100+ datasets found
  1. Dataset_Python_Question_Answer

    • kaggle.com
    zip
    Updated Mar 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chinmaya (2024). Dataset_Python_Question_Answer [Dataset]. https://www.kaggle.com/datasets/chinmayadatt/dataset-python-question-answer
    Explore at:
    zip(189137 bytes)Available download formats
    Dataset updated
    Mar 29, 2024
    Authors
    Chinmaya
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    This dataset is about Python programming. Question and answers are generated using Gemma. There are more than four hundred questions and their corresponding answers about Python programming.

    Questions are ranging from concepts like data-types, variables and keywords to regular-expression and threading.

    I have used this dataset here

    The code used for dataset generated is available here

  2. Pandas Practice Dataset

    • kaggle.com
    zip
    Updated Jan 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mrityunjay Pathak (2023). Pandas Practice Dataset [Dataset]. https://www.kaggle.com/datasets/themrityunjaypathak/pandas-practice-dataset/discussion
    Explore at:
    zip(493 bytes)Available download formats
    Dataset updated
    Jan 27, 2023
    Authors
    Mrityunjay Pathak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    What is Pandas?

    Pandas is a Python library used for working with data sets.

    It has functions for analyzing, cleaning, exploring, and manipulating data.

    The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.

    Why Use Pandas?

    Pandas allows us to analyze big data and make conclusions based on statistical theories.

    Pandas can clean messy data sets, and make them readable and relevant.

    Relevant data is very important in data science.

    What Can Pandas Do?

    Pandas gives you answers about the data. Like:

    Is there a correlation between two or more columns?

    What is average value?

    Max value?

    Min value?

  3. Data from: KGTorrent: A Dataset of Python Jupyter Notebooks from Kaggle

    • zenodo.org
    • dataon.kisti.re.kr
    • +1more
    bin, bz2, pdf
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luigi Quaranta; Fabio Calefato; Fabio Calefato; Filippo Lanubile; Filippo Lanubile; Luigi Quaranta (2024). KGTorrent: A Dataset of Python Jupyter Notebooks from Kaggle [Dataset]. http://doi.org/10.5281/zenodo.4468523
    Explore at:
    bz2, pdf, binAvailable download formats
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Luigi Quaranta; Fabio Calefato; Fabio Calefato; Filippo Lanubile; Filippo Lanubile; Luigi Quaranta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    KGTorrent is a dataset of Python Jupyter notebooks from the Kaggle platform.

    The dataset is accompanied by a MySQL database containing metadata about the notebooks and the activity of Kaggle users on the platform. The information to build the MySQL database has been derived from Meta Kaggle, a publicly available dataset containing Kaggle metadata.

    In this package, we share the complete KGTorrent dataset (consisting of the dataset itself plus its companion database), as well as the specific version of Meta Kaggle used to build the database.

    More specifically, the package comprises the following three compressed archives:

    1. KGT_dataset.tar.bz2, the dataset of Jupyter notebooks;

    2. KGTorrent_dump_10-2020.sql.tar.bz2, the dump of the MySQL companion database;

    3. MetaKaggle27Oct2020.tar.bz2, a copy of the Meta Kaggle version used to build the database.

    Moreover, we include KGTorrent_logical_schema.pdf, the logical schema of the KGTorrent MySQL database.

  4. All Seaborn Built-in Datasets 📊✨

    • kaggle.com
    zip
    Updated Aug 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdelrahman Mohamed (2024). All Seaborn Built-in Datasets 📊✨ [Dataset]. https://www.kaggle.com/datasets/abdoomoh/all-seaborn-built-in-datasets
    Explore at:
    zip(1383218 bytes)Available download formats
    Dataset updated
    Aug 27, 2024
    Authors
    Abdelrahman Mohamed
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Description: - This dataset includes all 22 built-in datasets from the Seaborn library, a widely used Python data visualization tool. Seaborn's built-in datasets are essential resources for anyone interested in practicing data analysis, visualization, and machine learning. They span a wide range of topics, from classic datasets like the Iris flower classification to real-world data such as Titanic survival records and diamond characteristics.

    • Included Datasets:
      • Anagrams: Analysis of word anagram patterns.
      • Anscombe: Anscombe's quartet demonstrating the importance of data visualization.
      • Attention: Data on attention span variations in different scenarios.
      • Brain Networks: Connectivity data within brain networks.
      • Car Crashes: US car crash statistics.
      • Diamonds: Data on diamond properties including price, cut, and clarity.
      • Dots: Randomly generated data for scatter plot visualization.
      • Dow Jones: Historical records of the Dow Jones Industrial Average.
      • Exercise: The relationship between exercise and health metrics.
      • Flights: Monthly passenger numbers on flights.
      • FMRI: Functional MRI data capturing brain activity.
      • Geyser: Eruption times of the Old Faithful geyser.
      • Glue: Strength of glue under different conditions.
      • Health Expenditure: Health expenditure statistics across countries.
      • Iris: Famous dataset for classifying Iris species.
      • MPG: Miles per gallon for various vehicles.
      • Penguins: Data on penguin species and their features.
      • Planets: Characteristics of discovered exoplanets.
      • Sea Ice: Measurements of sea ice extent.
      • Taxis: Taxi trips data in a city.
      • Tips: Tipping data collected from a restaurant.
      • Titanic: Survival data from the Titanic disaster.

    This complete collection serves as an excellent starting point for anyone looking to improve their data science skills, offering a wide array of datasets suitable for both beginners and advanced users.

  5. Data from: Code4ML: a Large-scale Dataset of annotated Machine Learning Code...

    • zenodo.org
    csv
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonymous authors; Anonymous authors (2023). Code4ML: a Large-scale Dataset of annotated Machine Learning Code [Dataset]. http://doi.org/10.5281/zenodo.6607065
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anonymous authors; Anonymous authors
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We present Code4ML: a Large-scale Dataset of annotated Machine Learning Code, a corpus of Python code snippets, competition summaries, and data descriptions from Kaggle.

    The data is organized in a table structure. Code4ML includes several main objects: competitions information, raw code blocks collected form Kaggle and manually marked up snippets. Each table has a .csv format.

    Each competition has the text description and metadata, reflecting competition and used dataset characteristics as well as evaluation metrics (competitions.csv). The corresponding datasets can be loaded using Kaggle API and data sources.

    The code blocks themselves and their metadata are collected to the data frames concerning the publishing year of the initial kernels. The current version of the corpus includes two code blocks files: snippets from kernels up to the 2020 year (сode_blocks_upto_20.csv) and those from the 2021 year (сode_blocks_21.csv) with corresponding metadata. The corpus consists of 2 743 615 ML code blocks collected from 107 524 Jupyter notebooks.

    Marked up code blocks have the following metadata: anonymized id, the format of the used data (for example, table or audio), the id of the semantic type, a flag for the code errors, the estimated relevance to the semantic class (from 1 to 5), the id of the parent notebook, and the name of the competition. The current version of the corpus has ~12 000 labeled snippets (markup_data_20220415.csv).

    As marked up code blocks data contains the numeric id of the code block semantic type, we also provide a mapping from this number to semantic type and subclass (actual_graph_2022-06-01.csv).

    The dataset can help solve various problems, including code synthesis from a prompt in natural language, code autocompletion, and semantic code classification.

  6. Sample data files for Python Course

    • figshare.com
    txt
    Updated Nov 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Verhaar (2022). Sample data files for Python Course [Dataset]. http://doi.org/10.6084/m9.figshare.21501549.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Nov 4, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Peter Verhaar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sample data set used in an introductory course on Programming in Python

  7. Z

    Data Cleaning, Translation & Split of the Dataset for the Automatic...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Aug 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Köhler, Juliane (2022). Data Cleaning, Translation & Split of the Dataset for the Automatic Classification of Documents for the Classification System for the Berliner Handreichungen zur Bibliotheks- und Informationswissenschaft [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6957841
    Explore at:
    Dataset updated
    Aug 8, 2022
    Authors
    Köhler, Juliane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.

    Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.

    ger_train.csv – The German training set as CSV file.

    ger_validation.csv – The German validation set as CSV file.

    en_test.csv – The English test set as CSV file.

    en_train.csv – The English training set as CSV file.

    en_validation.csv – The English validation set as CSV file.

    splitting.py – The python code for splitting a dataset into train, test and validation set.

    DataSetTrans_de.csv – The final German dataset as a CSV file.

    DataSetTrans_en.csv – The final English dataset as a CSV file.

    translation.py – The python code for translating the cleaned dataset.

  8. Dataset of a Study of Computational reproducibility of Jupyter notebooks...

    • zenodo.org
    pdf, zip
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sheeba Samuel; Sheeba Samuel; Daniel Mietchen; Daniel Mietchen (2024). Dataset of a Study of Computational reproducibility of Jupyter notebooks from biomedical publications [Dataset]. http://doi.org/10.5281/zenodo.8226725
    Explore at:
    zip, pdfAvailable download formats
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sheeba Samuel; Sheeba Samuel; Daniel Mietchen; Daniel Mietchen
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This repository contains the dataset for the study of computational reproducibility of Jupyter notebooks from biomedical publications. Our focus lies in evaluating the extent of reproducibility of Jupyter notebooks derived from GitHub repositories linked to publications present in the biomedical literature repository, PubMed Central. We analyzed the reproducibility of Jupyter notebooks from GitHub repositories associated with publications indexed in the biomedical literature repository PubMed Central. The dataset includes the metadata information of the journals, publications, the Github repositories mentioned in the publications and the notebooks present in the Github repositories.

    Data Collection and Analysis

    We use the code for reproducibility of Jupyter notebooks from the study done by Pimentel et al., 2019 and adapted the code from ReproduceMeGit. We provide code for collecting the publication metadata from PubMed Central using NCBI Entrez utilities via Biopython.

    Our approach involves searching PMC using the esearch function for Jupyter notebooks using the query: ``(ipynb OR jupyter OR ipython) AND github''. We meticulously retrieve data in XML format, capturing essential details about journals and articles. By systematically scanning the entire article, encompassing the abstract, body, data availability statement, and supplementary materials, we extract GitHub links. Additionally, we mine repositories for key information such as dependency declarations found in files like requirements.txt, setup.py, and pipfile. Leveraging the GitHub API, we enrich our data by incorporating repository creation dates, update histories, pushes, and programming languages.

    All the extracted information is stored in a SQLite database. After collecting and creating the database tables, we ran a pipeline to collect the Jupyter notebooks contained in the GitHub repositories based on the code from Pimentel et al., 2019.

    Our reproducibility pipeline was started on 27 March 2023.

    Repository Structure

    Our repository is organized into two main folders:

    • archaeology: This directory hosts scripts designed to download, parse, and extract metadata from PubMed Central publications and associated repositories. There are 24 database tables created which store the information on articles, journals, authors, repositories, notebooks, cells, modules, executions, etc. in the db.sqlite database file.
    • analyses: Here, you will find notebooks instrumental in the in-depth analysis of data related to our study. The db.sqlite file generated by running the archaelogy folder is stored in the analyses folder for further analysis. The path can however be configured in the config.py file. There are two sets of notebooks: one set (naming pattern N[0-9]*.ipynb) is focused on examining data pertaining to repositories and notebooks, while the other set (PMC[0-9]*.ipynb) is for analyzing data associated with publications in PubMed Central, i.e.\ for plots involving data about articles, journals, publication dates or research fields. The resultant figures from the these notebooks are stored in the 'outputs' folder.
    • MethodsWorkflow: The MethodsWorkflow file provides a conceptual overview of the workflow used in this study.

    Accessing Data and Resources:

    • All the data generated during the initial study can be accessed at https://doi.org/10.5281/zenodo.6802158
    • For the latest results and re-run data, refer to this link.
    • The comprehensive SQLite database that encapsulates all the study's extracted data is stored in the db.sqlite file.
    • The metadata in xml format extracted from PubMed Central which contains the information about the articles and journal can be accessed in pmc.xml file.

    System Requirements:

    Running the pipeline:

    • Clone the computational-reproducibility-pmc repository using Git:
      git clone https://github.com/fusion-jena/computational-reproducibility-pmc.git
    • Navigate to the computational-reproducibility-pmc directory:
      cd computational-reproducibility-pmc/computational-reproducibility-pmc
    • Configure environment variables in the config.py file:
      GITHUB_USERNAME = os.environ.get("JUP_GITHUB_USERNAME", "add your github username here")
      GITHUB_TOKEN = os.environ.get("JUP_GITHUB_PASSWORD", "add your github token here")
    • Other environment variables can also be set in the config.py file.
      BASE_DIR = Path(os.environ.get("JUP_BASE_DIR", "./")).expanduser() # Add the path of directory where the GitHub repositories will be saved
      DB_CONNECTION = os.environ.get("JUP_DB_CONNECTION", "sqlite:///db.sqlite") # Add the path where the database is stored.
    • To set up conda environments for each python versions, upgrade pip, install pipenv, and install the archaeology package in each environment, execute:
      source conda-setup.sh
    • Change to the archaeology directory
      cd archaeology
    • Activate conda environment. We used py36 to run the pipeline.
      conda activate py36
    • Execute the main pipeline script (r0_main.py):
      python r0_main.py

    Running the analysis:

    • Navigate to the analysis directory.
      cd analyses
    • Activate conda environment. We use raw38 for the analysis of the metadata collected in the study.
      conda activate raw38
    • Install the required packages using the requirements.txt file.
      pip install -r requirements.txt
    • Launch Jupyterlab
      jupyter lab
    • Refer to the Index.ipynb notebook for the execution order and guidance.

    References:

  9. Data from: NICHE: A Curated Dataset of Engineered Machine Learning Projects...

    • figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ratnadira Widyasari; Zhou YANG; Ferdian Thung; Sheng Qin Sim; Fiona Wee; Camellia Lok; Jack Phan; Haodi Qi; Constance Tan; Qijin Tay; David LO (2023). NICHE: A Curated Dataset of Engineered Machine Learning Projects in Python [Dataset]. http://doi.org/10.6084/m9.figshare.21967265.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Ratnadira Widyasari; Zhou YANG; Ferdian Thung; Sheng Qin Sim; Fiona Wee; Camellia Lok; Jack Phan; Haodi Qi; Constance Tan; Qijin Tay; David LO
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Machine learning (ML) has gained much attention and has been incorporated into our daily lives. While there are numerous publicly available ML projects on open source platforms such as GitHub, there have been limited attempts in filtering those projects to curate ML projects of high quality. The limited availability of such high-quality dataset poses an obstacle to understanding ML projects. To help clear this obstacle, we present NICHE, a manually labelled dataset consisting of 572 ML projects. Based on evidences of good software engineering practices, we label 441 of these projects as engineered and 131 as non-engineered. In this repository we provide "NICHE.csv" file that contains the list of the project names along with their labels, descriptive information for every dimension, and several basic statistics, such as the number of stars and commits. This dataset can help researchers understand the practices that are followed in high-quality ML projects. It can also be used as a benchmark for classifiers designed to identify engineered ML projects.

    GitHub page: https://github.com/soarsmu/NICHE

  10. f

    datasets

    • figshare.com
    txt
    Updated Oct 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos Rodriguez-Contreras (2017). datasets [Dataset]. http://doi.org/10.6084/m9.figshare.5472970.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Oct 5, 2017
    Dataset provided by
    figshare
    Authors
    Carlos Rodriguez-Contreras
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Datasets for practising in class

  11. Exploratory Data Analysis on Automobile Dataset

    • kaggle.com
    zip
    Updated Sep 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monis Ahmad (2022). Exploratory Data Analysis on Automobile Dataset [Dataset]. https://www.kaggle.com/datasets/monisahmad/automobile
    Explore at:
    zip(4915 bytes)Available download formats
    Dataset updated
    Sep 12, 2022
    Authors
    Monis Ahmad
    Description

    Dataset

    This dataset was created by Monis Ahmad

    Contents

  12. Storage and Transit Time Data and Code

    • zenodo.org
    zip
    Updated Oct 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Felton; Andrew Felton (2024). Storage and Transit Time Data and Code [Dataset]. http://doi.org/10.5281/zenodo.14009758
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 29, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrew Felton; Andrew Felton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Author: Andrew J. Felton
    Date: 10/29/2024

    This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis, and figure production for the study entitled:

    "Global estimates of the storage and transit time of water through vegetation"

    Please note that 'turnover' and 'transit' are used interchangeably. Also please note that this R project has been updated multiple times as the analysis has updated.

    Data information:

    The data folder contains key data sets used for analysis. In particular:

    "data/turnover_from_python/updated/august_2024_lc/" contains the core datasets used in this study including global arrays summarizing five year (2016-2020) averages of mean (annual) and minimum (monthly) transit time, storage, canopy transpiration, and number of months of data able as both an array (.nc) or data table (.csv). These data were produced in python using the python scripts found in the "supporting_code" folder. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here. The "supporting_data"" folder also contains annual (2016-2020) MODIS land cover data used in the analysis and contains separate filters containing the original data (.hdf) and then the final process (filtered) data in .nc format. The resulting annual land cover distributions were used in the pre-processing of data in python.

    #Code information

    Python scripts can be found in the "supporting_code" folder.

    Each R script in this project has a role:

    "01_start.R": This script sets the working directory, loads in the tidyverse package (the remaining packages in this project are called using the `::` operator), and can run two other scripts: one that loads the customized functions (02_functions.R) and one for importing and processing the key dataset for this analysis (03_import_data.R).

    "02_functions.R": This script contains custom functions. Load this using the
    `source()` function in the 01_start.R script.

    "03_import_data.R": This script imports and processes the .csv transit data. It joins the mean (annual) transit time data with the minimum (monthly) transit data to generate one dataset for analysis: annual_turnover_2. Load this using the
    `source()` function in the 01_start.R script.

    "04_figures_tables.R": This is the main workhouse for figure/table production and
    supporting analyses. This script generates the key figures and summary statistics
    used in the study that then get saved in the manuscript_figures folder. Note that all
    maps were produced using Python code found in the "supporting_code"" folder.

    "supporting_generate_data.R": This script processes supporting data used in the analysis, primarily the varying ground-based datasets of leaf water content.

    "supporting_process_land_cover.R": This takes annual MODIS land cover distributions and processes them through a multi-step filtering process so that they can be used in preprocessing of datasets in python.

  13. T

    mnist

    • tensorflow.org
    • universe.roboflow.com
    • +4more
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). mnist [Dataset]. https://www.tensorflow.org/datasets/catalog/mnist
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    The MNIST database of handwritten digits.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('mnist', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/mnist-3.0.1.png" alt="Visualization" width="500px">

  14. DATS 6401 - Final Project - Yon ho Cheong.zip

    • figshare.com
    zip
    Updated Dec 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yon ho Cheong (2018). DATS 6401 - Final Project - Yon ho Cheong.zip [Dataset]. http://doi.org/10.6084/m9.figshare.7471007.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 15, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Yon ho Cheong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    AbstractThe H1B is an employment-based visa category for temporary foreign workers in the United States. Every year, the US immigration department receives over 200,000 petitions and selects 85,000 applications through a random process and the U.S. employer must submit a petition for an H1B visa to the US immigration department. This is the most common visa status applied to international students once they complete college or higher education and begin working in a full-time position. The project provides essential information on job titles, preferred regions of settlement, foreign applicants and employers' trends for H1B visa application. According to locations, employers, job titles and salary range make up most of the H1B petitions, so different visualization utilizing tools will be used in order to analyze and interpreted in relation to the trends of the H1B visa to provide a recommendation to the applicant. This report is the base of the project for Visualization of Complex Data class at the George Washington University, some examples in this project has an analysis for the different relevant variables (Case Status, Employer Name, SOC name, Job Title, Prevailing Wage, Worksite, and Latitude and Longitude information) from Kaggle and Office of Foreign Labor Certification(OFLC) in order to see the H1B visa changes in the past several decades. Keywords: H1B visa, Data Analysis, Visualization of Complex Data, HTML, JavaScript, CSS, Tableau, D3.jsDatasetThe dataset contains 10 columns and covers a total of 3 million records spanning from 2011-2016. The relevant columns in the dataset include case status, employer name, SOC name, jobe title, full time position, prevailing wage, year, worksite, and latitude and longitude information.Link to dataset: https://www.kaggle.com/nsharan/h-1b-visaLink to dataset(FY2017): https://www.foreignlaborcert.doleta.gov/performancedata.cfmRunning the codeOpen Index.htmlData ProcessingDoing some data preprocessing to transform the raw data into an understandable format.Find and combine any other external datasets to enrich the analysis such as dataset of FY2017.To make appropriated Visualizations, variables should be Developed and compiled into visualization programs.Draw a geo map and scatter plot to compare the fastest growth in fixed value and in percentages.Extract some aspects and analyze the changes in employers’ preference as well as forecasts for the future trends.VisualizationsCombo chart: this chart shows the overall volume of receipts and approvals rate.Scatter plot: scatter plot shows the beneficiary country of birth.Geo map: this map shows All States of H1B petitions filed.Line chart: this chart shows top10 states of H1B petitions filed. Pie chart: this chart shows comparison of Education level and occupations for petitions FY2011 vs FY2017.Tree map: tree map shows overall top employers who submit the greatest number of applications.Side-by-side bar chart: this chart shows overall comparison of Data Scientist and Data Analyst.Highlight table: this table shows mean wage of a Data Scientist and Data Analyst with case status certified.Bubble chart: this chart shows top10 companies for Data Scientist and Data Analyst.Related ResearchThe H-1B Visa Debate, Explained - Harvard Business Reviewhttps://hbr.org/2017/05/the-h-1b-visa-debate-explainedForeign Labor Certification Data Centerhttps://www.foreignlaborcert.doleta.govKey facts about the U.S. H-1B visa programhttp://www.pewresearch.org/fact-tank/2017/04/27/key-facts-about-the-u-s-h-1b-visa-program/H1B visa News and Updates from The Economic Timeshttps://economictimes.indiatimes.com/topic/H1B-visa/newsH-1B visa - Wikipediahttps://en.wikipedia.org/wiki/H-1B_visaKey FindingsFrom the analysis, the government is cutting down the number of approvals for H1B on 2017.In the past decade, due to the nature of demand for high-skilled workers, visa holders have clustered in STEM fields and come mostly from countries in Asia such as China and India.Technical Jobs fill up the majority of Top 10 Jobs among foreign workers such as Computer Systems Analyst and Software Developers.The employers located in the metro areas thrive to find foreign workforce who can fill the technical position that they have in their organization.States like California, New York, Washington, New Jersey, Massachusetts, Illinois, and Texas are the prime location for foreign workers and provide many job opportunities. Top Companies such Infosys, Tata, IBM India that submit most H1B Visa Applications are companies based in India associated with software and IT services.Data Scientist position has experienced an exponential growth in terms of H1B visa applications and jobs are clustered in West region with the highest number.Visualization utilizing programsHTML, JavaScript, CSS, D3.js, Google API, Python, R, and Tableau

  15. h

    kaggle-entity-annotated-corpus-ner-dataset

    • huggingface.co
    Updated Jul 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rafael Arias Calles (2022). kaggle-entity-annotated-corpus-ner-dataset [Dataset]. https://huggingface.co/datasets/rjac/kaggle-entity-annotated-corpus-ner-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 10, 2022
    Authors
    Rafael Arias Calles
    License

    https://choosealicense.com/licenses/odbl/https://choosealicense.com/licenses/odbl/

    Description

    Date: 2022-07-10 Files: ner_dataset.csv Source: Kaggle entity annotated corpus notes: The dataset only contains the tokens and ner tag labels. Labels are uppercase.

      About Dataset
    

    from Kaggle Datasets

      Context
    

    Annotated Corpus for Named Entity Recognition using GMB(Groningen Meaning Bank) corpus for entity classification with enhanced and popular features by Natural Language Processing applied to the data set. Tip: Use Pandas Dataframe to load dataset if using Python for… See the full description on the dataset page: https://huggingface.co/datasets/rjac/kaggle-entity-annotated-corpus-ner-dataset.

  16. Ecommerce Dataset for Data Analysis

    • kaggle.com
    zip
    Updated Sep 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shrishti Manja (2024). Ecommerce Dataset for Data Analysis [Dataset]. https://www.kaggle.com/datasets/shrishtimanja/ecommerce-dataset-for-data-analysis/code
    Explore at:
    zip(2028853 bytes)Available download formats
    Dataset updated
    Sep 19, 2024
    Authors
    Shrishti Manja
    Description

    This dataset contains 55,000 entries of synthetic customer transactions, generated using Python's Faker library. The goal behind creating this dataset was to provide a resource for learners like myself to explore, analyze, and apply various data analysis techniques in a context that closely mimics real-world data.

    About the Dataset: - CID (Customer ID): A unique identifier for each customer. - TID (Transaction ID): A unique identifier for each transaction. - Gender: The gender of the customer, categorized as Male or Female. - Age Group: Age group of the customer, divided into several ranges. - Purchase Date: The timestamp of when the transaction took place. - Product Category: The category of the product purchased, such as Electronics, Apparel, etc. - Discount Availed: Indicates whether the customer availed any discount (Yes/No). - Discount Name: Name of the discount applied (e.g., FESTIVE50). - Discount Amount (INR): The amount of discount availed by the customer. - Gross Amount: The total amount before applying any discount. - Net Amount: The final amount after applying the discount. - Purchase Method: The payment method used (e.g., Credit Card, Debit Card, etc.). - Location: The city where the purchase took place.

    Use Cases: 1. Exploratory Data Analysis (EDA): This dataset is ideal for conducting EDA, allowing users to practice techniques such as summary statistics, visualizations, and identifying patterns within the data. 2. Data Preprocessing and Cleaning: Learners can work on handling missing data, encoding categorical variables, and normalizing numerical values to prepare the dataset for analysis. 3. Data Visualization: Use tools like Python’s Matplotlib, Seaborn, or Power BI to visualize purchasing trends, customer demographics, or the impact of discounts on purchase amounts. 4. Machine Learning Applications: After applying feature engineering, this dataset is suitable for supervised learning models, such as predicting whether a customer will avail a discount or forecasting purchase amounts based on the input features.

    This dataset provides an excellent sandbox for honing skills in data analysis, machine learning, and visualization in a structured but flexible manner.

    This is not a real dataset. This dataset was generated using Python's Faker library for the sole purpose of learning

  17. T

    fashion_mnist

    • tensorflow.org
    • opendatalab.com
    • +3more
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). fashion_mnist [Dataset]. https://www.tensorflow.org/datasets/catalog/fashion_mnist
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    Fashion-MNIST is a dataset of Zalando's article images consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('fashion_mnist', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/fashion_mnist-3.0.1.png" alt="Visualization" width="500px">

  18. Data set python

    • kaggle.com
    zip
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kolluri Nithin (2023). Data set python [Dataset]. https://www.kaggle.com/datasets/kollurinithin/data-set-python/code
    Explore at:
    zip(309360 bytes)Available download formats
    Dataset updated
    Jul 13, 2023
    Authors
    Kolluri Nithin
    Description

    Dataset

    This dataset was created by Kolluri Nithin

    Contents

  19. d

    Hydroinformatics Instruction Module Example Code: Databases and SQL in...

    • search.dataone.org
    • beta.hydroshare.org
    • +1more
    Updated Dec 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amber Spackman Jones; Jeffery S. Horsburgh; Camilo J. Bastidas Pacheco (2023). Hydroinformatics Instruction Module Example Code: Databases and SQL in Python [Dataset]. https://search.dataone.org/view/sha256%3A2f7a187ad86e4d584cd35755a67398ffa67d6ebfc81dc1ec01539b85ccd827dc
    Explore at:
    Dataset updated
    Dec 30, 2023
    Dataset provided by
    Hydroshare
    Authors
    Amber Spackman Jones; Jeffery S. Horsburgh; Camilo J. Bastidas Pacheco
    Description

    This resource contains Jupyter Notebooks with examples that illustrate how to work with SQLite databases in Python including database creation and viewing and querying with SQL. The resource is part of set of materials for hydroinformatics and water data science instruction. Complete learning module materials are found in HydroLearn: Jones, A.S., Horsburgh, J.S., Bastidas Pacheco, C.J. (2022). Hydroinformatics and Water Data Science. HydroLearn. https://edx.hydrolearn.org/courses/course-v1:USU+CEE6110+2022/about..

    This resources consists of 3 example notebooks and a SQLite database.

    Notebooks: 1. Example 1: Querying databases using SQL in Python 2. Example 2: Python functions to query SQLite databases 3. Example 3: SQL join, aggregate, and subquery functions

    Data files: These examples use a SQLite database that uses the Observations Data Model structure and is pre-populated with Logan River temperature data.

  20. COVID-19 Data Visualization Using Python

    • kaggle.com
    zip
    Updated Apr 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adithya Wijesinghe (2023). COVID-19 Data Visualization Using Python [Dataset]. https://www.kaggle.com/datasets/adithyawijesinghe/covid-19-data
    Explore at:
    zip(1291081 bytes)Available download formats
    Dataset updated
    Apr 21, 2023
    Authors
    Adithya Wijesinghe
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Description

    Data visualization using Python (Pandas, Plotly).

    Data was used to visualization of the infection rate and the death rate from 01/20 to 04/22.

    The data was made available on Github: https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Chinmaya (2024). Dataset_Python_Question_Answer [Dataset]. https://www.kaggle.com/datasets/chinmayadatt/dataset-python-question-answer
Organization logo

Dataset_Python_Question_Answer

Answer common questions about the Python programming language

Explore at:
zip(189137 bytes)Available download formats
Dataset updated
Mar 29, 2024
Authors
Chinmaya
License

Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically

Description

This dataset is about Python programming. Question and answers are generated using Gemma. There are more than four hundred questions and their corresponding answers about Python programming.

Questions are ranging from concepts like data-types, variables and keywords to regular-expression and threading.

I have used this dataset here

The code used for dataset generated is available here

Search
Clear search
Close search
Google apps
Main menu