100+ datasets found
  1. B

    Easing into Excellent Excel Practices Learning Series / Série...

    • borealisdata.ca
    • search.dataone.org
    Updated Nov 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julie Marcoux (2023). Easing into Excellent Excel Practices Learning Series / Série d'apprentissages en route vers des excellentes pratiques Excel [Dataset]. http://doi.org/10.5683/SP3/WZYO1F
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 15, 2023
    Dataset provided by
    Borealis
    Authors
    Julie Marcoux
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    With a step-by-step approach, learn to prepare Excel files, data worksheets, and individual data columns for data analysis; practice conditional formatting and creating pivot tables/charts; go over basic principles of Research Data Management as they might apply to an Excel project. Avec une approche étape par étape, apprenez à préparer pour l’analyse des données des fichiers Excel, des feuilles de calcul de données et des colonnes de données individuelles; pratiquez la mise en forme conditionnelle et la création de tableaux croisés dynamiques ou de graphiques; passez en revue les principes de base de la gestion des données de recherche tels qu’ils pourraient s’appliquer à un projet Excel.

  2. Graph Input Data Example.xlsx

    • figshare.com
    xlsx
    Updated Dec 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Corynen (2018). Graph Input Data Example.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.7506209.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 26, 2018
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Dr Corynen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.

  3. T

    Excel files containing data for Figures

    • dataverse.tdl.org
    xls
    Updated Aug 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Parrish Brady; Parrish Brady (2020). Excel files containing data for Figures [Dataset]. http://doi.org/10.18738/T8/EGV2TV
    Explore at:
    xls(22016), xls(71680), xls(9728), xls(13824), xls(529920), xls(339968), xls(26112), xls(17920), xls(67584)Available download formats
    Dataset updated
    Aug 24, 2020
    Dataset provided by
    Texas Data Repository
    Authors
    Parrish Brady; Parrish Brady
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Data organization for the figures in the document: Figure 3A LineOutWithSun_SSAzi_135to225_green_Correct_ROI5_INFO.xls Figure 3b LineOutWithSun_SSAzi_m45to45_green_Correct_ROI5_INFO.xls Figure 4 fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Correct_ROI5_INFO.xls fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Sim_Correct_ROI5_INFO.xls Figure 5a LineOut_Camera_Elevation_SqAzi_m180to0_green_Sim_Correct_ROI5_INFO.xls LineOut_Camera_Elevation_SqAzi_m180to0_green_Correct_ROI5_INFO.xls Figure 5b LineOut_Camera_Elevation_SqAzi_0to180_green_Correct_ROI5_INFO.xls LineOut_Camera_Elevation_SqAzi_0to180_green_Sim_Correct_ROI5_INFO.xls Figure 6a LineOutColor_SqAzi_m180to0_CP_20to50_Correct_ROI5_INFO.xls Figure 6b LineOutROI_SqAzi_m180to0_CP_20to50_green_Correct_INFO.xls Figure 7 fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Correct_ROI5_INFO.xls LineOut_MeshAoPDif_Camera_Elevation_SqAzi_0to180_green_Correct_ROI5_INFO.xls LineOut_MeshAoPDif_Camera_Elevation_SqAzi_m180to0_green_Correct_ROI5_INFO.xls

  4. Data from: Current and projected research data storage needs of Agricultural...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Current and projected research data storage needs of Agricultural Research Service researchers in 2016 [Dataset]. https://catalog.data.gov/dataset/current-and-projected-research-data-storage-needs-of-agricultural-research-service-researc-f33da
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel

  5. w

    Dataset of books series that contain Managing data using Excel

    • workwithdata.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of books series that contain Managing data using Excel [Dataset]. https://www.workwithdata.com/datasets/book-series?f=1&fcol0=j0-book&fop0=%3D&fval0=Managing+data+using+Excel&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book series. It has 1 row and is filtered where the books is Managing data using Excel. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  6. o

    Data-sets: Students Skills on Basic Computer Practice (Ms. Excel and Ms....

    • osf.io
    Updated Apr 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Itsar Rangka (2018). Data-sets: Students Skills on Basic Computer Practice (Ms. Excel and Ms. Word) [Dataset]. http://doi.org/10.17605/OSF.IO/6YJ7M
    Explore at:
    Dataset updated
    Apr 8, 2018
    Dataset provided by
    Center For Open Science
    Authors
    Itsar Rangka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This study aimed to evaluate students' skills in basic computer practice in junior high school. We evaluate the student’s skills to work with basics of Microsoft office software (Excel and Power Point) according to competency standards and school curriculum. The study involved 173 students who received the computer practice exam on March 2018. Data analysed using Rasch model approach.

  7. f

    Data from: Supplemental data

    • figshare.com
    xlsx
    Updated Mar 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    T Miyakoshi; Yoichi M. Ito (2024). Supplemental data [Dataset]. http://doi.org/10.6084/m9.figshare.24596058.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 15, 2024
    Dataset provided by
    figshare
    Authors
    T Miyakoshi; Yoichi M. Ito
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset for the article "The current utilization status of wearable devices in clinical research".Analyses were performed by utilizing the JMP Pro 16.10, Microsoft Excel for Mac version 16 (Microsoft).The file extension "jrp" is a file of the statistical analysis software JMP, which contains both the analysis code and the data set.In case JMP is not available, a "csv" file as a data set and JMP script, the analysis code, are prepared in "rtf" format.The "xlsx" file is a Microsoft Excel file that contains the data set and the data plotted or tabulated using Microsoft Excel functions.Supplementary Figure 1. NCT number duplication frequencyIncludes Excel file used to create the figure (Supplemental Figure 1).・Sfig1_NCT number duplication frequency.xlsxSupplementary Figure 2-5 Simple and annual time series aggregationIncludes Excel file, JMP repo file, csv dataset of JMP repo file and JMP scripts used to create the figure (Supplementary Figures 2-5).・Sfig2-5 Annual time series aggregation.xlsx・Sfig2 Study Type.jrp・Sfig4device type.jrp・Sfig3 Interventions Type.jrp・Sfig5Conditions type.jrp・Sfig2, 3 ,5_database.csv・Sfig2_JMP script_Study type.rtf・Sfig3_JMP script Interventions type.rtf・Sfig5_JMP script Conditions type.rtf・Sfig4_dataset.csv・Sfig4_JMP script_device type.rtfSupplementary Figures 6-11 Mosaic diagram of intervention by conditionSupplementary tables 4-9 Analysis of contingency table for intervention by condition JMP repot files used to create the figures(Supplementary Figures 6-11 ) and tables(Supplementary Tablea 4-9) , including the csv dataset of JMP repot files and JMP scripts.・Sfig6-11 Stable4-9 Intervention devicetype_conditions.jrp・Sfig6-11_Stable4-9_dataset.csv・Sfig6-11_Stable4-9_JMP script.rtfSupplementary Figure 12. Distribution of enrollmentIncludes Excel file, JMP repo file, csv dataset of JMP repo file and JMP scripts used to create the figure (Supplementary Figures 12).・Sfig12_Distribution of enrollment.jrp・Sfig12_Distribution of enrollment.csv・Sfig12_JMP script.rtf

  8. w

    Dataset of books series that contain Microsoft Excel 2000 : introductory...

    • workwithdata.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of books series that contain Microsoft Excel 2000 : introductory concepts and techniques [Dataset]. https://www.workwithdata.com/datasets/book-series?f=1&fcol0=j0-book&fop0=%3D&fval0=Microsoft+Excel+2000+:+introductory+concepts+and+techniques&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book series. It has 1 row and is filtered where the books is Microsoft Excel 2000 : introductory concepts and techniques. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  9. B

    Annual Retail Store Data, 2000 [Canada] [Excel]

    • borealisdata.ca
    • dataverse.scholarsportal.info
    • +1more
    Updated Sep 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Annual Retail Store Data, 2000 [Canada] [Excel] [Dataset]. http://doi.org/10.5683/SP3/TUQXW4
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 28, 2023
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.5683/SP3/TUQXW4https://borealisdata.ca/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.5683/SP3/TUQXW4

    Area covered
    Canada
    Description

    The annual Retail store data CD-ROM is an easy-to-use tool for quickly discovering retail trade patterns and trends. The current product presents results from the 1999 and 2000 Annual Retail Store and Annual Retail Chain surveys. This product contains numerous cross-classified data tables using the North American Industry Classification System (NAICS). The data tables provide access to a wide range of financial variables, such as revenues, expenses, inventory, sales per square footage (chain stores only) and the number of stores. Most data tables contain detailed information on industry (as low as 5-digit NAICS codes), geography (Canada, provinces and territories) and store type (chains, independents, franchises). The electronic product also contains survey metadata, questionnaires, information on industry codes and definitions, and the list of retail chain store respondents.

  10. FIRE1120: previous data tables

    • gov.uk
    Updated Oct 18, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2018). FIRE1120: previous data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire1120-previous-data-tables
    Explore at:
    Dataset updated
    Oct 18, 2018
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (17 October 2024)

    https://assets.publishing.service.gov.uk/media/6707823292bb81fcdbe7b5ff/fire-statistics-data-tables-fire1120-191023.xlsx">FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (19 October 2023) (MS Excel Spreadsheet, 194 KB)

    https://assets.publishing.service.gov.uk/media/652d3a7f6b6fbf0014b756d9/fire-statistics-data-tables-fire1120-201022.xlsx">FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (20 October 2022) (MS Excel Spreadsheet, 293 KB)

    https://assets.publishing.service.gov.uk/media/634e7f238fa8f5346ba7099b/fire-statistics-data-tables-fire1120-051121.xlsx">FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (05 November 2021) (MS Excel Spreadsheet, 220 KB)

    https://assets.publishing.service.gov.uk/media/61853a37e90e07198018fb0b/fire-statistics-data-tables-fire1120-211021.xlsx">FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (21 October 2021) (MS Excel Spreadsheet, 210 KB)

    https://assets.publishing.service.gov.uk/media/616d7d218fa8f5298406229e/fire-statistics-data-tables-fire1120-221020.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (22 October 2020) (MS Excel Spreadsheet, 157 KB)

    https://assets.publishing.service.gov.uk/media/5f86b42b8fa8f517090ab0e4/fire-statistics-data-tables-fire1120-141119.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (14 November 2019) (MS Excel Spreadsheet, 116 KB)

    https://assets.publishing.service.gov.uk/media/5dc9869ee5274a5c51437e43/fire-statistics-data-tables-fire1120-311019.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (31 October 2019) (MS Excel Spreadsheet, 116 KB)

    https://assets.publishing.service.gov.uk/media/5db7098040f0b6379a7acbc4/fire-statistics-data-tables-fire1120-170119.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (17 January 2019) (MS Excel Spreadsheet, 74.5 KB)

    https://assets.publishing.service.gov.uk/media/5c34bd7ee5274a65ab281de8/fire-statistics-data-tables-fire1120-18oct2018.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (18 October 2018) (MS Excel Spreadsheet, 74.3 KB)

    https://assets.publishing.service.gov.uk/media/5bbcc352e5274a3611919f80/fire-statistics-data-tables-fire1120.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (26 October 2017) (MS Excel Spreadsheet, 24.3 KB)

    Related content

    <a href="https://www.gov.uk/government/statistical-data-sets/fire-

  11. d

    Data from: Retrieving Multiple CANSIM Time Series

    • search.dataone.org
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Walter Piovesan (2023). Retrieving Multiple CANSIM Time Series [Dataset]. http://doi.org/10.5683/SP3/GBMIQL
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Walter Piovesan
    Description

    This is a computer exercise that takes you through retrieving multiple time series in CANSIM.

  12. d

    Working with Statistics Canada Data Tables in Excel / Travailler avec des...

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcoux, Julie (2023). Working with Statistics Canada Data Tables in Excel / Travailler avec des tableaux de données de Statistique Canada dans Excel [Dataset]. http://doi.org/10.5683/SP3/R8REJA
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Marcoux, Julie
    Area covered
    Canada
    Description

    Learn to decide which CSV version of a Statistics Canada data table to download depending on your goals and needs, and learn how to best work with the file in Excel once downloaded. Apprenez à décider de la meilleure version CSV d’un tableau de données de Statistique Canada à télécharger en fonction de vos objectifs et de vos besoins, et apprenez comment travailler avec le fichier dans Excel une fois téléchargé.

  13. Z

    Dairy Supply Chain Sales Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Panagiotis Sarigiannidis (2024). Dairy Supply Chain Sales Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7853252
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Anna Triantafyllou
    Vasileios Argyriou
    Thomas Lagkas
    Panagiotis Sarigiannidis
    Dimitris Iatropoulos
    Dimitrios Pliatsios
    Ilias Siniosoglou
    Athanasios Liatifis
    Konstantinos Georgakidis
    Christos Chaschatzis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    1.Introduction

    Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.

    One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.

    This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.

    1. Citation

    Please cite the following papers when using this dataset:

    I. Siniosoglou, K. Xouveroudis, V. Argyriou, T. Lagkas, S. K. Goudos, K. E. Psannis and P. Sarigiannidis, "Evaluating the Effect of Volatile Federated Timeseries on Modern DNNs: Attention over Long/Short Memory," in the 12th International Conference on Circuits and Systems Technologies (MOCAST 2023), April 2023, Accepted

    1. Dataset Modalities

    The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.

    3.1 Data Collection

    The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.

    The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.

    Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.

    It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.

    The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).

    File

    Period

    Number of Samples (days)

    product 1 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 1 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 1 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 2 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 2 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 2 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 3 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 3 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 3 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 4 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 4 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 4 2022.xlsx

    01/01/2022–31/12/2022

    364

    product 5 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 5 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 5 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 6 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 6 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 6 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 7 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 7 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 7 2022.xlsx

    01/01/2022–31/12/2022

    365

    3.2 Dataset Overview

    The following table enumerates and explains the features included across all of the included files.

    Feature

    Description

    Unit

    Day

    day of the month

    -

    Month

    Month

    -

    Year

    Year

    -

    daily_unit_sales

    Daily sales - the amount of products, measured in units, that during that specific day were sold

    units

    previous_year_daily_unit_sales

    Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year

    units

    percentage_difference_daily_unit_sales

    The percentage difference between the two above values

    %

    daily_unit_sales_kg

    The amount of products, measured in kilograms, that during that specific day were sold

    kg

    previous_year_daily_unit_sales_kg

    Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year

    kg

    percentage_difference_daily_unit_sales_kg

    The percentage difference between the two above values

    kg

    daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned

    %

    previous_year_daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned the previous year

    %

    points_of_distribution

    The amount of sales representatives through which the product was sold to the market for this year

    previous_year_points_of_distribution

    The amount of sales representatives through which the product was sold to the market for the same day for the previous year

    Table 1 – Dataset Feature Description

    1. Structure and Format

    4.1 Dataset Structure

    The provided dataset has the following structure:

    Where:

    Name

    Type

    Property

    Readme.docx

    Report

    A File that contains the documentation of the Dataset.

    product X

    Folder

    A folder containing the data of a product X.

    product X YYYY.xlsx

    Data file

    An excel file containing the sales data of product X for year YYYY.

    Table 2 - Dataset File Description

    1. Acknowledgement

    This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 957406 (TERMINET).

    References

    [1] MEVGAL is a Greek dairy production company

  14. Sorting/selecting data in Excel with VLOOKUP()

    • figshare.com
    xlsx
    Updated Jan 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anneke Batenburg (2016). Sorting/selecting data in Excel with VLOOKUP() [Dataset]. http://doi.org/10.6084/m9.figshare.964802.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Anneke Batenburg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Example of how I use MS Excel's VLOOKUP() function to filter my data.

  15. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  16. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  17. f

    Data from: Correlation matrices.

    • plos.figshare.com
    xlsx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bálint Maczák; Gergely Vadai; András Dér; István Szendi; Zoltán Gingl (2023). Correlation matrices. [Dataset]. http://doi.org/10.1371/journal.pone.0261718.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bálint Maczák; Gergely Vadai; András Dér; István Szendi; Zoltán Gingl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Our analyses are based on 148×148 time- and frequency-domain correlation matrices. A correlation matrix covers all the possible use cases of every activity metric listed in the article. With these activity metrics and different preprocessing methods, we were able to calculate 148 different activity signals from multiple datasets of a single measurement. Each cell of a correlation matrix contains the mean and standard deviation of the calculated Pearson’s correlation coefficients between two types of activity signals based on 42 different subjects’ 10-days-long motion. The small correlation matrices presented both in the article and in the appendixes are derived from these 148 × 148 correlation matrices. This published Excel workbook contains multiple sheets labelled according to their content. The mean and standard deviation values for both time- and frequency-domain correlations can be found on their own separate sheet. Moreover, we reproduced the correlation matrix with an alternatively parametrized digital filter, which doubled the number of sheets to 8. In the Excel workbook, we used the same notation for both the datasets and activity metrics as presented in this article with an extension to the PIM metric: PIMs denotes the PIM metric where we used Simpson’s 3/8 rule integration method, PIMr indicates the PIM metric where we calculated the integral by simple numerical integration (Riemann sum). (XLSX)

  18. B

    Galaxy Rotation Velocity Fittings

    • borealisdata.ca
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Réjean Plamondon (2025). Galaxy Rotation Velocity Fittings [Dataset]. http://doi.org/10.5683/SP3/LZACM0
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 25, 2025
    Dataset provided by
    Borealis
    Authors
    Réjean Plamondon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The folder named data-C-galaxies input contains the input data reported in the Sofue's database in Excel format for the 291 galaxies of this series, while the corresponding data-C-galaxies-output files present the detailed fitting results for each galaxy of the C-Series. The first plot is the global dispersion curve. The EXCEL file following this spread curve summarizes the fitting parameters, the estimated mass, the maximal velocity and the SNR results obtained for the individual best fitting plots for each galaxy. These plots are successively presented after the EXCEL files. Similarly, the files named data-P-galaxies input and data-P-galaxies-output as well as data-S-galaxies input and data-S-galaxies-output report the input data and the best fitting results of the 31 galaxies of the P-Series and of the 229 galaxies of the S-Series respectively. As seen in the last lines of the EXCEL files, overall, the mean SNR and its standard deviation is 25.2 (3.8) dB for the C-series, 23.6 (5.2) dB for the P-series and 22.1 (5.9) for the S-series, which can be considered as very good for a two-parameter fitting.

  19. Data-analysis-EXCEL-POWER-BI

    • kaggle.com
    Updated Jul 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Samir (2023). Data-analysis-EXCEL-POWER-BI [Dataset]. https://www.kaggle.com/datasets/ahmedsamir11111/data-analysis-excel-power-bi/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 27, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ahmed Samir
    Description

    In the beginning, the case was just data for a company that did not indicate any useful information that would help decision-makers. In this case, after collecting a number of revenues and expenses over the months. Needed to know the answers to a number of questions to make important decisions based on intuition-free data. The Questions:- About Rev. & Exp.
    - What is the total sales and profit for the whole period? And What Total products sold? And What is Net profit? - In which month was the highest percentage of revenue achieved? And in the same month, what is the largest day have amount of revenue? - In which month was the highest percentage of expenses achieved? And in the same month, what is the largest day have amount of exp.? - What is the extent of the change in expenditures for each month? Percentage change in net profit over the months? About Distribution - What is the number of products sold each month in the largest state? -The top 3 largest states buying products during the two years? Comparison - Between Sales Method by Sales? - Between Men and Women’s Product by Sales? - Between Retailer by Profit?

    What I did? - Understanding the data - preprocessing and clean the data - Solve The problems in the cleaning like missing data or false type data - querying the data and make some calculations like "COGS" with power query "Excel". - Modeling and make some measures on the data with power pivot "Excel" - After finishing processing and preparation, I made Some Pivot tables to answers the questions. - Last, I made a dashboard with Power BI to visualize The Results.

  20. m

    Raw data outputs 1-18

    • bridges.monash.edu
    • researchdata.edu.au
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie (2023). Raw data outputs 1-18 [Dataset]. http://doi.org/10.26180/21259491.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Monash University
    Authors
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Julie Marcoux (2023). Easing into Excellent Excel Practices Learning Series / Série d'apprentissages en route vers des excellentes pratiques Excel [Dataset]. http://doi.org/10.5683/SP3/WZYO1F

Easing into Excellent Excel Practices Learning Series / Série d'apprentissages en route vers des excellentes pratiques Excel

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Nov 15, 2023
Dataset provided by
Borealis
Authors
Julie Marcoux
License

Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically

Description

With a step-by-step approach, learn to prepare Excel files, data worksheets, and individual data columns for data analysis; practice conditional formatting and creating pivot tables/charts; go over basic principles of Research Data Management as they might apply to an Excel project. Avec une approche étape par étape, apprenez à préparer pour l’analyse des données des fichiers Excel, des feuilles de calcul de données et des colonnes de données individuelles; pratiquez la mise en forme conditionnelle et la création de tableaux croisés dynamiques ou de graphiques; passez en revue les principes de base de la gestion des données de recherche tels qu’ils pourraient s’appliquer à un projet Excel.

Search
Clear search
Close search
Google apps
Main menu