Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1.Introduction
Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.
One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.
This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.
2. Citation
Please cite the following papers when using this dataset:
3. Dataset Modalities
The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.
3.1 Data Collection
The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.
The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.
Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.
It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.
The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).
File |
Period |
Number of Samples (days) |
product 1 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 1 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 1 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 2 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 2 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 2 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 3 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 3 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 3 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 4 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 4 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 4 2022.xlsx |
01/01/2022–31/12/2022 |
364 |
product 5 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 5 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 5 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 6 2020.xlsx |
01/01/2020–31/12/2020 |
362 |
product 6 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 6 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 7 2020.xlsx |
01/01/2020–31/12/2020 |
362 |
product 7 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 7 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
3.2 Dataset Overview
The following table enumerates and explains the features included across all of the included files.
Feature |
Description |
Unit |
Day |
day of the month |
- |
Month |
Month |
- |
Year |
Year |
- |
daily_unit_sales |
Daily sales - the amount of products, measured in units, that during that specific day were sold |
units |
previous_year_daily_unit_sales |
Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year |
units |
percentage_difference_daily_unit_sales |
The percentage difference between the two above values |
% |
daily_unit_sales_kg |
The amount of products, measured in kilograms, that during that specific day were sold |
kg |
previous_year_daily_unit_sales_kg |
Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year |
kg |
percentage_difference_daily_unit_sales_kg |
The percentage difference between the two above values |
kg |
daily_unit_returns_kg |
The percentage of the products that were shipped to selling points and were returned |
% |
previous_year_daily_unit_returns_kg |
The percentage of the products that were shipped to |
This dataset was created by AbhishekSatheesh
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was created in R and Canva :
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F1a47e2e6e4836b86b065441359d5c9f0%2Fgraph1.gif?generation=1742159161939732&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F87de025c5703cb69483764c4fc9c58ab%2Fgraph2.gif?generation=1742159169346925&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fddf5001438c97c8c030333261685849b%2Fgraph3.png?generation=1742159174793142&alt=media" alt="">
The dataset offers a comprehensive view of grocery inventory, covering 990 products across multiple categories such as Grains & Pulses, Beverages, Fruits & Vegetables, and more. It includes crucial details about each product, such as its unique identifier (Product_ID), name, category, and supplier information, including Supplier_ID and Supplier_Name. This dataset is particularly valuable for businesses aiming to optimize inventory management, sales tracking, and supply chain efficiency.
Key inventory-related fields include Stock_Quantity, which indicates the current stock level, and Reorder_Level, which determines when a product should be reordered. The Reorder_Quantity specifies how much stock to order when inventory falls below the reorder threshold. Additionally, Unit_Price provides insight into pricing, helping businesses analyze cost trends and profitability.
To manage product flow, the dataset includes dates such as Date_Received, which tracks when the product was added to the warehouse, and Last_Order_Date, marking the most recent procurement. For perishable goods, the Expiration_Date column is critical, allowing businesses to minimize waste by monitoring shelf life. The Warehouse_Location specifies where each product is stored, facilitating efficient inventory handling.
Sales and performance metrics are also included. The Sales_Volume column records the total number of units sold, providing insights into consumer demand. Inventory_Turnover_Rate helps businesses assess how quickly a product sells and is replenished, ensuring better stock management. The dataset also tracks the Status of each product, indicating whether it is Active, Discontinued, or Backordered.
The dataset serves multiple purposes in inventory management, sales performance evaluation, supplier analysis, and product lifecycle tracking. Businesses can leverage this data to refine reorder strategies, ensuring optimal stock levels and avoiding stockouts or excessive inventory. Sales analysis can help identify high-demand products and slow-moving items, enabling better decision-making in pricing and promotions. Evaluating suppliers based on their performance, pricing, and delivery efficiency helps streamline procurement and improve overall supply chain operations.
Furthermore, the dataset can support predictive analytics by employing machine learning techniques to estimate reorder quantities, forecast demand, and optimize stock replenishment. Inventory turnover insights can aid in maintaining a balanced supply, preventing unnecessary overstocking or shortages. By tracking trends in sales, businesses can refine their marketing and distribution strategies, ensuring sustained profitability.
This dataset is designed for educational and demonstration purposes, offering fictional data under the Creative Commons Attribution 4.0 International License. Users are free to analyze, modify, and apply the data while providing proper attribution. Additionally, certain products are marked as discontinued or backordered, reflecting real-world inventory dynamics. Businesses dealing with perishable goods should closely monitor expiration and last order dates to avoid losses due to spoilage.
Overall, this dataset provides a versatile resource for those interested in inventory management, sales analysis, and supply chain optimization. By leveraging the structured data, businesses can make data-driven decisions to enhance operational efficiency and maximize profitability.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
****Attribute information:****
Row ID: A unique identifier for each row in the table Order ID: The identifier for each sales order Order Date: The date the order was placed Ship Date: The date the order was shipped Delivery Duration: The amount of time it took to deliver the order Ship Mode: The shipping method used for the order Customer ID: The identifier for the customer who placed the order Customer Name: The name of the customer who placed the order Country: The customer's country City: The customer's city State: The customer's state Postal Code: The customer's postal code Region: The customer's region Product ID: The identifier for the product that was ordered Category: The category of the product that was ordered (e.g., furniture, office supplies, technology) Sub-Category - This attribute likely refers to a subcategory within a larger product category (e.g., Tables within Furniture). (Bookcases - Chairs - Labels - Tables - Storage - Furnishings - Art - Phones - Binders - Appliances - Paper - Others). Product Name - This attribute specifies the name of the product sold. (Bush Somerset Collection Bookcase - Hon Deluxe Fabric Upholstered Stacking Chairs, Rounded Back - Self-Adhesive Address Labels for Typewriters by Universal - Bretford CP4500 Series Slim Rectangular Table - Others).
Sales - This attribute shows the total sales amount for each product. Values are listed in currency format Quantity - This attribute specifies the number of units sold for each product. Integer values. Discount - This attribute indicates the discount offered on the product. Discount Value - This attribute shows the total discount amount applied to the product. Profit - This attribute shows the profit earned on the sale of each product. COGS - This attribute likely refers to each product's Cost of Goods Sold. COGS = Sales - Profit
The Office of Policy and Management maintains a listing of all real estate sales with a sales price of $2,000 or greater that occur between October 1 and September 30 of each year. For each sale record, the file includes: town, property address, date of sale, property type (residential, apartment, commercial, industrial or vacant land), sales price, and property assessment. Data are collected in accordance with Connecticut General Statutes, section 10-261a and 10-261b: https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261a and https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261b. Annual real estate sales are reported by grand list year (October 1 through September 30 each year). For instance, sales from 2018 GL are from 10/01/2018 through 9/30/2019. Some municipalities may not report data for certain years because when a municipality implements a revaluation, they are not required to submit sales data for the twelve months following implementation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Sale City by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Sale City. The dataset can be utilized to understand the population distribution of Sale City by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Sale City. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Sale City.
Key observations
Largest age group (population): Male # 40-44 years (28) | Female # 40-44 years (34). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Sale City Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
The datasets demonstrate the malware economy and the value chain published in our paper, Malware Finances and Operations: a Data-Driven Study of the Value Chain for Infections and Compromised Access, at the 12th International Workshop on Cyber Crime (IWCC 2023), part of the ARES Conference, published by the International Conference Proceedings Series of the ACM ICPS.
Using the well-documented scripts, it is straightforward to reproduce our findings. It takes an estimated 1 hour of human time and 3 hours of computing time to duplicate our key findings from MalwareInfectionSet; around one hour with VictimAccessSet; and minutes to replicate the price calculations using AccountAccessSet. See the included README.md files and Python scripts.
We choose to represent each victim by a single JavaScript Object Notation (JSON) data file. Data sources provide sets of victim JSON data files from which we've extracted the essential information and omitted Personally Identifiable Information (PII). We collected, curated, and modelled three datasets, which we publish under the Creative Commons Attribution 4.0 International License.
MalwareInfectionSet We discover (and, to the best of our knowledge, document scientifically for the first time) that malware networks appear to dump their data collections online. We collected these infostealer malware logs available for free. We utilise 245 malware log dumps from 2019 and 2020 originating from 14 malware networks. The dataset contains 1.8 million victim files, with a dataset size of 15 GB.
VictimAccessSet We demonstrate how Infostealer malware networks sell access to infected victims. Genesis Market focuses on user-friendliness and continuous supply of compromised data. Marketplace listings include everything necessary to gain access to the victim's online accounts, including passwords and usernames, but also detailed collection of information which provides a clone of the victim's browser session. Indeed, Genesis Market simplifies the import of compromised victim authentication data into a web browser session. We measure the prices on Genesis Market and how compromised device prices are determined. We crawled the website between April 2019 and May 2022, collecting the web pages offering the resources for sale. The dataset contains 0.5 million victim files, with a dataset size of 3.5 GB.
AccountAccessSet The Database marketplace operates inside the anonymous Tor network. Vendors offer their goods for sale, and customers can purchase them with Bitcoins. The marketplace sells online accounts, such as PayPal and Spotify, as well as private datasets, such as driver's licence photographs and tax forms. We then collect data from Database Market, where vendors sell online credentials, and investigate similarly. To build our dataset, we crawled the website between November 2021 and June 2022, collecting the web pages offering the credentials for sale. The dataset contains 33,896 victim files, with a dataset size of 400 MB.
Credits Authors
Billy Bob Brumley (Tampere University, Tampere, Finland)
Juha Nurmi (Tampere University, Tampere, Finland)
Mikko Niemelä (Cyber Intelligence House, Singapore)
Funding
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under project numbers 804476 (SCARE) and 952622 (SPIRS).
Alternative links to download: AccountAccessSet, MalwareInfectionSet, and VictimAccessSet.
Our Realtor.com (Multiple Listing Service) dataset represents one of the most exhaustive collections of real estate data available to the industry. It consolidates data from over 500 MLS aggregators across various regions, providing an unparalleled view of the property market.
Features:
Property Listings: Each listing provides comprehensive details about a property. This includes its physical address, number of bedrooms and bathrooms, square footage, lot size, type of property (e.g., single-family home, condo, townhome), and more.
Photographs and Virtual Tours: Visuals are crucial in the property market. Most listings are accompanied by high-quality photographs and, in many cases, virtual or 3D tours that allow potential buyers to explore properties remotely.
Pricing Information: Listings provide asking prices, and the dataset frequently updates to reflect price changes. Historical price data, which includes initial listing prices and any subsequent reductions or increases, is also available.
Transaction Histories: For sold properties, the dataset provides information about the date of sale, the sale price, and any discrepancies between the listing and sale prices.
Agent and Broker Information: Each listing typically has associated details about the property's real estate professional. This might include their name, contact details, and affiliated brokerage.
Open House Schedules: Open house dates and times are listed for properties that are actively being shown to potential buyers.
Market Trends: By analyzing the dataset over time, one can glean insights into market dynamics, such as the rate of price appreciation or depreciation in certain areas, the average time properties stay on the market, and seasonality effects.
Neighborhood Data: With comprehensive geographical data, it becomes possible to understand neighborhood-specific trends. This is invaluable for potential buyers or real estate investors looking to identify burgeoning markets.
Price Comparisons: Realtors and potential buyers can benchmark properties against similar listings in the same area to determine if a property is priced appropriately.
For Industry Professionals and Analysts: Beyond buyers and sellers, the dataset is a trove of information for real estate agents, brokers, analysts, and investors. They can harness this data to craft strategies, predict market movements, and serve their clients better.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Trading in gold : how to buy, sell and profit in the market. It features 7 columns including author, publication date, language, and book publisher.
https://brightdata.com/licensehttps://brightdata.com/license
Use our Best Buy products to collect ratings, prices, and descriptions about products from an e-commerce online web. You can purchase either the entire dataset or a customized subset, depending on your requirements. The Best Buy Products Dataset stands as a comprehensive resource for businesses, researchers, and analysts aiming to navigate the vast array of products offered by Best Buy, a leading retailer in consumer electronics and technology. Tailored to provide a deep understanding of Best Buy's e-commerce ecosystem, this dataset facilitates market analysis, pricing optimization, customer behavior comprehension, and competitor assessment. At its core, the dataset encompasses essential attributes such as product ID, title, descriptions, ratings, reviews, pricing details, and seller information. These fundamental data elements empower users to glean insights into product performance, customer sentiment, and seller credibility, thereby facilitating informed decision-making processes. Whether you're a retailer looking to enhance your product portfolio, a researcher investigating trends in consumer electronics, or an analyst seeking to refine e-commerce strategies, the Best Buy Products Dataset offers a valuable resource for uncovering opportunities and driving success in the ever-evolving landscape of retail.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Pharma sales data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/milanzdravkovic/pharma-sales-data on 28 January 2022.
--- Dataset description provided by original source is as follows ---
The dataset is built from the initial dataset consisted of 600000 transactional data collected in 6 years (period 2014-2019), indicating date and time of sale, pharmaceutical drug brand name and sold quantity, exported from Point-of-Sale system in the individual pharmacy. Selected group of drugs from the dataset (57 drugs) is classified to the following Anatomical Therapeutic Chemical (ATC) Classification System categories: - M01AB - Anti-inflammatory and antirheumatic products, non-steroids, Acetic acid derivatives and related substances - M01AE - Anti-inflammatory and antirheumatic products, non-steroids, Propionic acid derivatives - N02BA - Other analgesics and antipyretics, Salicylic acid and derivatives - N02BE/B - Other analgesics and antipyretics, Pyrazolones and Anilides - N05B - Psycholeptics drugs, Anxiolytic drugs - N05C - Psycholeptics drugs, Hypnotics and sedatives drugs - R03 - Drugs for obstructive airway diseases - R06 - Antihistamines for systemic use Sales data are resampled to the hourly, daily, weekly and monthly periods. Data is already pre-processed, where processing included outlier detection and treatment and missing data imputation.
--- Original source retains full ownership of the source dataset ---
Dataset Card for "sales-conversations"
This dataset was created for the purpose of training a sales agent chatbot that can convince people. The initial idea came from: textbooks is all you need https://arxiv.org/abs/2306.11644 gpt-3.5-turbo was used for the generation
Structure
The conversations have a customer and a salesman which appear always in changing order. customer, salesman, customer, salesman, etc. The customer always starts the conversation Who ends the… See the full description on the dataset page: https://huggingface.co/datasets/goendalf666/sales-conversations.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 151 series, with data for years 1966 - 1997 (not all combinations necessarily have data for all years), and is no longer being released. This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada), Method of sale (6 items: Total direct sales; Sales from premises; Door-to-door sales; Sales by mail; ...), Commodity group (31 items: Total, all commodities; Meat, fish and poultry; Frozen food plans; Dairy products; ...).
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains 10,000 simulated sales transaction records, each represented in natural language with diverse sentence structures. It is designed to mimic how different users might describe the same type of transaction in varying ways, making it ideal for Natural Language Processing (NLP) tasks, text-based data extraction, and accounting automation projects.
Each record in the dataset includes the following fields:
Sale Date: The date on which the transaction took place. Customer Name: A randomly generated customer name. Product: The type of product purchased. Quantity: The quantity of the product purchased. Unit Price: The price per unit of the product. Total Amount: The total price for the purchased products. Tax Rate: The percentage of tax applied to the transaction. Payment Method: The method by which the payment was made (e.g., Credit Card, Debit Card, UPI, etc.). Sentence: A natural language description of the sales transaction. The sentence structure is varied to simulate different ways people describe the same type of sales event.
Use Cases: NLP Training: This dataset is suitable for training models to extract structured information (e.g., date, customer, amount) from natural language descriptions of sales transactions. Accounting Automation: The dataset can be used to build or test systems that automate posting of sales transactions based on unstructured text input. Text Data Preprocessing: It provides a good resource for developing methods to preprocess and standardize varying formats of text descriptions. Chatbot Training: This dataset can help train chatbots or virtual assistants that handle accounting or customer inquiries by understanding different ways of expressing the same transaction details.
Key Features: High Variability: Sentences are structured in numerous ways to simulate natural human language variations. Randomized Data: Names, dates, products, quantities, prices, and payment methods are randomized, ensuring no duplication. Multi-Field Information: Each record contains key sales information essential for accounting and business use cases.
Potential Applications: Use for Named Entity Recognition (NER) tasks. Apply for information extraction challenges. Create pattern recognition models to understand different sentence structures. Test rule-based systems or machine learning models for sales data entry and accounting automation.
License: Ensure that the dataset is appropriately licensed according to your intended use. For general public and research purposes, choose a CC0: Public Domain license, unless specific restrictions apply.
The 1st do file posted here generates a pseudo dataset, the 2nd then allows to run all code on that pseudo dataset.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains every wholesale purchase of liquor in the State of Iowa by retailers for sale to individuals since January 1, 2012. The State of Iowa controls the wholesale distribution of liquor intended for retail sale, which means this dataset offers a complete view of retail liquor sales in the entire state. The dataset contains every wholesale order of liquor by all grocery stores, liquor stores, convenience stores, etc., with details about the store and location, the exact liquor brand and size, and the number of bottles ordered. In addition to being an excellent dataset for analyzing liquor sales, this is a large and clean public dataset of retail sales data. It can be used to explore problems like stockout prediction, retail demand forecasting, and other retail supply chain problems. The data dictionary is available from the State of Iowa's Alcoholic Beverages Division , within the Iowa Department of Commerce . There are some minor discrepancies in the data, discussed in the web view of the data . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery.
This data set is a listing of all property sales by NORA through the following disposition channels. - Auction: Properties put up for auction and sold to the highest bidder. - Development: Properties offered to development partners at a discounted rate to support the development of affordable housing. - Lot Next Door: Properties sold to adjacent parcel owners, with discount opportunities for eligible participants. - Alternative Land Use: Properties sold for development of green space and community gardens. Note: this dataset contains duplicate addresses, which likely represent reversions or quitclaims that NORA sold again.
This dataset was created by RahmaNF24
Dataset Card for [best-selling-video-games]
Dataset Summary
[More Information Needed]
Supported Tasks and Leaderboards
[More Information Needed]
Languages
[More Information Needed]
Dataset Structure
Data Instances
[More Information Needed]
Data Fields
[More Information Needed]
Data Splits
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]… See the full description on the dataset page: https://huggingface.co/datasets/arjunpatel/best-selling-video-games.
https://brightdata.com/licensehttps://brightdata.com/license
Use our Zillow dataset to collect and analyze data about buying, selling, renting, and financing properties in the United States. The dataset includes over 80 attributes with all major data points about the listing: location, price, listing type, size and number of rooms.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1.Introduction
Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.
One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.
This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.
2. Citation
Please cite the following papers when using this dataset:
3. Dataset Modalities
The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.
3.1 Data Collection
The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.
The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.
Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.
It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.
The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).
File |
Period |
Number of Samples (days) |
product 1 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 1 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 1 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 2 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 2 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 2 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 3 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 3 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 3 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 4 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 4 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 4 2022.xlsx |
01/01/2022–31/12/2022 |
364 |
product 5 2020.xlsx |
01/01/2020–31/12/2020 |
363 |
product 5 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 5 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 6 2020.xlsx |
01/01/2020–31/12/2020 |
362 |
product 6 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 6 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
product 7 2020.xlsx |
01/01/2020–31/12/2020 |
362 |
product 7 2021.xlsx |
01/01/2021–31/12/2021 |
364 |
product 7 2022.xlsx |
01/01/2022–31/12/2022 |
365 |
3.2 Dataset Overview
The following table enumerates and explains the features included across all of the included files.
Feature |
Description |
Unit |
Day |
day of the month |
- |
Month |
Month |
- |
Year |
Year |
- |
daily_unit_sales |
Daily sales - the amount of products, measured in units, that during that specific day were sold |
units |
previous_year_daily_unit_sales |
Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year |
units |
percentage_difference_daily_unit_sales |
The percentage difference between the two above values |
% |
daily_unit_sales_kg |
The amount of products, measured in kilograms, that during that specific day were sold |
kg |
previous_year_daily_unit_sales_kg |
Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year |
kg |
percentage_difference_daily_unit_sales_kg |
The percentage difference between the two above values |
kg |
daily_unit_returns_kg |
The percentage of the products that were shipped to selling points and were returned |
% |
previous_year_daily_unit_returns_kg |
The percentage of the products that were shipped to |