for large-scale applications. Most existing studies of online learning require accessing all the attributes/features of training instances. Such a classical setting is not always appropriate for real-world applications when data instances are of high dimensionality or it is expensive to acquire the full set of attributes/features. To address this limitation, we investigate the problem of Online Feature Selection (OFS) in which an online learner is only allowed to maintain a classifier involved only a small and fixed number of features. The key challenge of Online Feature Selection is how to make accurate prediction using a small and fixed number of active features. This is in contrast to the classical setup of online learning where all the features can be used for prediction. We attempt to tackle this challenge by studying sparsity regularization and truncation techniques. Specifically, this article addresses two different tasks of online feature selection: (1) learning with full input where an learner is allowed to access all the features to decide the subset of active features, and (2) learning with partial input where only a limited number of features is allowed to be accessed for each instance by the learner. We present novel algorithms to solve each of the two problems and give their performance analysis. We evaluate the performance of the proposed algorithms for online feature selection on several public datasets, and demonstrate their applications to real-world problems including image classification in computer vision and microarray gene expression analysis in bioinformatics. The encouraging results of our experiments validate the efficacy and efficiency of the proposed techniques.Related Publication: Hoi, S. C., Wang, J., Zhao, P., & Jin, R. (2012). Online feature selection for mining big data. In Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications (pp. 93-100). ACM. http://dx.doi.org/10.1145/2351316.2351329 Full text available in InK: http://ink.library.smu.edu.sg/sis_research/2402/ Wang, J., Zhao, P., Hoi, S. C., & Jin, R. (2014). Online feature selection and its applications. IEEE Transactions on Knowledge and Data Engineering, 26(3), 698-710. http://dx.doi.org/10.1109/TKDE.2013.32 Full text available in InK: http://ink.library.smu.edu.sg/sis_research/2277/

  2. f

    Data from: Data mining applied to feature selection methods for aboveground...

    • scielo.figshare.com
    tiff
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mônica Canaan Carvalho; Lucas Rezende Gomide; José Roberto Soares Scolforo; Kalill José Viana da Páscoa; Laís Almeida Araújo; Isáira Leite e Lopes (2023). Data mining applied to feature selection methods for aboveground carbon stock modelling [Dataset]. http://doi.org/10.6084/m9.figshare.21679161.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    SciELO journals
    Authors
    Mônica Canaan Carvalho; Lucas Rezende Gomide; José Roberto Soares Scolforo; Kalill José Viana da Páscoa; Laís Almeida Araújo; Isáira Leite e Lopes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract The objective of this work was to apply the random forest (RF) algorithm to the modelling of the aboveground carbon (AGC) stock of a tropical forest by testing three feature selection procedures – recursive removal and the uniobjective and multiobjective genetic algorithms (GAs). The used database covered 1,007 plots sampled in the Rio Grande watershed, in the state of Minas Gerais state, Brazil, and 114 environmental variables (climatic, edaphic, geographic, terrain, and spectral). The best feature selection strategy – RF with multiobjective GA – reaches the minor root-square error of 17.75 Mg ha-1 with only four spectral variables – normalized difference moisture index, normalized burnratio 2 correlation text ure, treecover, and latent heat flux –, which represents a reduction of 96.5% in the size of the database. Feature selection strategies assist in obtaining a better RF performance, by improving the accuracy and reducing the volume of the data. Although the recursive removal and multiobjective GA showed a similar performance as feature selection strategies, the latter presents the smallest subset of variables, with the highest accuracy. The findings of this study highlight the importance of using near infrared, short wavelengths, and derived vegetation indices for the remote-sense-based estimation of AGC. The MODIS products show a significant relationship with the AGC stock and should be further explored by the scientific community for the modelling of this stock.

  3. m

    Educational Attainment in North Carolina Public Schools: Use of statistical...

    • data.mendeley.com
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Herford (2018). Educational Attainment in North Carolina Public Schools: Use of statistical modeling, data mining techniques, and machine learning algorithms to explore 2014-2017 North Carolina Public School datasets. [Dataset]. http://doi.org/10.17632/6cm9wyd5g5.1
    Explore at:
    Dataset updated
    Nov 14, 2018
    Authors
    Scott Herford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Carolina
    Description

    The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.

  4. d

    Data from: A Local Distributed Peer-to-Peer Algorithm Using Multi-Party...

    • catalog.data.gov
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). A Local Distributed Peer-to-Peer Algorithm Using Multi-Party Optimization Based Privacy Preservation for Data Mining Primitive Computation [Dataset]. https://catalog.data.gov/dataset/a-local-distributed-peer-to-peer-algorithm-using-multi-party-optimization-based-privacy-pr
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    This paper proposes a scalable, local privacy-preserving algorithm for distributed peer-to-peer (P2P) data aggregation useful for many advanced data mining/analysis tasks such as average/sum computation, decision tree induction, feature selection, and more. Unlike most multi-party privacy-preserving data mining algorithms, this approach works in an asynchronous manner through local interactions and therefore, is highly scalable. It particularly deals with the distributed computation of the sum of a set of numbers stored at different peers in a P2P network in the context of a P2P web mining application. The proposed optimization-based privacy-preserving technique for computing the sum allows different peers to specify different privacy requirements without having to adhere to a global set of parameters for the chosen privacy model. Since distributed sum computation is a frequently used primitive, the proposed approach is likely to have significant impact on many data mining tasks such as multi-party privacypreserving clustering, frequent itemset mining, and statistical aggregate computation.

  5. f

    Table_1_Data Mining Techniques in Analyzing Process Data: A Didactic.pdf

    • frontiersin.figshare.com
    pdf
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xin Qiao; Hong Jiao (2023). Table_1_Data Mining Techniques in Analyzing Process Data: A Didactic.pdf [Dataset]. http://doi.org/10.3389/fpsyg.2018.02231.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    Frontiers
    Authors
    Xin Qiao; Hong Jiao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Due to increasing use of technology-enhanced educational assessment, data mining methods have been explored to analyse process data in log files from such assessment. However, most studies were limited to one data mining technique under one specific scenario. The current study demonstrates the usage of four frequently used supervised techniques, including Classification and Regression Trees (CART), gradient boosting, random forest, support vector machine (SVM), and two unsupervised methods, Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA sample (N = 426) from the 2012 Program for International Student Assessment (PISA) responding to problem-solving items is extracted to demonstrate the methods. After concrete feature generation and feature selection, classifier development procedures are implemented using the illustrated techniques. Results show satisfactory classification accuracy for all the techniques. Suggestions for the selection of classifiers are presented based on the research questions, the interpretability and the simplicity of the classifiers. Interpretations for the results from both supervised and unsupervised learning methods are provided.

  6. s

    Data from: Online Portfolio Selection Toolbox

    • researchdata.smu.edu.sg
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LI Bin; Doyen SAHOO; Steven HOI (2023). Online Portfolio Selection Toolbox [Dataset]. http://doi.org/10.25440/smu.12062742.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    SMU Research Data Repository (RDR)
    Authors
    LI Bin; Doyen SAHOO; Steven HOI
    License

    https://www.apache.org/licenses/LICENSE-2.0.htmlhttps://www.apache.org/licenses/LICENSE-2.0.html

    Description

    OLPS is an open-source toolbox for On-Line Portfolio Selection, which includes a collection of classical and state-of-the-art on-line portofolio selection strategies implemented in Matlab/Octave.Related Publication: Li, B., & Hoi, S. C. (2014). Online portfolio selection: A survey. ACM Computing Surveys, 46(3), 35. http://doi.org/10.1145/2512962

  7. Additional file 1: of Proposal of supervised data analysis strategy of...

    • springernature.figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elena Landoni; Rosalba Miceli; Maurizio Callari; Paola Tiberio; Valentina Appierto; Valentina Angeloni; Luigi Mariani; Maria Daidone (2023). Additional file 1: of Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation [Dataset]. http://doi.org/10.6084/m9.figshare.c.3595874_D5.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Elena Landoni; Rosalba Miceli; Maurizio Callari; Paola Tiberio; Valentina Appierto; Valentina Angeloni; Luigi Mariani; Maria Daidone
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    R codes for implementing the described analyses (sample processing, data pre-processing, class comparison and class prediction). Caliper matching was implemented using the nonrandom package; the t- and the AD tests were implemented using the stats package and the adk package, respectively. Notice that the updated package for implementing the AD test is kSamples. As regards the bootstrap selection and the egg-shaped plot, we respectively modified the doBS and the importance igraph functions, both included in the bootfs package. For the SVM model we used the e1071 package. (R 12Â kb)

  8. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Canada, United States, Global
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is forecast to increase by USD 763.9 million, at a CAGR of 40.2% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. This fusion enables organizations to derive deeper insights from their data, fueling business innovation and decision-making. Another trend shaping the market is the emergence of containerization and microservices in data science platforms. This approach offers enhanced flexibility, scalability, and efficiency, making it an attractive choice for businesses seeking to streamline their data science operations. However, the market also faces challenges. Data privacy and security remain critical concerns, with the increasing volume and complexity of data posing significant risks. Ensuring robust data security and privacy measures is essential for companies to maintain customer trust and comply with regulatory requirements. Additionally, managing the complexity of data science platforms and ensuring seamless integration with existing systems can be a daunting task, requiring significant investment in resources and expertise. Companies must navigate these challenges effectively to capitalize on the market's opportunities and stay competitive in the rapidly evolving data landscape.

    What will be the Size of the Data Science Platform Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for advanced analytics and artificial intelligence solutions across various sectors. Real-time analytics and classification models are at the forefront of this evolution, with APIs integrations enabling seamless implementation. Deep learning and model deployment are crucial components, powering applications such as fraud detection and customer segmentation. Data science platforms provide essential tools for data cleaning and data transformation, ensuring data integrity for big data analytics. Feature engineering and data visualization facilitate model training and evaluation, while data security and data governance ensure data privacy and compliance. Machine learning algorithms, including regression models and clustering models, are integral to predictive modeling and anomaly detection. Statistical analysis and time series analysis provide valuable insights, while ETL processes streamline data integration. Cloud computing enables scalability and cost savings, while risk management and algorithm selection optimize model performance. Natural language processing and sentiment analysis offer new opportunities for data storytelling and computer vision. Supply chain optimization and recommendation engines are among the latest applications of data science platforms, demonstrating their versatility and continuous value proposition. Data mining and data warehousing provide the foundation for these advanced analytics capabilities.

    How is this Data Science Platform Industry segmented?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudComponentPlatformServicesEnd-userBFSIRetail and e-commerceManufacturingMedia and entertainmentOthersSectorLarge enterprisesSMEsApplicationData PreparationData VisualizationMachine LearningPredictive AnalyticsData GovernanceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, businesses increasingly adopt solutions to gain real-time insights from their data, enabling them to make informed decisions. Classification models and deep learning algorithms are integral parts of these platforms, providing capabilities for fraud detection, customer segmentation, and predictive modeling. API integrations facilitate seamless data exchange between systems, while data security measures ensure the protection of valuable business information. Big data analytics and feature engineering are essential for deriving meaningful insights from vast datasets. Data transformation, data mining, and statistical analysis are crucial processes in data preparation and discovery. Machine learning models, including regression and clustering, are employed for model training and evaluation. Time series analysis and natural language processing are valuable tools for understanding trends and customer sen

  9. Additional file 7: Table S3. of Proposal of supervised data analysis...

    • figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elena Landoni; Rosalba Miceli; Maurizio Callari; Paola Tiberio; Valentina Appierto; Valentina Angeloni; Luigi Mariani; Maria Daidone (2023). Additional file 7: Table S3. of Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation [Dataset]. http://doi.org/10.6084/m9.figshare.c.3595874_D3.v1
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Elena Landoni; Rosalba Miceli; Maurizio Callari; Paola Tiberio; Valentina Appierto; Valentina Angeloni; Luigi Mariani; Maria Daidone
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Complete list of features selected in the training set with raw and ratio data by applying Elastic Smoothly Clipped Absolute Deviation (SCAD) Support Vector Machines (SVM), Random Forests (RF) with Boruta feature selection method and Prediction Analysis for Microarrays (PAM) on bootstrap samples. (XLS 114Â kb)

  10. Additional file 5: Table S2. of Proposal of supervised data analysis...

    • springernature.figshare.com
    application/cdfv2
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elena Landoni; Rosalba Miceli; Maurizio Callari; Paola Tiberio; Valentina Appierto; Valentina Angeloni; Luigi Mariani; Maria Daidone (2023). Additional file 5: Table S2. of Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation [Dataset]. http://doi.org/10.6084/m9.figshare.c.3595874_D2.v1
    Explore at:
    application/cdfv2Available download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Elena Landoni; Rosalba Miceli; Maurizio Callari; Paola Tiberio; Valentina Appierto; Valentina Angeloni; Luigi Mariani; Maria Daidone
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Class comparison results in the training set with raw and ratio data. List of miRNAs and miRNA ratios significantly differentially expressed according to t- or AD test. The table also shows the class comparison results obtained on the validation set for the same miRNAs and miRNA ratios. Abbreviations: 'med': median of miRNA expression values; 'FC': miRNA fold change; 't.p': p-value at t-test; 'AD.p': p-value at AD test; 't.pFDR': False Discovery Rate (FDR)-adjusted p-value at t-test; 'AD.pFDR': FDR-adjusted p-value at AD test. (XLS 2059Â kb)

  11. l

    LScDC (Leicester Scientific Dictionary-Core)

    • figshare.le.ac.uk
    docx
    Updated Apr 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neslihan Suzen (2020). LScDC (Leicester Scientific Dictionary-Core) [Dataset]. http://doi.org/10.25392/leicester.data.9896579.v3
    Explore at:
    docxAvailable download formats
    Dataset updated
    Apr 15, 2020
    Dataset provided by
    University of Leicester
    Authors
    Neslihan Suzen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Leicester
    Description

    The LScDC (Leicester Scientific Dictionary-Core Dictionary)April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk/suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny Mirkes[Version 3] The third version of LScDC (Leicester Scientific Dictionary-Core) is formed using the updated LScD (Leicester Scientific Dictionary) - Version 3*. All steps applied to build the new version of core dictionary are the same as in Version 2** and can be found in description of Version 2 below. We did not repeat the explanation. The files provided with this description are also same as described as for LScDC Version 2. The numbers of words in the 3rd versions of LScD and LScDC are summarized below. # of wordsLScD (v3) 972,060LScDC (v3) 103,998 * Suzen, Neslihan (2019): LScD (Leicester Scientific Dictionary). figshare. Dataset. https://doi.org/10.25392/leicester.data.9746900.v3 ** Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). figshare. Dataset. https://doi.org/10.25392/leicester.data.9896579.v2[Version 2] Getting StartedThis file describes a sorted and cleaned list of words from LScD (Leicester Scientific Dictionary), explains steps for sub-setting the LScD and basic statistics of words in the LSC (Leicester Scientific Corpus), to be found in [1, 2]. The LScDC (Leicester Scientific Dictionary-Core) is a list of words ordered by the number of documents containing the words, and is available in the CSV file published. There are 104,223 unique words (lemmas) in the LScDC. This dictionary is created to be used in future work on the quantification of the sense of research texts. The objective of sub-setting the LScD is to discard words which appear too rarely in the corpus. In text mining algorithms, usage of enormous number of text data brings the challenge to the performance and the accuracy of data mining applications. The performance and the accuracy of models are heavily depend on the type of words (such as stop words and content words) and the number of words in the corpus. Rare occurrence of words in a collection is not useful in discriminating texts in large corpora as rare words are likely to be non-informative signals (or noise) and redundant in the collection of texts. The selection of relevant words also holds out the possibility of more effective and faster operation of text mining algorithms.To build the LScDC, we decided the following process on LScD: removing words that appear in no more than 10 documents (

  12. w

    Global Data Selectors Market Research Report: By Application (Data...

    • wiseguyreports.com
    Updated Jun 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wWiseguy Research Consultants Pvt Ltd (2024). Global Data Selectors Market Research Report: By Application (Data Warehousing, Data Mining, Data Integration, Data Analytics, Data Governance), By Deployment Type (On-premises, Cloud, Hybrid), By Data Source (Structured Data, Unstructured Data, Semi-structured Data), By Industry Vertical (Healthcare, Manufacturing, Telecommunications, Financial Services, Retail), By Organization Size (Small and Medium Enterprises, Large Enterprises) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2032. [Dataset]. https://www.wiseguyreports.com/de/reports/data-selectors-market
    Explore at:
    Dataset updated
    Jun 24, 2024
    Dataset authored and provided by
    wWiseguy Research Consultants Pvt Ltd
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Jan 6, 2024
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2024
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20238.73(USD Billion)
    MARKET SIZE 20249.55(USD Billion)
    MARKET SIZE 203219.6(USD Billion)
    SEGMENTS COVEREDApplication ,Deployment Type ,Data Source ,Industry Vertical ,Organization Size ,Regional
    COUNTRIES COVEREDNorth America, Europe, APAC, South America, MEA
    KEY MARKET DYNAMICSGrowing demand for datadriven decisionmaking Proliferation of data sources Advances in data management technologies Increasing regulatory compliance requirements Growing adoption in emerging markets
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDAtos ,Cognizant Technology Solutions ,Hexaware Technologies ,Infosys ,Mindtree ,Tata Consultancy Services ,Wipro ,Accenture ,Birlasoft ,Capgemini ,Deloitte ,IBM ,Infosys ,Larsen & Toubro Infotech ,Tech Mahindra ,TCS
    MARKET FORECAST PERIOD2024 - 2032
    KEY MARKET OPPORTUNITIESCloudbased data selection AIdriven data selection Data selection for data governance Data selection for data privacy Data selection for data analytics
    COMPOUND ANNUAL GROWTH RATE (CAGR) 9.39% (2024 - 2032)
  13. d

    Data from: Predicting the maximum earthquake magnitude from seismic data in...

    • dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Last; Nitzan Rabinowitz; Gideon Leonard (2025). Predicting the maximum earthquake magnitude from seismic data in Israel and its neighboring countries [Dataset]. http://doi.org/10.5061/dryad.9tq97
    Explore at:
    Dataset updated
    Apr 15, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Mark Last; Nitzan Rabinowitz; Gideon Leonard
    Time period covered
    Jan 1, 2016
    Area covered
    Israel
    Description

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each regi...

  14. m

    Multiple Myeloma Dataset (MM-dataset)

    • data.mendeley.com
    Updated Dec 23, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rima GUILAL (2019). Multiple Myeloma Dataset (MM-dataset) [Dataset]. http://doi.org/10.17632/7wpcv7kp6f.1
    Explore at:
    Dataset updated
    Dec 23, 2019
    Authors
    Rima GUILAL
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    The Multiple Myeloma dataset (MM-dataset) is a new multi-class database with 59 features for 203 patient records categorized into 9 labels stage of MM cancer which are classified by specialists on Hematology. It is made public, in order to allow comparative experiments with other research works.

    The Multiple Myeloma (MM) is a type of blood cancer that affects the plasma cells in bone morrow. Its diagnosis is difficult in the early stage and depends on several medical exams and tests, thus its process is very long and can discourage patients. This may be the principal problem.

    In the litereture, all the proposed reasearches to the assistance with the medical diagnosis in multiple myeloma (MM) disease, are based on genetic databases. So, we proposed our new dataset which contains the results of different MM diagnosis exams, and which can be used to detect clinical and para-clinical factors for the diagnosis of MM.

  15. f

    Data from: Example datasets.

    • plos.figshare.com
    zip
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peyman Tavallali; Marianne Razavi; Sean Brady (2023). Example datasets. [Dataset]. http://doi.org/10.1371/journal.pone.0187676.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Peyman Tavallali; Marianne Razavi; Sean Brady
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This file includes all synthetic data examples in this manuscript. (ZIP)

  16. Datasets associated with "Mining of Consumer Product and Purchasing Data to...

    • catalog.data.gov
    Updated Jul 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2021). Datasets associated with "Mining of Consumer Product and Purchasing Data to Identify Potential Chemical Co-exposures" [Dataset]. https://catalog.data.gov/dataset/datasets-associated-with-mining-of-consumer-product-and-purchasing-data-to-identify-potent
    Explore at:
    Dataset updated
    Jul 26, 2021
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Background: Chemicals in consumer products are a major contributor to human chemical co-exposures. Consumers purchase and use a wide variety of products containing potentially thousands of chemicals. There is a need to identify potential real-world chemical co-exposures in order to prioritize in vitro toxicity screening. However, due to the vast number of potential chemical combinations, this has been a major challenge. Objectives: We aim to develop and implement a data-driven procedure for identifying prevalent chemical combinations to which humans are exposed through purchase and use of consumer products. Methods: We applied frequent itemset mining on an integrated dataset linking consumer product chemical ingredient data with product purchasing data from sixty thousand households to identify chemical combinations resulting from co-use of consumer products. Results: We identified co-occurrence patterns of chemicals over all households as well as those specific to demographic groups based on race/ethnicity, income, education, and family composition. We also identified chemicals with the highest potential for aggregate exposure by identifying chemicals occurring in multiple products used by the same household. Lastly, a case study of chemicals active in estrogen and androgen receptor in silico models revealed priority chemical combinations co-targeting receptors involved in important biological signaling pathways. Discussion: Integration and comprehensive analysis of household purchasing data and product-chemical information provided a means to assess human near-field exposure and inform selection of chemical combinations for high-throughput screening in in vitro assays. This dataset is associated with the following publication: Stanfield, Z., C. Addington, K. Dionisio, D. Lyons, R. Tornero-Velez, K. Phillips, T. Buckley, and K. Isaacs. Mining of consumer product and purchasing data to identify potential chemical co-exposures.. ENVIRONMENTAL HEALTH PERSPECTIVES. National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA, 129(6): N/A, (2021).

  17. A Local Distributed Peer-to-Peer Algorithm Using Multi-Party Optimization...

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • data.nasa.gov
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). A Local Distributed Peer-to-Peer Algorithm Using Multi-Party Optimization Based Privacy Preservation for Data Mining Primitive Computation - Dataset - NASA Open Data Portal [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/a-local-distributed-peer-to-peer-algorithm-using-multi-party-optimization-based-privacy-pr
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This paper proposes a scalable, local privacy-preserving algorithm for distributed peer-to-peer (P2P) data aggregation useful for many advanced data mining/analysis tasks such as average/sum computation, decision tree induction, feature selection, and more. Unlike most multi-party privacy-preserving data mining algorithms, this approach works in an asynchronous manner through local interactions and therefore, is highly scalable. It particularly deals with the distributed computation of the sum of a set of numbers stored at different peers in a P2P network in the context of a P2P web mining application. The proposed optimization-based privacy-preserving technique for computing the sum allows different peers to specify different privacy requirements without having to adhere to a global set of parameters for the chosen privacy model. Since distributed sum computation is a frequently used primitive, the proposed approach is likely to have significant impact on many data mining tasks such as multi-party privacypreserving clustering, frequent itemset mining, and statistical aggregate computation.

  18. Additional file 2: of Proposal of supervised data analysis strategy of...

    • springernature.figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elena Landoni; Rosalba Miceli; Maurizio Callari; Paola Tiberio; Valentina Appierto; Valentina Angeloni; Luigi Mariani; Maria Daidone (2023). Additional file 2: of Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation [Dataset]. http://doi.org/10.6084/m9.figshare.c.3595874_D4.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Elena Landoni; Rosalba Miceli; Maurizio Callari; Paola Tiberio; Valentina Appierto; Valentina Angeloni; Luigi Mariani; Maria Daidone
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    R codes for user-defined functions. (R 15Â kb)

  19. Data Analytics Market Analysis, Size, and Forecast 2025-2029: North America...

    • technavio.com
    Updated Jun 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Data Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, and UK), Middle East and Africa (UAE), APAC (China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/data-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Jun 23, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    Data Analytics Market Size 2025-2029

    The data analytics market size is forecast to increase by USD 288.7 billion, at a CAGR of 14.7% between 2024 and 2029.

    The market is driven by the extensive use of modern technology in company operations, enabling businesses to extract valuable insights from their data. The prevalence of the Internet and the increased use of linked and integrated technologies have facilitated the collection and analysis of vast amounts of data from various sources. This trend is expected to continue as companies seek to gain a competitive edge by making data-driven decisions. However, the integration of data from different sources poses significant challenges. Ensuring data accuracy, consistency, and security is crucial as companies deal with large volumes of data from various internal and external sources. Additionally, the complexity of data analytics tools and the need for specialized skills can hinder adoption, particularly for smaller organizations with limited resources. Companies must address these challenges by investing in robust data management systems, implementing rigorous data validation processes, and providing training and development opportunities for their employees. By doing so, they can effectively harness the power of data analytics to drive growth and improve operational efficiency.

    What will be the Size of the Data Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleIn the dynamic and ever-evolving the market, entities such as explainable AI, time series analysis, data integration, data lakes, algorithm selection, feature engineering, marketing analytics, computer vision, data visualization, financial modeling, real-time analytics, data mining tools, and KPI dashboards continue to unfold and intertwine, shaping the industry's landscape. The application of these technologies spans various sectors, from risk management and fraud detection to conversion rate optimization and social media analytics. ETL processes, data warehousing, statistical software, data wrangling, and data storytelling are integral components of the data analytics ecosystem, enabling organizations to extract insights from their data. Cloud computing, deep learning, and data visualization tools further enhance the capabilities of data analytics platforms, allowing for advanced data-driven decision making and real-time analysis. Marketing analytics, clustering algorithms, and customer segmentation are essential for businesses seeking to optimize their marketing strategies and gain a competitive edge. Regression analysis, data visualization tools, and machine learning algorithms are instrumental in uncovering hidden patterns and trends, while predictive modeling and causal inference help organizations anticipate future outcomes and make informed decisions. Data governance, data quality, and bias detection are crucial aspects of the data analytics process, ensuring the accuracy, security, and ethical use of data. Supply chain analytics, healthcare analytics, and financial modeling are just a few examples of the diverse applications of data analytics, demonstrating the industry's far-reaching impact. Data pipelines, data mining, and model monitoring are essential for maintaining the continuous flow of data and ensuring the accuracy and reliability of analytics models. The integration of various data analytics tools and techniques continues to evolve, as the industry adapts to the ever-changing needs of businesses and consumers alike.

    How is this Data Analytics Industry segmented?

    The data analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ComponentServicesSoftwareHardwareDeploymentCloudOn-premisesTypePrescriptive AnalyticsPredictive AnalyticsCustomer AnalyticsDescriptive AnalyticsOthersApplicationSupply Chain ManagementEnterprise Resource PlanningDatabase ManagementHuman Resource ManagementOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)

    By Component Insights

    The services segment is estimated to witness significant growth during the forecast period.The market is experiencing significant growth as businesses increasingly rely on advanced technologies to gain insights from their data. Natural language processing is a key component of this trend, enabling more sophisticated analysis of unstructured data. Fraud detection and data security solutions are also in high demand, as companies seek to protect against threats and maintain customer trust. Data analytics platforms, including cloud-based offeri

  20. P

    Bluesky Social Dataset Dataset

    • paperswithcode.com
    Updated Apr 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Bluesky Social Dataset Dataset [Dataset]. https://paperswithcode.com/dataset/bluesky-social-dataset
    Explore at:
    Dataset updated
    Apr 28, 2024
    Description

    Bluesky Social Dataset Pollution of online social spaces caused by rampaging d/misinformation is a growing societal concern. However, recent decisions to reduce access to social media APIs are causing a shortage of publicly available, recent, social media data, thus hindering the advancement of computational social science as a whole. To address this pressing issue, we present a large, high-coverage dataset of social interactions and user-generated content from Bluesky Social.

    The dataset contains the complete post history of over 4M users (81% of all registered accounts), totaling 235M posts. We also make available social data covering follow, comment, repost, and quote interactions.

    Since Bluesky allows users to create and bookmark feed generators (i.e., content recommendation algorithms), we also release the full output of several popular algorithms available on the platform, along with their timestamped “like” interactions and time of bookmarking.

    This dataset allows unprecedented analysis of online behavior and human-machine engagement patterns. Notably, it provides ground-truth data for studying the effects of content exposure and self-selection, and performing content virality and diffusion analysis.

    Dataset Here is a description of the dataset files.

    followers.csv.gz. This compressed file contains the anonymized follower edge list. Once decompressed, each row consists of two comma-separated integers u, v, representing a directed following relation (i.e., user u follows user v). posts.tar.gz. This compressed folder contains data on the individual posts collected. Decompressing this file results in 100 files, each containing the full posts of up to 50,000 users. Each post is stored as a JSON-formatted line. interactions.csv.gz. This compressed file contains the anonymized interactions edge list. Once decompressed, each row consists of six comma-separated integers, and represents a comment, repost, or quote interaction. These integers correspond to the following fields, in this order: user_id, replied_author, thread_root_author, reposted_author ,quoted_author, and date. graphs.tar.gz. This compressed folder contains edge list files for the graphs emerging from reposts, quotes, and replies. Each interaction is timestamped. The folder also contains timestamped higher-order interactions emerging from discussion threads, each containing all users participating in a thread. feed_posts.tar.gz. This compressed folder contains posts that appear in 11 thematic feeds. Decompressing this folder results in 11 files containing posts from one feed each. Posts are stored as a JSON-formatted line. Fields are correspond to those in posts.tar.gz, except for those related to sentiment analysis (sent_label, sent_score), and reposts (repost_from, reposted_author); feed_bookmarks.csv. This file contains users who bookmarked any of the collected feeds. Each record contains three comma-separated values, namely the feed name, the user id, and the timestamp. feed_post_likes.tar.gz. This compressed folder contains data on likes to posts appearing in the feeds, one file per feed. Each record in the files contains the following information, in this order: the id of the ``liker'', the id of the post's author, the id of the liked post, and the like timestamp; scripts.tar.gz. A collection of Python scripts, including the ones originally used to crawl the data, and to perform experiments. These scripts are detailed in a document released within the folder.

    Citation If used for research purposes, please cite the following paper describing the dataset details:

    Andrea Failla and Giulio Rossetti. "I'm in the Bluesky Tonight": Insights from a Year Worth of Social Data. (2024) arXiv:2404.18984

    Acknowledgments: This work is supported by :

    the European Union – Horizon 2020 Program under the scheme “INFRAIA-01-2018-2019 – Integrating Activities for Advanced Communities”, Grant Agreement n.871042, “SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics” (http://www.sobigdata.eu); SoBigData.it which receives funding from the European Union – NextGenerationEU – National Recovery and Resilience Plan (Piano Nazionale di Ripresa e Resilienza, PNRR) – Project: “SoBigData.it – Strengthening the Italian RI for Social Mining and Big Data Analytics” – Prot. IR0000013 – Avviso n. 3264 del 28/12/2021; EU NextGenerationEU programme under the funding schemes PNRR-PE-AI FAIR (Future Artificial Intelligence Research).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
HOI Steven; Jialei WANG; Peilin ZHAO; Rong JIN (2023). Online Feature Selection and Its Applications [Dataset]. http://doi.org/10.25440/smu.12062733.v1

Online Feature Selection and Its Applications

Related Article
Explore at:
Dataset updated
May 31, 2023
Dataset provided by
SMU Research Data Repository (RDR)
Authors
HOI Steven; Jialei WANG; Peilin ZHAO; Rong JIN
License

https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html

Description

Feature selection is an important technique for data mining before a machine learning algorithm is applied. Despite its importance, most studies of feature selection are restricted to batch learning. Unlike traditional batch learning methods, online learning represents a promising family of efficient and scalable machine learning algorithms for large-scale applications. Most existing studies of online learning require accessing all the attributes/features of training instances. Such a classical setting is not always appropriate for real-world applications when data instances are of high dimensionality or it is expensive to acquire the full set of attributes/features. To address this limitation, we investigate the problem of Online Feature Selection (OFS) in which an online learner is only allowed to maintain a classifier involved only a small and fixed number of features. The key challenge of Online Feature Selection is how to make accurate prediction using a small and fixed number of active features. This is in contrast to the classical setup of online learning where all the features can be used for prediction. We attempt to tackle this challenge by studying sparsity regularization and truncation techniques. Specifically, this article addresses two different tasks of online feature selection: (1) learning with full input where an learner is allowed to access all the features to decide the subset of active features, and (2) learning with partial input where only a limited number of features is allowed to be accessed for each instance by the learner. We present novel algorithms to solve each of the two problems and give their performance analysis. We evaluate the performance of the proposed algorithms for online feature selection on several public datasets, and demonstrate their applications to real-world problems including image classification in computer vision and microarray gene expression analysis in bioinformatics. The encouraging results of our experiments validate the efficacy and efficiency of the proposed techniques.Related Publication: Hoi, S. C., Wang, J., Zhao, P., & Jin, R. (2012). Online feature selection for mining big data. In Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications (pp. 93-100). ACM. http://dx.doi.org/10.1145/2351316.2351329 Full text available in InK: http://ink.library.smu.edu.sg/sis_research/2402/ Wang, J., Zhao, P., Hoi, S. C., & Jin, R. (2014). Online feature selection and its applications. IEEE Transactions on Knowledge and Data Engineering, 26(3), 698-710. http://dx.doi.org/10.1109/TKDE.2013.32 Full text available in InK: http://ink.library.smu.edu.sg/sis_research/2277/

Search
Clear search
Close search
Google apps
Main menu