100+ datasets found
  1. Types of personal data consumers would be most willing to sell to companies...

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Types of personal data consumers would be most willing to sell to companies UK 2020 [Dataset]. https://www.statista.com/statistics/1188693/data-uk-users-would-sell/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    Although a majority of internet users aged between 18 and 75 years in the United Kingdom (UK) are still skeptical when it comes to personal data being collected by companies, a small share (** percent) would be willing to share this data in return for financial compensation. These types of data mainly included purchase history and location data, while a slightly smaller percentage stated they were willing to sell their browsing history and online media consumption to companies.

  2. d

    Firmographic Data | 4MM + US Private and Public Companies | Employees,...

    • datarade.ai
    .json, .csv, .xls
    Updated Oct 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salutary Data (2023). Firmographic Data | 4MM + US Private and Public Companies | Employees, Revenue, Website, Industry + More Firmographics [Dataset]. https://datarade.ai/data-products/salutary-data-firmographic-data-4m-us-private-and-publi-salutary-data
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Oct 16, 2023
    Dataset authored and provided by
    Salutary Data
    Area covered
    United States
    Description

    Salutary Data is a boutique, B2B contact and company data provider that's committed to delivering high quality data for sales intelligence, lead generation, marketing, recruiting / HR, identity resolution, and ML / AI. Our database currently consists of 148MM+ highly curated B2B Contacts ( US only), along with over 4M+ companies, and is updated regularly to ensure we have the most up-to-date information.

    We can enrich your in-house data ( CRM Enrichment, Lead Enrichment, etc.) and provide you with a custom dataset ( such as a lead list) tailored to your target audience specifications and data use-case. We also support large-scale data licensing to software providers and agencies that intend to redistribute our data to their customers and end-users.

    What makes Salutary unique? - We offer our clients a truly unique, one-stop aggregation of the best-of-breed quality data sources. Our supplier network consists of numerous, established high quality suppliers that are rigorously vetted. - We leverage third party verification vendors to ensure phone numbers and emails are accurate and connect to the right person. Additionally, we deploy automated and manual verification techniques to ensure we have the latest job information for contacts. - We're reasonably priced and easy to work with.

    Products: API Suite Web UI Full and Custom Data Feeds

    Services: Data Enrichment - We assess the fill rate gaps and profile your customer file for the purpose of appending fields, updating information, and/or rendering net new “look alike” prospects for your campaigns. ABM Match & Append - Send us your domain or other company related files, and we’ll match your Account Based Marketing targets and provide you with B2B contacts to campaign. Optionally throw in your suppression file to avoid any redundant records. Verification (“Cleaning/Hygiene”) Services - Address the 2% per month aging issue on contact records! We will identify duplicate records, contacts no longer at the company, rid your email hard bounces, and update/replace titles or phones. This is right up our alley and levers our existing internal and external processes and systems.

  3. e

    Auto Sellers

    • earnestanalytics.com
    Updated Apr 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earnest Analytics (2023). Auto Sellers [Dataset]. https://www.earnestanalytics.com/datasets/auto-sellers
    Explore at:
    Dataset updated
    Apr 17, 2023
    Dataset authored and provided by
    Earnest Analytics
    Area covered
    US
    Description

    Track dealer health through topline sales, average sales prices, and inventory sell through for major online auto sellers. Web Auto Sellers data is sourced from vehicle sales and stocking information for US online used auto retailers.

  4. EU Countries with the Highest Share of Enterprises B2C Selling via a Website...

    • reportlinker.com
    Updated Apr 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ReportLinker (2024). EU Countries with the Highest Share of Enterprises B2C Selling via a Website or Apps, 2016 [Dataset]. https://www.reportlinker.com/dataset/69c03cfa17a9683fe13149a2b0c781ebc731d35e
    Explore at:
    Dataset updated
    Apr 11, 2024
    Dataset authored and provided by
    ReportLinker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    European Union
    Description

    EU Countries with the Highest Share of Enterprises B2C Selling via a Website or Apps, 2016 Discover more data with ReportLinker!

  5. Largest deals for data center site sales in the U.S. 2024

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest deals for data center site sales in the U.S. 2024 [Dataset]. https://www.statista.com/statistics/1229649/leading-data-center-sales-usa/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the second half of 2024, the most expensive deal for a data center site sale was the Loop 202 & Dobbins Rd, Laveen deal in Phoenix. IDM Companies sold the *** acres site to Amazon for *** billion U.S. dollars.

  6. d

    Ecommerce Data - Product data, Seller data, Market data, Pricing data|...

    • datarade.ai
    Updated Dec 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2023). Ecommerce Data - Product data, Seller data, Market data, Pricing data| Scrape all publicly available eCommerce data| 50% Cost Saving | Free Sample [Dataset]. https://datarade.ai/data-products/apiscrapy-mobile-app-data-api-scraping-service-app-intel-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Dec 1, 2023
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Isle of Man, Ukraine, Switzerland, Malta, Norway, Bosnia and Herzegovina, United States of America, Spain, China, Åland Islands
    Description

    Note:- Only publicly available data can be worked upon

    In today's ever-evolving Ecommerce landscape, success hinges on the ability to harness the power of data. APISCRAPY is your strategic ally, dedicated to providing a comprehensive solution for extracting critical Ecommerce data, including Ecommerce market data, Ecommerce product data, and Ecommerce datasets. With the Ecommerce arena being more competitive than ever, having a data-driven approach is no longer a luxury but a necessity.

    APISCRAPY's forte lies in its ability to unearth valuable Ecommerce market data. We recognize that understanding the market dynamics, trends, and fluctuations is essential for making informed decisions.

    APISCRAPY's AI-driven ecommerce data scraping service presents several advantages for individuals and businesses seeking comprehensive insights into the ecommerce market. Here are key benefits associated with their advanced data extraction technology:

    1. Ecommerce Product Data: APISCRAPY's AI-driven approach ensures the extraction of detailed Ecommerce Product Data, including product specifications, images, and pricing information. This comprehensive data is valuable for market analysis and strategic decision-making.

    2. Data Customization: APISCRAPY enables users to customize the data extraction process, ensuring that the extracted ecommerce data aligns precisely with their informational needs. This customization option adds versatility to the service.

    3. Efficient Data Extraction: APISCRAPY's technology streamlines the data extraction process, saving users time and effort. The efficiency of the extraction workflow ensures that users can obtain relevant ecommerce data swiftly and consistently.

    4. Realtime Insights: Businesses can gain real-time insights into the dynamic Ecommerce Market by accessing rapidly extracted data. This real-time information is crucial for staying ahead of market trends and making timely adjustments to business strategies.

    5. Scalability: The technology behind APISCRAPY allows scalable extraction of ecommerce data from various sources, accommodating evolving data needs and handling increased volumes effortlessly.

    Beyond the broader market, a deeper dive into specific products can provide invaluable insights. APISCRAPY excels in collecting Ecommerce product data, enabling businesses to analyze product performance, pricing strategies, and customer reviews.

    To navigate the complexities of the Ecommerce world, you need access to robust datasets. APISCRAPY's commitment to providing comprehensive Ecommerce datasets ensures businesses have the raw materials required for effective decision-making.

    Our primary focus is on Amazon data, offering businesses a wealth of information to optimize their Amazon presence. By doing so, we empower our clients to refine their strategies, enhance their products, and make data-backed decisions.

    [Tags: Ecommerce data, Ecommerce Data Sample, Ecommerce Product Data, Ecommerce Datasets, Ecommerce market data, Ecommerce Market Datasets, Ecommerce Sales data, Ecommerce Data API, Amazon Ecommerce API, Ecommerce scraper, Ecommerce Web Scraping, Ecommerce Data Extraction, Ecommerce Crawler, Ecommerce data scraping, Amazon Data, Ecommerce web data]

  7. e

    Earnest Analytics Home Builder Web Data

    • earnestanalytics.com
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earnest Analytics (2023). Earnest Analytics Home Builder Web Data [Dataset]. https://www.earnestanalytics.com/datasets/homebuilders
    Explore at:
    Dataset updated
    Apr 18, 2023
    Dataset authored and provided by
    Earnest Analytics
    Area covered
    US
    Description

    Predict revenue surprises, monitor selling price, track net order flow, and quantify market share by geography and community. Web Homebuilders data is sourced from housing sales, pricing, and availability detail for US homebuilders.

  8. d

    Real Estate Sales 2001-2022 GL

    • catalog.data.gov
    • data.ct.gov
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2024). Real Estate Sales 2001-2022 GL [Dataset]. https://catalog.data.gov/dataset/real-estate-sales-2001-2018
    Explore at:
    Dataset updated
    Dec 20, 2024
    Dataset provided by
    data.ct.gov
    Description

    The Office of Policy and Management maintains a listing of all real estate sales with a sales price of $2,000 or greater that occur between October 1 and September 30 of each year. For each sale record, the file includes: town, property address, date of sale, property type (residential, apartment, commercial, industrial or vacant land), sales price, and property assessment. Data are collected in accordance with Connecticut General Statutes, section 10-261a and 10-261b: https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261a and https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261b. Annual real estate sales are reported by grand list year (October 1 through September 30 each year). For instance, sales from 2018 GL are from 10/01/2018 through 9/30/2019. Some municipalities may not report data for certain years because when a municipality implements a revaluation, they are not required to submit sales data for the twelve months following implementation.

  9. Largest deals for data center site sales in Europe 2022

    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest deals for data center site sales in Europe 2022 [Dataset]. https://www.statista.com/statistics/1232856/largest-data-center-sales-in-europe/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Europe, Germany, United Kingdom
    Description

    In 2022, there were **** major site acquisition deals for data centers in the main European markets. Two of the deals took place in Frankfurt. Only *** of the deals had an announced acquisition price: The purchase of the ***** acre site on Wilhelm-Fay-Strasse 31-37, Frankfurt from Corum cost the buyer Cyrus *** over ** million U.S. dollars.

  10. Company Datasets for Business Profiling

    • datarade.ai
    Updated Feb 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oxylabs (2017). Company Datasets for Business Profiling [Dataset]. https://datarade.ai/data-products/company-datasets-for-business-profiling-oxylabs
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Feb 23, 2017
    Dataset authored and provided by
    Oxylabs
    Area covered
    Andorra, Nepal, Bangladesh, Moldova (Republic of), Canada, Tunisia, Isle of Man, Northern Mariana Islands, British Indian Ocean Territory, Taiwan
    Description

    Company Datasets for valuable business insights!

    Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.

    These datasets are sourced from top industry providers, ensuring you have access to high-quality information:

    • Owler: Gain valuable business insights and competitive intelligence. -AngelList: Receive fresh startup data transformed into actionable insights. -CrunchBase: Access clean, parsed, and ready-to-use business data from private and public companies. -Craft.co: Make data-informed business decisions with Craft.co's company datasets. -Product Hunt: Harness the Product Hunt dataset, a leader in curating the best new products.

    We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:

    • Company name;
    • Size;
    • Founding date;
    • Location;
    • Industry;
    • Revenue;
    • Employee count;
    • Competitors.

    You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.

    Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.

    With Oxylabs Datasets, you can count on:

    • Fresh and accurate data collected and parsed by our expert web scraping team.
    • Time and resource savings, allowing you to focus on data analysis and achieving your business goals.
    • A customized approach tailored to your specific business needs.
    • Legal compliance in line with GDPR and CCPA standards, thanks to our membership in the Ethical Web Data Collection Initiative.

    Pricing Options:

    Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.

    Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.

    Experience a seamless journey with Oxylabs:

    • Understanding your data needs: We work closely to understand your business nature and daily operations, defining your unique data requirements.
    • Developing a customized solution: Our experts create a custom framework to extract public data using our in-house web scraping infrastructure.
    • Delivering data sample: We provide a sample for your feedback on data quality and the entire delivery process.
    • Continuous data delivery: We continuously collect public data and deliver custom datasets per the agreed frequency.

    Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!

  11. t

    The Surprising Impact of Data-backed Website Design and User Experience...

    • thegood.com
    html
    Updated May 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Good (2025). The Surprising Impact of Data-backed Website Design and User Experience Testing [Dataset]. https://thegood.com/insights/data-backed-website-design/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 14, 2025
    Dataset authored and provided by
    The Good
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    When a prospect enters a brick and mortar business, staff will likely get several opportunities to engage that person and encourage a purchase. Not so online. You have seconds, not minutes to give visitors a reason to stay long enough to engage. There’s a common thread that helped companies like Facebook, Amazon, and Apple rise […]

  12. UK consumers not willing to sell their personal data 2020, by age group

    • statista.com
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). UK consumers not willing to sell their personal data 2020, by age group [Dataset]. https://www.statista.com/statistics/1188378/consumers-unwilling-to-share-data-for-money-uk/
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    A survey conducted online in the United Kingdom (UK) in 2020 revealed that over ** percent of 18 to 24 year olds would be willing to share their personal data with companies in return for payment. Conversely, only slightly more than ** percent of those over 65 years of age said they would do the same. As a whole, ** percent of UK respondents were against the idea of sharing personal data for financial compensation.

  13. AmazonSalesReport

    • kaggle.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arpit Mishra (2024). AmazonSalesReport [Dataset]. https://www.kaggle.com/datasets/arpit2712/amazonsalesreport
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 7, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Arpit Mishra
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Amazon Sales Report

    Overview:

    This dataset provides detailed sales data from Amazon, offering a comprehensive look at various product categories and their performance over time. It includes information on sales figures, order details, product categories, and customer demographics.

    Features:

    1. Order ID

    Description: A unique identifier for each order placed on Amazon. This field helps to track individual orders and link related records.

    2. Dates

    Description: The date when the order was placed. This field is crucial for analyzing sales trends over time and identifying seasonal patterns.

    3. Status

    Description: The current status of the order (e.g., Shipped, Delivered, Pending). This field provides insight into the order fulfillment process and helps monitor order processing efficiency.

    4. Fulfillment

    Description: Indicates the method used to fulfill the order (e.g., Fulfilled by Amazon, Fulfilled by Seller). This feature helps in analyzing the performance of different fulfillment methods and their impact on customer satisfaction.

    5. Sales Channel

    Description: The channel through which the sale was made (e.g., Amazon Website, Mobile App). This field is useful for evaluating the effectiveness of different sales channels and understanding customer preferences.

    6. Category

    Description: The product category to which the purchased item belongs (e.g., Electronics, Clothing, Home Goods). This feature aids in analyzing sales performance across various product categories.

    7. Ship Service Level

    Description: The shipping service level selected for the order (e.g., Standard Shipping, Two-Day Shipping). This field helps to assess the impact of shipping options on delivery times and customer satisfaction.

    8. Size

    Description: The size of the product ordered (e.g., Small, Medium, Large). This feature is relevant for analyzing sales performance based on product size and understanding inventory requirements.

    9. Carrier Status

    Description: The status of the shipment with the carrier (e.g., In Transit, Delivered, Returned). This field provides insights into the shipping process and helps in monitoring delivery performance and handling returns.

    Use Cases:

    Sales Analysis:

    Examine trends in sales over time, identify peak periods, and analyze performance by product category.

    Customer Insights:

    Explore customer demographics to understand purchasing behavior and preferences.

    Inventory Management:

    Assess which products are performing well and which are not, aiding in inventory and supply chain management.

    Marketing Strategies:

    Develop targeted marketing campaigns based on sales trends and customer profiles.

    Data Source:

    This dataset is a simulated collection of Amazon sales data and is intended for educational and analytical purposes.

    Acknowledgments:

    This dataset was created to facilitate data analysis and machine learning projects. It is ideal for practicing data manipulation, statistical analysis, and predictive modeling.

  14. U

    United Kingdom E Commerce Sales: Over a Website: 1000+ Employees

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United Kingdom E Commerce Sales: Over a Website: 1000+ Employees [Dataset]. https://www.ceicdata.com/en/united-kingdom/e-commerce-sales-proportion-of-business-turnover-derived-from-e-commerce-by-size-of-business/e-commerce-sales-over-a-website-1000-employees
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2016
    Area covered
    United Kingdom
    Variables measured
    Business Outlook Survey
    Description

    United Kingdom E Commerce Sales: Over a Website: 1000+ Employees data was reported at 4.000 % in 2016. This records an increase from the previous number of 3.400 % for 2015. United Kingdom E Commerce Sales: Over a Website: 1000+ Employees data is updated yearly, averaging 3.400 % from Dec 2012 (Median) to 2016, with 5 observations. The data reached an all-time high of 4.000 % in 2016 and a record low of 3.100 % in 2012. United Kingdom E Commerce Sales: Over a Website: 1000+ Employees data remains active status in CEIC and is reported by Office for National Statistics. The data is categorized under Global Database’s UK – Table UK.S029: E Commerce: Sales: Proportion of Business Turnover Derived From E Commerce: By Size of Business.

  15. Success.ai | Intent Data | 15k Topics for Keyword, Sentiment, and Web...

    • data.success.ai
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2024). Success.ai | Intent Data | 15k Topics for Keyword, Sentiment, and Web Activity data – Best Price Guarantee [Dataset]. https://data.success.ai/products/success-ai-intent-data-15k-topics-for-keyword-sentiment-success-ai
    Explore at:
    Dataset updated
    Oct 22, 2024
    Dataset provided by
    Area covered
    Serbia, Vanuatu, Réunion, Singapore, Virgin Islands, Chad, Latvia, Malawi, El Salvador, Syrian Arab Republic
    Description

    Leverage Success.ai’s Consumer Insights Intent Data to access rich datasets, including keyword, sentiment, and web activity data. Ensure your marketing and sales strategies are informed by accurate, verified and compliant data, available at the best prices.

  16. d

    Web Scraping Data | Key Customers Domain Name Data | Scanning Logos found on...

    • datarade.ai
    .json
    Updated Jun 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PredictLeads (2024). Web Scraping Data | Key Customers Domain Name Data | Scanning Logos found on Websites | 248M+ Records [Dataset]. https://datarade.ai/data-products/predictleads-web-scraping-data-domain-name-data-business-predictleads
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Jun 27, 2024
    Dataset authored and provided by
    PredictLeads
    Area covered
    Curaçao, Colombia, Benin, Malaysia, Burkina Faso, Nigeria, Svalbard and Jan Mayen, Turkmenistan, Oman, Northern Mariana Islands
    Description

    PredictLeads Key Customers Data provides essential business intelligence by analyzing company relationships, uncovering vendor partnerships, client connections, and strategic affiliations through advanced web scraping and logo recognition. This dataset captures business interactions directly from company websites, offering valuable insights into market positioning, competitive landscapes, and growth opportunities.

    Use Cases:

    ✅ Account Profiling – Gain a 360-degree customer view by mapping company relationships and partnerships. ✅ Competitive Intelligence – Track vendor-client connections and business affiliations to identify key industry players. ✅ B2B Lead Targeting – Prioritize leads based on their business relationships, improving sales and marketing efficiency. ✅ CRM Data Enrichment – Enhance company records with detailed key customer data, ensuring data accuracy. ✅ Market Research – Identify emerging trends and industry networks to optimize strategic planning.

    Key API Attributes:

    • id (string, UUID) – Unique identifier for the company connection.
    • category (string) – Type of relationship (e.g., vendor, client, partner).
    • source_category (string) – Where the connection was detected (e.g., partner page, case study).
    • source_url (string, URL) – Website where the relationship was found.
    • individual_source_url (string, URL) – Specific page confirming the connection.
    • context (string) – Extracted description of the business relationship (e.g., "Company X - partners with Company Y to enhance payment processing").
    • first_seen_at (ISO 8601 date-time) – Date the connection was first detected.
    • last_seen_at (ISO 8601 date-time) – Most recent confirmation of the relationship.
    • company1 & company2 (objects) – Details of the two connected companies, including:
    • - domain (string) – Company website domain.
    • - company_name (string) – Official company name.
    • - ticker (string, nullable) – Stock ticker, if available.

    📌 PredictLeads Key Customers Data is an indispensable tool for B2B sales, marketing, and market intelligence teams, providing actionable relationship insights to drive targeted outreach, competitor tracking, and strategic decision-making.

    PredictLeads Docs: https://docs.predictleads.com/v3/guide/connections_dataset

  17. o

    Amazon Products

    • opendatabay.com
    .undefined
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Amazon Products [Dataset]. https://www.opendatabay.com/data/premium/2f7668e7-009e-4c7d-9822-78955a22a20a
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Bright Data
    Area covered
    Retail & Consumer Behavior
    Description

    Amazon Products dataset to explore detailed product listings, pricing, reviews, and sales data. Popular use cases include competitive analysis, market trend forecasting, and e-commerce strategy optimization.

    Use our Amazon Products dataset to explore detailed information on products across various categories, including pricing, reviews, ratings, and sales data. This dataset is ideal for e-commerce professionals, market analysts, and product managers looking to analyze market trends, optimize product listings, and refine competitive strategies.

    Leverage this dataset to track pricing trends, assess customer feedback, and uncover popular product categories. Whether you're conducting competitive analysis, performing market research, or optimizing product strategies, the Amazon Products dataset provides key insights to stay ahead in the e-commerce landscape.

    Dataset Features

    • Title: The name or title of the product.
    • seller_name: The name of the seller offering the product.
    • Brand: The brand associated with the product.
    • Description: A detailed description of the product, including key features.
    • initial_price: The original price of the product before any discounts.
    • final_price: The current price of the product after discounts.
    • Currency: The currency in which the product is priced (e.g., GBP, USD).
    • Availability: The stock status (e.g., in stock, out of stock).
    • reviews_count: The total number of customer reviews.
    • Categories: The specific category the product belongs to.
    • asin: Amazon Standard Identification Number.
    • buybox_seller: The seller currently winning the Amazon Buy Box.
    • number_of_sellers: The number of sellers offering this product.
    • root_bs_rank: The overall ranking of the product in the Amazon best-sellers list.
    • answered_questions: The number of questions answered in the product Q&A section.
    • domain: The website domain where the product is being sold.
    • images_count: The number of images available for the product.
    • URL: The link to the product page on Amazon.
    • video_count: The number of videos available for the product.
    • image_url: The URL of the primary image associated with the product.
    • item_weight: The weight of the product.
    • Rating: The average rating of the product based on customer reviews.
    • product_dimensions: The dimensions of the product (e.g., length, width, height) and weight.
    • seller_id: The unique identifier for the seller.
    • date_first_available: The date when the product was first made available on Amazon.
    • discount: Any discount applied to the product.
    • model_number: The model number of the product.
    • manufacturer: The company that manufactures the product.
    • department: The department under which the product is categorized (e.g., Health & Household).
    • plus_content: A flag indicating if the product has Amazon’s “Plus Content” (additional marketing content).
    • upc: The Universal Product Code (UPC) associated with the product.
    • video: URL(s) of any video content associated with the product.
    • top_review: A summary or excerpt from the top customer review.
    • variations: Different product variations (e.g., different sizes or flavors).
    • delivery: Information on the delivery options (e.g., free delivery or Prime delivery).
    • features: Key features or highlights of the product.
    • format: The format of the product (e.g., powder, liquid).
    • buybox_prices: Pricing details for the product, including the base and tiered prices.
    • parent_asin: The ASIN of the parent product (if the product is part of a larger group of similar products).
    • input_asin: The ASIN of the product as input for Amazon searches.
    • ingredients: List of ingredients in the product (if applicable).
    • origin_url: The source URL for product-related information or ingredients.
    • bought_past_month: A flag indicating if the product was bought in the past month.
    • is_available: Availability status of the product (True/False).
    • root_bs_category: The broad product category (e.g., Health & Household).
    • bs_category: The specific subcategory the product belongs to.
    • bs_rank: The rank of the product in its specific subcategory.
    • badge: Any badge or label the product has earned (e.g., Amazon's Choice).
    • subcategory_rank: The rank of the product within its subcategory.
    • amazon_choice: A flag indicating if the product has been selected as Amazon’s Choice.
    • images: A list of URLs for additional product images.
    • product_details: Detailed product specifications and features.
    • prices_breakdown: A breakdown of the price, including any discounts or promotions.
    • country_of_origin: The country where the product is made.
    • from_the_brand: Information from the brand or manufact
  18. s

    Monthly Sales of Cheese in Finland - Datasets - This service has been...

    • store.smartdatahub.io
    Updated Oct 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Monthly Sales of Cheese in Finland - Datasets - This service has been deprecated - please visit https://www.smartdatahub.io/ to access data. See the About page for details. // [Dataset]. https://store.smartdatahub.io/dataset/fi_luke_domestic_sales_of_cheese_monthly_kg
    Explore at:
    Dataset updated
    Oct 1, 2023
    Area covered
    Finland
    Description

    This dataset collection contains monthly domestic sales of cheese in kilograms. The tables in this dataset collection are sourced from the web site of Luke, the Natural Resources Institute Finland, located in Finland. Tables Monthly Domestic Sales of Cheese by Product in FinlandTSV This table contains monthly sales data for domestic cheese sales in kilograms. The data is sourced from the website 'Luke' which originates from Finland (ISO country code 'fi'). The table includes columns such as 'extract_date', 'row_number', 'code', and 'label'. The data in this table can be utilized for various data analytics purposes, such as analyzing the monthly trends in domestic cheese sales, identifying the best-selling cheese products, comparing sales performance over time, and conducting market research on the cheese consumption patterns in Finland.

  19. F

    Producer Price Index by Industry: Internet Publishing and Web Search...

    • fred.stlouisfed.org
    json
    Updated Jan 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Producer Price Index by Industry: Internet Publishing and Web Search Portals: Internet Publishing and Web Search Portals - Subscription, Content Access, and Licensing Sales [Dataset]. https://fred.stlouisfed.org/series/PCU5191305191302
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 18, 2023
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Producer Price Index by Industry: Internet Publishing and Web Search Portals: Internet Publishing and Web Search Portals - Subscription, Content Access, and Licensing Sales (PCU5191305191302) from Dec 2009 to Dec 2022 about licenses, internet, printing, sales, PPI, industry, inflation, price index, indexes, price, and USA.

  20. Find a Sales and Use Tax rate Web Application

    • catalog.data.gov
    • data.ca.gov
    • +1more
    Updated Nov 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Tax and Fee Administration (2024). Find a Sales and Use Tax rate Web Application [Dataset]. https://catalog.data.gov/dataset/find-a-sales-and-use-tax-rate-web-application-08288
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Tax and Fee Administrationhttp://cdtfa.ca.gov/
    Description

    Enter an address to determine the tax rate and jurisdiction of the address.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Types of personal data consumers would be most willing to sell to companies UK 2020 [Dataset]. https://www.statista.com/statistics/1188693/data-uk-users-would-sell/
Organization logo

Types of personal data consumers would be most willing to sell to companies UK 2020

Explore at:
Dataset updated
Jul 11, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United Kingdom
Description

Although a majority of internet users aged between 18 and 75 years in the United Kingdom (UK) are still skeptical when it comes to personal data being collected by companies, a small share (** percent) would be willing to share this data in return for financial compensation. These types of data mainly included purchase history and location data, while a slightly smaller percentage stated they were willing to sell their browsing history and online media consumption to companies.

Search
Clear search
Close search
Google apps
Main menu