100+ datasets found
  1. f

    Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm

    • plos.figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic (2023). Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm [Dataset]. http://doi.org/10.1371/journal.pbio.1002128
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS Biology
    Authors
    Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.

  2. O

    Time series

    • data.open-power-system-data.org
    csv, sqlite, xlsx
    Updated Oct 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Muehlenpfordt (2020). Time series [Dataset]. http://doi.org/10.25832/time_series/2020-10-06
    Explore at:
    csv, sqlite, xlsxAvailable download formats
    Dataset updated
    Oct 6, 2020
    Dataset provided by
    Open Power System Data
    Authors
    Jonathan Muehlenpfordt
    Time period covered
    Jan 1, 2015 - Oct 1, 2020
    Variables measured
    utc_timestamp, DE_wind_profile, DE_solar_profile, DE_wind_capacity, DK_wind_capacity, SE_wind_capacity, CH_solar_capacity, DE_solar_capacity, DK_solar_capacity, AT_price_day_ahead, and 290 more
    Description

    Load, wind and solar, prices in hourly resolution. This data package contains different kinds of timeseries data relevant for power system modelling, namely electricity prices, electricity consumption (load) as well as wind and solar power generation and capacities. The data is aggregated either by country, control area or bidding zone. Geographical coverage includes the EU and some neighbouring countries. All variables are provided in hourly resolution. Where original data is available in higher resolution (half-hourly or quarter-hourly), it is provided in separate files. This package version only contains data provided by TSOs and power exchanges via ENTSO-E Transparency, covering the period 2015-mid 2020. See previous versions for historical data from a broader range of sources. All data processing is conducted in Python/pandas and has been documented in the Jupyter notebooks linked below.

  3. Graph Input Data Example.xlsx

    • figshare.com
    xlsx
    Updated Dec 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Corynen (2018). Graph Input Data Example.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.7506209.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 26, 2018
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Dr Corynen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.

  4. B

    Easing into Excellent Excel Practices Learning Series / Série...

    • borealisdata.ca
    • search.dataone.org
    Updated Nov 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julie Marcoux (2023). Easing into Excellent Excel Practices Learning Series / Série d'apprentissages en route vers des excellentes pratiques Excel [Dataset]. http://doi.org/10.5683/SP3/WZYO1F
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 15, 2023
    Dataset provided by
    Borealis
    Authors
    Julie Marcoux
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    With a step-by-step approach, learn to prepare Excel files, data worksheets, and individual data columns for data analysis; practice conditional formatting and creating pivot tables/charts; go over basic principles of Research Data Management as they might apply to an Excel project. Avec une approche étape par étape, apprenez à préparer pour l’analyse des données des fichiers Excel, des feuilles de calcul de données et des colonnes de données individuelles; pratiquez la mise en forme conditionnelle et la création de tableaux croisés dynamiques ou de graphiques; passez en revue les principes de base de la gestion des données de recherche tels qu’ils pourraient s’appliquer à un projet Excel.

  5. T

    Excel files containing data for Figures

    • dataverse.tdl.org
    xls
    Updated Aug 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Parrish Brady; Parrish Brady (2020). Excel files containing data for Figures [Dataset]. http://doi.org/10.18738/T8/EGV2TV
    Explore at:
    xls(22016), xls(71680), xls(9728), xls(13824), xls(529920), xls(339968), xls(26112), xls(17920), xls(67584)Available download formats
    Dataset updated
    Aug 24, 2020
    Dataset provided by
    Texas Data Repository
    Authors
    Parrish Brady; Parrish Brady
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Data organization for the figures in the document: Figure 3A LineOutWithSun_SSAzi_135to225_green_Correct_ROI5_INFO.xls Figure 3b LineOutWithSun_SSAzi_m45to45_green_Correct_ROI5_INFO.xls Figure 4 fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Correct_ROI5_INFO.xls fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Sim_Correct_ROI5_INFO.xls Figure 5a LineOut_Camera_Elevation_SqAzi_m180to0_green_Sim_Correct_ROI5_INFO.xls LineOut_Camera_Elevation_SqAzi_m180to0_green_Correct_ROI5_INFO.xls Figure 5b LineOut_Camera_Elevation_SqAzi_0to180_green_Correct_ROI5_INFO.xls LineOut_Camera_Elevation_SqAzi_0to180_green_Sim_Correct_ROI5_INFO.xls Figure 6a LineOutColor_SqAzi_m180to0_CP_20to50_Correct_ROI5_INFO.xls Figure 6b LineOutROI_SqAzi_m180to0_CP_20to50_green_Correct_INFO.xls Figure 7 fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Correct_ROI5_INFO.xls LineOut_MeshAoPDif_Camera_Elevation_SqAzi_0to180_green_Correct_ROI5_INFO.xls LineOut_MeshAoPDif_Camera_Elevation_SqAzi_m180to0_green_Correct_ROI5_INFO.xls

  6. w

    Dataset of books series that contain Managing data using Excel

    • workwithdata.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of books series that contain Managing data using Excel [Dataset]. https://www.workwithdata.com/datasets/book-series?f=1&fcol0=j0-book&fop0=%3D&fval0=Managing+data+using+Excel&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book series. It has 1 row and is filtered where the books is Managing data using Excel. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  7. Data from: Current and projected research data storage needs of Agricultural...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Current and projected research data storage needs of Agricultural Research Service researchers in 2016 [Dataset]. https://catalog.data.gov/dataset/current-and-projected-research-data-storage-needs-of-agricultural-research-service-researc-f33da
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel

  8. f

    Data from: Supplemental data

    • figshare.com
    xlsx
    Updated Mar 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    T Miyakoshi; Yoichi M. Ito (2024). Supplemental data [Dataset]. http://doi.org/10.6084/m9.figshare.24596058.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 15, 2024
    Dataset provided by
    figshare
    Authors
    T Miyakoshi; Yoichi M. Ito
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset for the article "The current utilization status of wearable devices in clinical research".Analyses were performed by utilizing the JMP Pro 16.10, Microsoft Excel for Mac version 16 (Microsoft).The file extension "jrp" is a file of the statistical analysis software JMP, which contains both the analysis code and the data set.In case JMP is not available, a "csv" file as a data set and JMP script, the analysis code, are prepared in "rtf" format.The "xlsx" file is a Microsoft Excel file that contains the data set and the data plotted or tabulated using Microsoft Excel functions.Supplementary Figure 1. NCT number duplication frequencyIncludes Excel file used to create the figure (Supplemental Figure 1).・Sfig1_NCT number duplication frequency.xlsxSupplementary Figure 2-5 Simple and annual time series aggregationIncludes Excel file, JMP repo file, csv dataset of JMP repo file and JMP scripts used to create the figure (Supplementary Figures 2-5).・Sfig2-5 Annual time series aggregation.xlsx・Sfig2 Study Type.jrp・Sfig4device type.jrp・Sfig3 Interventions Type.jrp・Sfig5Conditions type.jrp・Sfig2, 3 ,5_database.csv・Sfig2_JMP script_Study type.rtf・Sfig3_JMP script Interventions type.rtf・Sfig5_JMP script Conditions type.rtf・Sfig4_dataset.csv・Sfig4_JMP script_device type.rtfSupplementary Figures 6-11 Mosaic diagram of intervention by conditionSupplementary tables 4-9 Analysis of contingency table for intervention by condition JMP repot files used to create the figures(Supplementary Figures 6-11 ) and tables(Supplementary Tablea 4-9) , including the csv dataset of JMP repot files and JMP scripts.・Sfig6-11 Stable4-9 Intervention devicetype_conditions.jrp・Sfig6-11_Stable4-9_dataset.csv・Sfig6-11_Stable4-9_JMP script.rtfSupplementary Figure 12. Distribution of enrollmentIncludes Excel file, JMP repo file, csv dataset of JMP repo file and JMP scripts used to create the figure (Supplementary Figures 12).・Sfig12_Distribution of enrollment.jrp・Sfig12_Distribution of enrollment.csv・Sfig12_JMP script.rtf

  9. d

    Working with Statistics Canada Data Tables in Excel / Travailler avec des...

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcoux, Julie (2023). Working with Statistics Canada Data Tables in Excel / Travailler avec des tableaux de données de Statistique Canada dans Excel [Dataset]. http://doi.org/10.5683/SP3/R8REJA
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Marcoux, Julie
    Area covered
    Canada
    Description

    Learn to decide which CSV version of a Statistics Canada data table to download depending on your goals and needs, and learn how to best work with the file in Excel once downloaded. Apprenez à décider de la meilleure version CSV d’un tableau de données de Statistique Canada à télécharger en fonction de vos objectifs et de vos besoins, et apprenez comment travailler avec le fichier dans Excel une fois téléchargé.

  10. u

    Latnjajaure Site, PAPP Excel Data

    • ckanprod.ucar.edu
    • data.ucar.edu
    excel
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jrgen Pettersson; Ulf Molau (2025). Latnjajaure Site, PAPP Excel Data [Dataset]. http://doi.org/10.5065/D6F18WZN
    Explore at:
    excelAvailable download formats
    Dataset updated
    Aug 1, 2025
    Authors
    Jrgen Pettersson; Ulf Molau
    Time period covered
    Jul 31, 1995 - Jul 24, 1998
    Area covered
    Description

    This dataset contains PAPP Excel Community data from the Latnjajaure site, Sweden in 1995, 1996, 1997 & 1998. The Press and Pulse Program (PAPP) experiment is comprised of four replicate blocks, each of which has four plots. This dataset is in excel format and includes data from all plots. For more information, please see the readme file.

  11. f

    Excel spreadsheet with individual numerical data underlying plots and...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Mar 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    van Zwam, Maxime C.; Bosman, Willem; van Straaten, Wendy; van den Dries, Koen; Weijers, Suzanne; Joosten, Ben; Dhar, Anubhav; van Haren, Jeffrey; Palani, Saravanan; Seta, Emiel (2024). Excel spreadsheet with individual numerical data underlying plots and statistical analyses. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001332221
    Explore at:
    Dataset updated
    Mar 11, 2024
    Authors
    van Zwam, Maxime C.; Bosman, Willem; van Straaten, Wendy; van den Dries, Koen; Weijers, Suzanne; Joosten, Ben; Dhar, Anubhav; van Haren, Jeffrey; Palani, Saravanan; Seta, Emiel
    Description

    The data are organized into separate sheets corresponding to the following figure panels: 1C, 1G, 2B, 2D, 2F, 2H, 4C, 4D, 4F, 5B, 5C, S3B, S5C, S5E, S7B, S8B, S10B, S12A, S12B, and S21B. (XLSX)

  12. B

    Annual Retail Store Data, 2000 [Canada] [Excel]

    • borealisdata.ca
    • dataverse.scholarsportal.info
    • +1more
    Updated Sep 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Annual Retail Store Data, 2000 [Canada] [Excel] [Dataset]. http://doi.org/10.5683/SP3/TUQXW4
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 28, 2023
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.5683/SP3/TUQXW4https://borealisdata.ca/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.5683/SP3/TUQXW4

    Area covered
    Canada
    Description

    The annual Retail store data CD-ROM is an easy-to-use tool for quickly discovering retail trade patterns and trends. The current product presents results from the 1999 and 2000 Annual Retail Store and Annual Retail Chain surveys. This product contains numerous cross-classified data tables using the North American Industry Classification System (NAICS). The data tables provide access to a wide range of financial variables, such as revenues, expenses, inventory, sales per square footage (chain stores only) and the number of stores. Most data tables contain detailed information on industry (as low as 5-digit NAICS codes), geography (Canada, provinces and territories) and store type (chains, independents, franchises). The electronic product also contains survey metadata, questionnaires, information on industry codes and definitions, and the list of retail chain store respondents.

  13. o

    Data-sets: Students Skills on Basic Computer Practice (Ms. Excel and Ms....

    • osf.io
    Updated Apr 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Itsar Rangka (2018). Data-sets: Students Skills on Basic Computer Practice (Ms. Excel and Ms. Word) [Dataset]. http://doi.org/10.17605/OSF.IO/6YJ7M
    Explore at:
    Dataset updated
    Apr 8, 2018
    Dataset provided by
    Center For Open Science
    Authors
    Itsar Rangka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This study aimed to evaluate students' skills in basic computer practice in junior high school. We evaluate the student’s skills to work with basics of Microsoft office software (Excel and Power Point) according to competency standards and school curriculum. The study involved 173 students who received the computer practice exam on March 2018. Data analysed using Rasch model approach.

  14. d

    Data from: Retrieving Multiple CANSIM Time Series

    • search.dataone.org
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Walter Piovesan (2023). Retrieving Multiple CANSIM Time Series [Dataset]. http://doi.org/10.5683/SP3/GBMIQL
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Walter Piovesan
    Description

    This is a computer exercise that takes you through retrieving multiple time series in CANSIM.

  15. Wheat Data

    • agdatacommons.nal.usda.gov
    • data.globalchange.gov
    • +5more
    bin
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Economic Research Service (2025). Wheat Data [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Wheat_Data/25696461
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Economic Research Servicehttp://www.ers.usda.gov/
    Authors
    USDA Economic Research Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This data product contains statistics on wheat-including the five classes of wheat: hard red winter, hard red spring, soft red winter, white, and durum-and rye. Includes data published in the monthly Wheat Outlook and previously annual Wheat Yearbook. Data are monthly, quarterly, and/or annual depending upon the data series. Most data are on a marketing year basis, but some are calendar year.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Web page with links to Excel files For complete information, please visit https://data.gov.

  16. FIRE1120: previous data tables

    • gov.uk
    Updated Oct 18, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2018). FIRE1120: previous data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire1120-previous-data-tables
    Explore at:
    Dataset updated
    Oct 18, 2018
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (17 October 2024)

    https://assets.publishing.service.gov.uk/media/6707823292bb81fcdbe7b5ff/fire-statistics-data-tables-fire1120-191023.xlsx">FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (19 October 2023) (MS Excel Spreadsheet, 194 KB)

    https://assets.publishing.service.gov.uk/media/652d3a7f6b6fbf0014b756d9/fire-statistics-data-tables-fire1120-201022.xlsx">FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (20 October 2022) (MS Excel Spreadsheet, 293 KB)

    https://assets.publishing.service.gov.uk/media/634e7f238fa8f5346ba7099b/fire-statistics-data-tables-fire1120-051121.xlsx">FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (05 November 2021) (MS Excel Spreadsheet, 220 KB)

    https://assets.publishing.service.gov.uk/media/61853a37e90e07198018fb0b/fire-statistics-data-tables-fire1120-211021.xlsx">FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (21 October 2021) (MS Excel Spreadsheet, 210 KB)

    https://assets.publishing.service.gov.uk/media/616d7d218fa8f5298406229e/fire-statistics-data-tables-fire1120-221020.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (22 October 2020) (MS Excel Spreadsheet, 157 KB)

    https://assets.publishing.service.gov.uk/media/5f86b42b8fa8f517090ab0e4/fire-statistics-data-tables-fire1120-141119.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (14 November 2019) (MS Excel Spreadsheet, 116 KB)

    https://assets.publishing.service.gov.uk/media/5dc9869ee5274a5c51437e43/fire-statistics-data-tables-fire1120-311019.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (31 October 2019) (MS Excel Spreadsheet, 116 KB)

    https://assets.publishing.service.gov.uk/media/5db7098040f0b6379a7acbc4/fire-statistics-data-tables-fire1120-170119.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (17 January 2019) (MS Excel Spreadsheet, 74.5 KB)

    https://assets.publishing.service.gov.uk/media/5c34bd7ee5274a65ab281de8/fire-statistics-data-tables-fire1120-18oct2018.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (18 October 2018) (MS Excel Spreadsheet, 74.3 KB)

    https://assets.publishing.service.gov.uk/media/5bbcc352e5274a3611919f80/fire-statistics-data-tables-fire1120.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (26 October 2017) (MS Excel Spreadsheet, 24.3 KB)

    Related content

    <a href="https://www.gov.uk/government/statistical-data-sets/fire-

  17. w

    Dataset of books series that contain Microsoft Excel 2000 : introductory...

    • workwithdata.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of books series that contain Microsoft Excel 2000 : introductory concepts and techniques [Dataset]. https://www.workwithdata.com/datasets/book-series?f=1&fcol0=j0-book&fop0=%3D&fval0=Microsoft+Excel+2000+:+introductory+concepts+and+techniques&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book series. It has 1 row and is filtered where the books is Microsoft Excel 2000 : introductory concepts and techniques. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  18. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  19. File2. Data for Time-series regression in 2007 to 2013

    • figshare.com
    xlsx
    Updated Feb 16, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Youcong Chao; Xiaoqun Liu; Shijun Guo (2017). File2. Data for Time-series regression in 2007 to 2013 [Dataset]. http://doi.org/10.6084/m9.figshare.4658797.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 16, 2017
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Youcong Chao; Xiaoqun Liu; Shijun Guo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    File 2 includes seven excels, named Data for Time-series regression in 2007 to Data for Time-series regression in 2013 respectively. In specific, we average all the 25 portfolios’ realized jump measures in 2007 as just one series from File 1 in the excel of “Data for Horse running regression in 2007”. The excels constitute jump variables and the other variables, among which value-weighted monthly returns of 25 portfolios are directly from the RESSET database.

  20. f

    Data from: Correlation matrices.

    • plos.figshare.com
    xlsx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bálint Maczák; Gergely Vadai; András Dér; István Szendi; Zoltán Gingl (2023). Correlation matrices. [Dataset]. http://doi.org/10.1371/journal.pone.0261718.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bálint Maczák; Gergely Vadai; András Dér; István Szendi; Zoltán Gingl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Our analyses are based on 148×148 time- and frequency-domain correlation matrices. A correlation matrix covers all the possible use cases of every activity metric listed in the article. With these activity metrics and different preprocessing methods, we were able to calculate 148 different activity signals from multiple datasets of a single measurement. Each cell of a correlation matrix contains the mean and standard deviation of the calculated Pearson’s correlation coefficients between two types of activity signals based on 42 different subjects’ 10-days-long motion. The small correlation matrices presented both in the article and in the appendixes are derived from these 148 × 148 correlation matrices. This published Excel workbook contains multiple sheets labelled according to their content. The mean and standard deviation values for both time- and frequency-domain correlations can be found on their own separate sheet. Moreover, we reproduced the correlation matrix with an alternatively parametrized digital filter, which doubled the number of sheets to 8. In the Excel workbook, we used the same notation for both the datasets and activity metrics as presented in this article with an extension to the PIM metric: PIMs denotes the PIM metric where we used Simpson’s 3/8 rule integration method, PIMr indicates the PIM metric where we calculated the integral by simple numerical integration (Riemann sum). (XLSX)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic (2023). Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm [Dataset]. http://doi.org/10.1371/journal.pbio.1002128

Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm

Explore at:
330 scholarly articles cite this dataset (View in Google Scholar)
docxAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
PLOS Biology
Authors
Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.

Search
Clear search
Close search
Google apps
Main menu