In this exercise, we'll merge the details of students from two datasets, namely student.csv and marks.csv. The student dataset contains columns such as Age, Gender, Grade, and Employed. The marks.csv dataset contains columns such as Mark and City. The Student_id column is common between the two datasets. Follow these steps to complete this exercise
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
KGTorrent is a dataset of Python Jupyter notebooks from the Kaggle platform.
The dataset is accompanied by a MySQL database containing metadata about the notebooks and the activity of Kaggle users on the platform. The information to build the MySQL database has been derived from Meta Kaggle, a publicly available dataset containing Kaggle metadata.
In this package, we share the complete KGTorrent dataset (consisting of the dataset itself plus its companion database), as well as the specific version of Meta Kaggle used to build the database.
More specifically, the package comprises the following three compressed archives:
KGT_dataset.tar.bz2, the dataset of Jupyter notebooks;
KGTorrent_dump_10-2020.sql.tar.bz2, the dump of the MySQL companion database;
MetaKaggle27Oct2020.tar.bz2, a copy of the Meta Kaggle version used to build the database.
Moreover, we include KGTorrent_logical_schema.pdf, the logical schema of the KGTorrent MySQL database.
This dataset was created by Kolluri Nithin
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present Code4ML: a Large-scale Dataset of annotated Machine Learning Code, a corpus of Python code snippets, competition summaries, and data descriptions from Kaggle.
The data is organized in a table structure. Code4ML includes several main objects: competitions information, raw code blocks collected form Kaggle and manually marked up snippets. Each table has a .csv format.
Each competition has the text description and metadata, reflecting competition and used dataset characteristics as well as evaluation metrics (competitions.csv). The corresponding datasets can be loaded using Kaggle API and data sources.
The code blocks themselves and their metadata are collected to the data frames concerning the publishing year of the initial kernels. The current version of the corpus includes two code blocks files: snippets from kernels up to the 2020 year (сode_blocks_upto_20.csv) and those from the 2021 year (сode_blocks_21.csv) with corresponding metadata. The corpus consists of 2 743 615 ML code blocks collected from 107 524 Jupyter notebooks.
Marked up code blocks have the following metadata: anonymized id, the format of the used data (for example, table or audio), the id of the semantic type, a flag for the code errors, the estimated relevance to the semantic class (from 1 to 5), the id of the parent notebook, and the name of the competition. The current version of the corpus has ~12 000 labeled snippets (markup_data_20220415.csv).
As marked up code blocks data contains the numeric id of the code block semantic type, we also provide a mapping from this number to semantic type and subclass (actual_graph_2022-06-01.csv).
The dataset can help solve various problems, including code synthesis from a prompt in natural language, code autocompletion, and semantic code classification.
This is the random date data-set generated by me using python script to create a Machine Learning model to tag the date in any given document.
This data-set contains whether the given word of word are dates or not
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Implement Machine Learning model or Deep learning Model or train a custom spacy to tag the date and other POS.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Machine learning (ML) has gained much attention and has been incorporated into our daily lives. While there are numerous publicly available ML projects on open source platforms such as GitHub, there have been limited attempts in filtering those projects to curate ML projects of high quality. The limited availability of such high-quality dataset poses an obstacle to understanding ML projects. To help clear this obstacle, we present NICHE, a manually labelled dataset consisting of 572 ML projects. Based on evidences of good software engineering practices, we label 441 of these projects as engineered and 131 as non-engineered. In this repository we provide "NICHE.csv" file that contains the list of the project names along with their labels, descriptive information for every dimension, and several basic statistics, such as the number of stars and commits. This dataset can help researchers understand the practices that are followed in high-quality ML projects. It can also be used as a benchmark for classifiers designed to identify engineered ML projects.
GitHub page: https://github.com/soarsmu/NICHE
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.
By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.
Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.
The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!
While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.
The files contained here are a subset of the KernelVersions
in Meta Kaggle. The file names match the ids in the KernelVersions
csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.
The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.
The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads
. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays
We love feedback! Let us know in the Discussion tab.
Happy Kaggling!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ApacheJIT: A Large Dataset for Just-In-Time Defect Prediction
This archive contains the ApacheJIT dataset presented in the paper "ApacheJIT: A Large Dataset for Just-In-Time Defect Prediction" as well as the replication package. The paper is submitted to MSR 2022 Data Showcase Track.
The datasets are available under directory dataset. There are 4 datasets in this directory.
In addition to the dataset, we also provide the scripts using which we built the dataset. These scripts are written in Python 3.8. Therefore, Python 3.8 or above is required. To set up the environment, we have provided a list of required packages in file requirements.txt. Additionally, one filtering step requires GumTree [1]. For Java, GumTree requires Java 11. For other languages, external tools are needed. Installation guide and more details can be found here.
The scripts are comprised of Python scripts under directory src and Python notebooks under directory notebooks. The Python scripts are mainly responsible for conducting GitHub search via GitHub search API and collecting commits through PyDriller Package [2]. The notebooks link the fixed issue reports with their corresponding fixing commits and apply some filtering steps. The bug-inducing candidates then are filtered again using gumtree.py script that utilizes the GumTree package. Finally, the remaining bug-inducing candidates are combined with the clean commits in the dataset_construction notebook to form the entire dataset.
More specifically, git_token.py handles GitHub API token that is necessary for requests to GitHub API. Script collector.py performs GitHub search. Tracing changed lines and git annotate is done in gitminer.py using PyDriller. Finally, gumtree.py applies 4 filtering steps (number of lines, number of files, language, and change significance).
References:
Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. 2014. Fine-grained and accurate source code differencing. In ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,Vasteras, Sweden - September 15 - 19, 2014. 313–324
Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. PyDriller: Python Framework for Mining Software Repositories. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering(Lake Buena Vista, FL, USA)(ESEC/FSE2018). Association for Computing Machinery, New York, NY, USA, 908–911
The MNIST database of handwritten digits.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('mnist', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/mnist-3.0.1.png" alt="Visualization" width="500px">
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sample data set used in an introductory course on Programming in Python
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Datasets for practising in class
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This content represents the dataset of the article "The Python Software Quality Dataset". Included is the database dump, instructions on how to restore it and CSV files of the most important dataset tables: Repository, Sonarqube Issues, Sonarqube Metrics, Sonarqube Analyses, Refactoring Records, SZZ Issues data, Github Issues and Github Pull Requests data.
The Django dataset is a dataset for code generation comprising of 16000 training, 1000 development and 1805 test annotations. Each data point consists of a line of Python code together with a manually created natural language description.
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
Dataset Card for The Stack
Changelog
Release Description
v1.0 Initial release of the Stack. Included 30 programming languages and 18 permissive licenses. Note: Three included licenses (MPL/EPL/LGPL) are considered weak copyleft licenses. The resulting near-deduplicated dataset is 3TB in size.
v1.1 The three copyleft licenses ((MPL/EPL/LGPL) were excluded and the list of permissive licenses extended to 193 licenses in total. The list of programming languages… See the full description on the dataset page: https://huggingface.co/datasets/bigcode/the-stack.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Multiplexed imaging technologies provide insights into complex tissue architectures. However, challenges arise due to software fragmentation with cumbersome data handoffs, inefficiencies in processing large images (8 to 40 gigabytes per image), and limited spatial analysis capabilities. To efficiently analyze multiplexed imaging data, we developed SPACEc, a scalable end-to-end Python solution, that handles image extraction, cell segmentation, and data preprocessing and incorporates machine-learning-enabled, multi-scaled, spatial analysis, operated through a user-friendly and interactive interface. The demonstration dataset was derived from a previous analysis and contains TMA cores from a human tonsil and tonsillitis sample that were acquired with the Akoya PhenocyclerFusion platform. The dataset can be used to test the workflow and establish it on a user’s system or to familiarize oneself with the pipeline. Methods Tissue samples: Tonsil cores were extracted from a larger multi-tumor tissue microarray (TMA), which included a total of 66 unique tissues (51 malignant and semi-malignant tissues, as well as 15 non-malignant tissues). Representative tissue regions were annotated on corresponding hematoxylin and eosin (H&E)-stained sections by a board-certified surgical pathologist (S.Z.). Annotations were used to generate the 66 cores each with cores of 1mm diameter. FFPE tissue blocks were retrieved from the tissue archives of the Institute of Pathology, University Medical Center Mainz, Germany, and the Department of Dermatology, University Medical Center Mainz, Germany. The multi-tumor-TMA block was sectioned at 3µm thickness onto SuperFrost Plus microscopy slides before being processed for CODEX multiplex imaging as previously described. CODEX multiplexed imaging and processing To run the CODEX machine, the slide was taken from the storage buffer and placed in PBS for 10 minutes to equilibrate. After drying the PBS with a tissue, a flow cell was sealed onto the tissue slide. The assembled slide and flow cell were then placed in a PhenoCycler Buffer made from 10X PhenoCycler Buffer & Additive for at least 10 minutes before starting the experiment. A 96-well reporter plate was prepared with each reporter corresponding to the correct barcoded antibody for each cycle, with up to 3 reporters per cycle per well. The fluorescence reporters were mixed with 1X PhenoCycler Buffer, Additive, nuclear-staining reagent, and assay reagent according to the manufacturer's instructions. With the reporter plate and assembled slide and flow cell placed into the CODEX machine, the automated multiplexed imaging experiment was initiated. Each imaging cycle included steps for reporter binding, imaging of three fluorescent channels, and reporter stripping to prepare for the next cycle and set of markers. This was repeated until all markers were imaged. After the experiment, a .qptiff image file containing individual antibody channels and the DAPI channel was obtained. Image stitching, drift compensation, deconvolution, and cycle concatenation are performed within the Akoya PhenoCycler software. The raw imaging data output (tiff, 377.442nm per pixel for 20x CODEX) is first examined with QuPath software (https://qupath.github.io/) for inspection of staining quality. Any markers that produce unexpected patterns or low signal-to-noise ratios should be excluded from the ensuing analysis. The qptiff files must be converted into tiff files for input into SPACEc. Data preprocessing includes image stitching, drift compensation, deconvolution, and cycle concatenation performed using the Akoya Phenocycler software. The raw imaging data (qptiff, 377.442 nm/pixel for 20x CODEX) files from the Akoya PhenoCycler technology were first examined with QuPath software (https://qupath.github.io/) to inspect staining qualities. Markers with untenable patterns or low signal-to-noise ratios were excluded from further analysis. A custom CODEX analysis pipeline was used to process all acquired CODEX data (scripts available upon request). The qptiff files were converted into tiff files for tissue detection (watershed algorithm) and cell segmentation.
Fashion-MNIST is a dataset of Zalando's article images consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('fashion_mnist', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/fashion_mnist-3.0.1.png" alt="Visualization" width="500px">
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Multimodal Vision-Audio-Language Dataset is a large-scale dataset for multimodal learning. It contains 2M video clips with corresponding audio and a textual description of the visual and auditory content. The dataset is an ensemble of existing datasets and fills the gap of missing modalities. Details can be found in the attached report. Annotation The annotation files are provided as Parquet files. They can be read using Python and the pandas and pyarrow library. The split into train, validation and test set follows the split of the original datasets. Installation
pip install pandas pyarrow Example
import pandas as pddf = pd.read_parquet('annotation_train.parquet', engine='pyarrow')print(df.iloc[0])
dataset AudioSet filename train/---2_BBVHAA.mp3 captions_visual [a man in a black hat and glasses.] captions_auditory [a man speaks and dishes clank.] tags [Speech] Description The annotation file consists of the following fields:filename: Name of the corresponding file (video or audio file)dataset: Source dataset associated with the data pointcaptions_visual: A list of captions related to the visual content of the video. Can be NaN in case of no visual contentcaptions_auditory: A list of captions related to the auditory content of the videotags: A list of tags, classifying the sound of a file. It can be NaN if no tags are provided Data files The raw data files for most datasets are not released due to licensing issues. They must be downloaded from the source. However, due to missing files, we provide them on request. Please contact us at schaumloeffel@em.uni-frankfurt.de
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This repository contains the dataset for the study of computational reproducibility of Jupyter notebooks from biomedical publications. Our focus lies in evaluating the extent of reproducibility of Jupyter notebooks derived from GitHub repositories linked to publications present in the biomedical literature repository, PubMed Central. We analyzed the reproducibility of Jupyter notebooks from GitHub repositories associated with publications indexed in the biomedical literature repository PubMed Central. The dataset includes the metadata information of the journals, publications, the Github repositories mentioned in the publications and the notebooks present in the Github repositories.
Data Collection and Analysis
We use the code for reproducibility of Jupyter notebooks from the study done by Pimentel et al., 2019 and adapted the code from ReproduceMeGit. We provide code for collecting the publication metadata from PubMed Central using NCBI Entrez utilities via Biopython.
Our approach involves searching PMC using the esearch function for Jupyter notebooks using the query: ``(ipynb OR jupyter OR ipython) AND github''. We meticulously retrieve data in XML format, capturing essential details about journals and articles. By systematically scanning the entire article, encompassing the abstract, body, data availability statement, and supplementary materials, we extract GitHub links. Additionally, we mine repositories for key information such as dependency declarations found in files like requirements.txt, setup.py, and pipfile. Leveraging the GitHub API, we enrich our data by incorporating repository creation dates, update histories, pushes, and programming languages.
All the extracted information is stored in a SQLite database. After collecting and creating the database tables, we ran a pipeline to collect the Jupyter notebooks contained in the GitHub repositories based on the code from Pimentel et al., 2019.
Our reproducibility pipeline was started on 27 March 2023.
Repository Structure
Our repository is organized into two main folders:
Accessing Data and Resources:
System Requirements:
Running the pipeline:
Running the analysis:
References:
This dataset was created by Pawan Kumar
In this exercise, we'll merge the details of students from two datasets, namely student.csv and marks.csv. The student dataset contains columns such as Age, Gender, Grade, and Employed. The marks.csv dataset contains columns such as Mark and City. The Student_id column is common between the two datasets. Follow these steps to complete this exercise