Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”
A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org
Please cite this when using the dataset.
Detailed description of the dataset:
1 Film Dataset: Festival Programs
The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.
The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.
The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.
The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.
2 Survey Dataset
The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.
The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.
The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.
The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.
3 IMDb & Scripts
The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.
The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.
The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.
The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.
The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.
The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.
The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.
The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.
The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.
The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.
The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.
The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.
The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.
The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.
The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.
The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.
The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.
The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.
The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.
4 Festival Library Dataset
The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.
The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories, units of measurement, data sources and coding and missing data.
The csv file “4_festival-library_dataset_imdb-and-survey” contains data on all unique festivals collected from both IMDb and survey sources. This dataset appears in wide format, all information for each festival is listed in one row. This
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.
By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.
Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.
The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!
While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.
The files contained here are a subset of the KernelVersions
in Meta Kaggle. The file names match the ids in the KernelVersions
csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.
The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.
The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads
. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays
We love feedback! Let us know in the Discussion tab.
Happy Kaggling!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We introduce a large-scale dataset of the complete texts of free/open source software (FOSS) license variants. To assemble it we have collected from the Software Heritage archive—the largest publicly available archive of FOSS source code with accompanying development history—all versions of files whose names are commonly used to convey licensing terms to software users and developers. The dataset consists of 6.5 million unique license files that can be used to conduct empirical studies on open source licensing, training of automated license classifiers, natural language processing (NLP) analyses of legal texts, as well as historical and phylogenetic studies on FOSS licensing. Additional metadata about shipped license files are also provided, making the dataset ready to use in various contexts; they include: file length measures, detected MIME type, detected SPDX license (using ScanCode), example origin (e.g., GitHub repository), oldest public commit in which the license appeared. The dataset is released as open data as an archive file containing all deduplicated license blobs, plus several portable CSV files for metadata, referencing blobs via cryptographic checksums.
For more details see the included README file and companion paper:
Stefano Zacchiroli. A Large-scale Dataset of (Open Source) License Text Variants. In proceedings of the 2022 Mining Software Repositories Conference (MSR 2022). 23-24 May 2022 Pittsburgh, Pennsylvania, United States. ACM 2022.
If you use this dataset for research purposes, please acknowledge its use by citing the above paper.
Unlock the power of ready-to-use data sourced from developer communities and repositories with Developer Community and Code Datasets.
Data Sources:
GitHub: Access comprehensive data about GitHub repositories, developer profiles, contributions, issues, social interactions, and more.
StackShare: Receive information about companies, their technology stacks, reviews, tools, services, trends, and more.
DockerHub: Dive into data from container images, repositories, developer profiles, contributions, usage statistics, and more.
Developer Community and Code Datasets are a treasure trove of public data points gathered from tech communities and code repositories across the web.
With our datasets, you'll receive:
Choose from various output formats, storage options, and delivery frequencies:
Why choose our Datasets?
Fresh and accurate data: Access complete, clean, and structured data from scraping professionals, ensuring the highest quality.
Time and resource savings: Let us handle data extraction and processing cost-effectively, freeing your resources for strategic tasks.
Customized solutions: Share your unique data needs, and we'll tailor our data harvesting approach to fit your requirements perfectly.
Legal compliance: Partner with a trusted leader in ethical data collection. Oxylabs is trusted by Fortune 500 companies and adheres to GDPR and CCPA standards.
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Empower your data-driven decisions with Oxylabs Developer Community and Code Datasets!
In 2020, according to respondents surveyed, data masters typically leverage a variety of external data sources to enhance their insights. The most popular external data sources for data masters being publicly available competitor data, open data, and proprietary datasets from data aggregators, with 98, 97, and 92 percent, respectively.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A collection of 22 data set of 50+ requirements each, expressed as user stories.
The dataset has been created by gathering data from web sources and we are not aware of license agreements or intellectual property rights on the requirements / user stories. The curator took utmost diligence in minimizing the risks of copyright infringement by using non-recent data that is less likely to be critical, by sampling a subset of the original requirements collection, and by qualitatively analyzing the requirements. In case of copyright infringement, please contact the dataset curator (Fabiano Dalpiaz, f.dalpiaz@uu.nl) to discuss the possibility of removal of that dataset [see Zenodo's policies]
The data sets have been originally used to conduct experiments about ambiguity detection with the REVV-Light tool: https://github.com/RELabUU/revv-light
This collection has been originally published in Mendeley data: https://data.mendeley.com/datasets/7zbk8zsd8y/1
The following text provides a description of the datasets, including links to the systems and websites, when available. The datasets are organized by macro-category and then by identifier.
g02-federalspending.txt
(2018) originates from early data in the Federal Spending Transparency project, which pertain to the website that is used to share publicly the spending data for the U.S. government. The website was created because of the Digital Accountability and Transparency Act of 2014 (DATA Act). The specific dataset pertains a system called DAIMS or Data Broker, which stands for DATA Act Information Model Schema. The sample that was gathered refers to a sub-project related to allowing the government to act as a data broker, thereby providing data to third parties. The data for the Data Broker project is currently not available online, although the backend seems to be hosted in GitHub under a CC0 1.0 Universal license. Current and recent snapshots of federal spending related websites, including many more projects than the one described in the shared collection, can be found here.
g03-loudoun.txt
(2018) is a set of extracted requirements from a document, by the Loudoun County Virginia, that describes the to-be user stories and use cases about a system for land management readiness assessment called Loudoun County LandMARC. The source document can be found here and it is part of the Electronic Land Management System and EPlan Review Project - RFP RFQ issued in March 2018. More information about the overall LandMARC system and services can be found here.
g04-recycling.txt
(2017) concerns a web application where recycling and waste disposal facilities can be searched and located. The application operates through the visualization of a map that the user can interact with. The dataset has obtained from a GitHub website and it is at the basis of a students' project on web site design; the code is available (no license).
g05-openspending.txt
(2018) is about the OpenSpending project (www), a project of the Open Knowledge foundation which aims at transparency about how local governments spend money. At the time of the collection, the data was retrieved from a Trello board that is currently unavailable. The sample focuses on publishing, importing and editing datasets, and how the data should be presented. Currently, OpenSpending is managed via a GitHub repository which contains multiple sub-projects with unknown license.
g11-nsf.txt
(2018) refers to a collection of user stories referring to the NSF Site Redesign & Content Discovery project, which originates from a publicly accessible GitHub repository (GPL 2.0 license). In particular, the user stories refer to an early version of the NSF's website. The user stories can be found as closed Issues.
g08-frictionless.txt
(2016) regards the Frictionless Data project, which offers an open source dataset for building data infrastructures, to be used by researchers, data scientists, and data engineers. Links to the many projects within the Frictionless Data project are on GitHub (with a mix of Unlicense and MIT license) and web. The specific set of user stories has been collected in 2016 by GitHub user @danfowler and are stored in a Trello board.
g14-datahub.txt
(2013) concerns the open source project DataHub, which is currently developed via a GitHub repository (the code has Apache License 2.0). DataHub is a data discovery platform which has been developed over multiple years. The specific data set is an initial set of user stories, which we can date back to 2013 thanks to a comment therein.
g16-mis.txt
(2015) is a collection of user stories that pertains a repository for researchers and archivists. The source of the dataset is a public Trello repository. Although the user stories do not have explicit links to projects, it can be inferred that the stories originate from some project related to the library of Duke University.
g17-cask.txt
(2016) refers to the Cask Data Application Platform (CDAP). CDAP is an open source application platform (GitHub, under Apache License 2.0) that can be used to develop applications within the Apache Hadoop ecosystem, an open-source framework which can be used for distributed processing of large datasets. The user stories are extracted from a document that includes requirements regarding dataset management for Cask 4.0, which includes the scenarios, user stories and a design for the implementation of these user stories. The raw data is available in the following environment.
g18-neurohub.txt
(2012) is concerned with the NeuroHub platform, a neuroscience data management, analysis and collaboration platform for researchers in neuroscience to collect, store, and share data with colleagues or with the research community. The user stories were collected at a time NeuroHub was still a research project sponsored by the UK Joint Information Systems Committee (JISC). For information about the research project from which the requirements were collected, see the following record.
g22-rdadmp.txt
(2018) is a collection of user stories from the Research Data Alliance's working group on DMP Common Standards. Their GitHub repository contains a collection of user stories that were created by asking the community to suggest functionality that should part of a website that manages data management plans. Each user story is stored as an issue on the GitHub's page.
g23-archivesspace.txt
(2012-2013) refers to ArchivesSpace: an open source, web application for managing archives information. The application is designed to support core functions in archives administration such as accessioning; description and arrangement of processed materials including analog, hybrid, and
born digital content; management of authorities and rights; and reference service. The application supports collection management through collection management records, tracking of events, and a growing number of administrative reports. ArchivesSpace is open source and its
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Malawi MW: SPI: Pillar 4 Data Sources Score: Scale 0-100 data was reported at 49.008 NA in 2023. This stayed constant from the previous number of 49.008 NA for 2022. Malawi MW: SPI: Pillar 4 Data Sources Score: Scale 0-100 data is updated yearly, averaging 48.358 NA from Dec 2015 (Median) to 2023, with 9 observations. The data reached an all-time high of 49.008 NA in 2023 and a record low of 43.008 NA in 2017. Malawi MW: SPI: Pillar 4 Data Sources Score: Scale 0-100 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Malawi – Table MW.World Bank.WDI: Governance: Policy and Institutions. The data sources overall score is a composity measure of whether countries have data available from the following sources: Censuses and surveys, administrative data, geospatial data, and private sector/citizen generated data. The data sources (input) pillar is segmented by four types of sources generated by (i) the statistical office (censuses and surveys), and sources accessed from elsewhere such as (ii) administrative data, (iii) geospatial data, and (iv) private sector data and citizen generated data. The appropriate balance between these source types will vary depending on a country’s institutional setting and the maturity of its statistical system. High scores should reflect the extent to which the sources being utilized enable the necessary statistical indicators to be generated. For example, a low score on environment statistics (in the data production pillar) may reflect a lack of use of (and low score for) geospatial data (in the data sources pillar). This type of linkage is inherent in the data cycle approach and can help highlight areas for investment required if country needs are to be met.;Statistical Performance Indicators, The World Bank (https://datacatalog.worldbank.org/dataset/statistical-performance-indicators);Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: none of the data sets published here contain actual data, they are for testing purposes only.
This data repository contains graph datasets, where each graph is represented by two CSV files: one for node information and another for edge details. To link the files to the same graph, their names include a common identifier based on the number of nodes. For example:
dataset_30_nodes_interactions.csv
:contains 30 rows (nodes).dataset_30_edges_interactions.csv
: contains 47 rows (edges).dataset_30
refers to the same graph.Each dataset contains the following columns:
Name of the Column | Type | Description |
UniProt ID | string | protein identification |
label | string | protein label (type of node) |
properties | string | a dictionary containing properties related to the protein. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
Relationship ID | string | relationship identification |
Source ID | string | identification of the source protein in the relationship |
Target ID | string | identification of the target protein in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_30* |
30 | 47 |
Y |
dataset_60* |
60 |
181 |
Y |
dataset_120* |
120 |
689 |
Y |
dataset_240* |
240 |
2819 |
Y |
dataset_300* |
300 |
4658 |
Y |
dataset_600* |
600 |
18004 |
Y |
dataset_1200* |
1200 |
71785 |
Y |
dataset_2400* |
2400 |
288600 |
Y |
dataset_3000* |
3000 |
449727 |
Y |
dataset_6000* |
6000 |
1799413 |
Y |
dataset_12000* |
12000 |
7199863 |
Y |
dataset_24000* |
24000 |
28792361 |
Y |
This repository include two (2) additional tiny graph datasets to experiment before dealing with larger datasets.
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | node identification |
label | string | node label (type of node) |
properties | string | a dictionary containing properties related to the node. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | relationship identification |
source | string | identification of the source node in the relationship |
target | string | identification of the target node in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_dummy* | 3 | 6 | N |
dataset_dummy2* | 3 | 6 | N |
Dataset Card for Dataset Name
This dataset card aims to be a base template for new datasets. It has been generated using this raw template.
Dataset Details
Dataset Description
Curated by: [More Information Needed] Funded by [optional]: [More Information Needed] Shared by [optional]: [More Information Needed] Language(s) (NLP): [More Information Needed] License: [More Information Needed]
Dataset Sources [optional]… See the full description on the dataset page: https://huggingface.co/datasets/templates/dataset-card-example.
The State Contract and Procurement Registration System (SCPRS) was established in 2003, as a centralized database of information on State contracts and purchases over $5000. eSCPRS represents the data captured in the State's eProcurement (eP) system, Bidsync, as of March 16, 2009. The data provided is an extract from that system for fiscal years 2012-2013, 2013-2014, and 2014-2015
Data Limitations:
Some purchase orders have multiple UNSPSC numbers, however only first was used to identify the purchase order. Multiple UNSPSC numbers were included to provide additional data for a DGS special event however this affects the formatting of the file. The source system Bidsync is being deprecated and these issues will be resolved in the future as state systems transition to Fi$cal.
Data Collection Methodology:
The data collection process starts with a data file from eSCPRS that is scrubbed and standardized prior to being uploaded into a SQL Server database. There are four primary tables. The Supplier, Department and United Nations Standard Products and Services Code (UNSPSC) tables are reference tables. The Supplier and Department tables are updated and mapped to the appropriate numbering schema and naming conventions. The UNSPSC table is used to categorize line item information and requires no further manipulation. The Purchase Order table contains raw data that requires conversion to the correct data format and mapping to the corresponding data fields. A stacking method is applied to the table to eliminate blanks where needed. Extraneous characters are removed from fields. The four tables are joined together and queries are executed to update the final Purchase Order Dataset table. Once the scrubbing and standardization process is complete the data is then uploaded into the SQL Server database.
Secondary/Related Resources:
International Data & Economic Analysis (IDEA) is USAID's comprehensive source of economic and social data and analysis. IDEA brings together over 12,000 data series from over 125 sources into one location for easy access by USAID and its partners through the USAID public website. The data are broken down by countries, years and the following sectors: Economy, Country Ratings and Rankings, Trade, Development Assistance, Education, Health, Population, and Natural Resources. IDEA regularly updates the database as new data become available. Examples of IDEA sources include the Demographic and Health Surveys, STATcompiler; UN Food and Agriculture Organization, Food Price Index; IMF, Direction of Trade Statistics; Millennium Challenge Corporation; and World Bank, World Development Indicators. The database can be queried by navigating to the site displayed in the Home Page field below.
PredictLeads Job Openings Data provides high-quality hiring insights sourced directly from company websites - not job boards. Using advanced web scraping technology, our dataset offers real-time access to job trends, salaries, and skills demand, making it a valuable resource for B2B sales, recruiting, investment analysis, and competitive intelligence.
Key Features:
✅206M+ Job Postings Tracked – Data sourced from 1.8M+ company websites worldwide. ✅7M+ Active Job Openings – Updated in real-time to reflect hiring demand. ✅Salary & Compensation Insights – Extract salary ranges, contract types, and job seniority levels. ✅Technology & Skill Tracking – Identify emerging tech trends and industry demands. ✅Company Data Enrichment – Link job postings to employer domains, firmographics, and growth signals. ✅Web Scraping Precision – Directly sourced from employer websites for unmatched accuracy.
Primary Attributes:
Job Metadata:
Salary Data (salary_data)
Occupational Data (onet_data) (object, nullable)
Additional Attributes:
📌 Trusted by enterprises, recruiters, and investors for high-precision job market insights.
Response Example: https://docs.predictleads.com/v3/api_endpoints/job_openings_dataset/retrieve_company_s_job_openings
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Aggregated metadata on environmental monitoring and observing activities from three Australian national research infrastructures (NRIs): biodiversity survey events from the Atlas of Living Australia (ALA, https://ala.org.au/), marine observations collected by the Integrated Marine Observing System (IMOS, https://imos.org.au/) and site-based monitoring and survey efforts by the Terrestrial Ecosystem Research Network (TERN, https://tern.org.au/). This dataset provides a summary breakdown of these efforts by survey topic, region and time period from 2010 to the present.
Survey topics are mapped to an EcoAssets Earth Science Features vocabulary based on the Earth Science keywords from the Global Change Master Directory (GCMD, https://gcmd.earthdata.nasa.gov/KeywordViewer/) vocabulary, modified to use taxonomic concept URIs from the Australian National Species List (ANSL, https://biodiversity.org.au/nsl/) in place of the GCMD Earth Science > Biological Classification vocabulary. ANSL categories map more readily to biodiversity survey categories, since GCMD depends on a top-level division between vertebrates and invertebrates rather than offering an animal category. The EcoAssets Earth Science Features vocabulary, including alternative keywords used in ALA, IMOS or TERN datasets, is included in this collection.
The primary asset is AggregatedData_EnvironmentalMonitoringAndObservationsEffort_1.1.2023-06-13.csv. This contains all faceted data records for the period and supported facets related to time, space and features observed.
Two derived assets (SummaryData_MonitoringAndObservationsEffortByMarineEcoregion_1.1.2023-06-13.csv, SummaryData_MonitoringAndObservationsEffortByTerrestrialEcoregion_1.1.2023-06-13.csv) further summarise the faceted data. Each is a pivot of the aggregated dataset.
Vocabulary_EcoAssetsEarthScienceFeatures_1.0.2023-03-23.csv contains the hierarchical terms used within this asset to categorise earth science features. TreeView_EcoAssetsEarthScienceFeatures_1.0.2023-03-23.txt provides a simpler, more readable view. KeywordMapping_EcoAssetsEarthScienceFeatures_1.0.2023-03-23.csv shows the mappings between these terms and the keywords used in source datasets.
The data-sources.csv file includes information on the source datasets that contributed to this asset. README.txt documents the columns in each data file. Lineage: This dataset was created by the following pipeline:
Metadata records were collected from the TERN linked data portal (https://linkeddata.tern.org.au/) for all TERN monitoring sites and survey activities. Feature terms follow the TERN Feature Type vocabulary, mapped to the EcoAssets Earth Science Features vocabulary. For features that have been measured continuously at the site, metadata records were created for each relevant year since commission of the site. For other sites and features, metadata records were generated only for years in which the site was visited. TERN metadata records are associated with site coordinates.
Metadata records were harvested for datasets in the Australian Ocean Data Network (AODN, https://portal.aodn.org.au/) portal maintained by IMOS (iso19115-3.2018 format over OAI-PMH). Feature terms follow the GCMD keywords used in these metadata records. Metadata records were created for each year overlapping the data collection period for each dataset. Where the datasets were associated with a bounding box, records were created for each IMCRA region intersecting the bounding box.
Metadata records were created for each biodiversity sample event published to the ALA and associated with a Darwin Core event ID and a named sampling protocol (see https://dwc.tdwg.org/terms/#event). Events were excluded if the set of sampled taxa included multiple kingdoms OR the sampling protocol was associated with <50 samples OR no sample included >1 species. The remaining samples were mapped to feature terms based on the taxonomic scope of all species recorded for the associated protocol. Year and coordinates were taken from the associate sample event.
Metadata records from all sources were combined and include the following values. The feature facet values are offered as a convenience for grouping records without using the hierarchical structure of the EcoAssets Earth Science Features vocabulary:
In our work, we have designed and implemented a novel workflow with several heuristic methods to combine state-of-the-art methods related to CVE fix commits gathering. As a consequence of our improvements, we have been able to gather the largest programming language-independent real-world dataset of CVE vulnerabilities with the associated fix commits. Our dataset containing 26,617 unique CVEs coming from 6,945 unique GitHub projects is, to the best of our knowledge, by far the biggest CVE vulnerability dataset with fix commits available today. These CVEs are associated with 31,883 unique commits that fixed those vulnerabilities. Compared to prior work, our dataset brings about a 397% increase in CVEs, a 295% increase in covered open-source projects, and a 480% increase in commit fixes. Our larger dataset thus substantially improves over the current real-world vulnerability datasets and enables further progress in research on vulnerability detection and software security. We used NVD(nvd.nist.gov) and Github Secuirty advisory Database as the main sources of our pipeline.
We release to the community a 14GB PostgreSQL database that contains information on CVEs up to January 24, 2024, CWEs of each CVE, files and methods changed by each commit, and repository metadata. Additionally, patch files related to the fix commits are available as a separate package. Furthermore, we make our dataset collection tool also available to the community.
cvedataset-patches.zip file contains fix patches, and dump_morefixes_27-03-2024_19_52_58.sql.zip contains a postgtesql dump of fixes, together with several other fields such as CVEs, CWEs, repository meta-data, commit data, file changes, method changed, etc.
MoreFixes data-storage strategy is based on CVEFixes to store CVE commits fixes from open-source repositories, and uses a modified version of Porspector(part of ProjectKB from SAP) as a module to detect commit fixes of a CVE. Our full methodology is presented in the paper, with the title of "MoreFixes: A Large-Scale Dataset of CVE Fix Commits Mined through Enhanced Repository Discovery", which will be published in the Promise conference (2024).
For more information about usage and sample queries, visit the Github repository: https://github.com/JafarAkhondali/Morefixes
If you are using this dataset, please be aware that the repositories that we mined contain different licenses and you are responsible to handle any licesnsing issues. This is also the similar case with CVEFixes.
This product uses the NVD API but is not endorsed or certified by the NVD.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset is comprised of a collection of example DMPs from a wide array of fields; obtained from a number of different sources outlined in the README. Data included/extracted from the examples included the discipline and field of study, author, institutional affiliation and funding information, location, date modified, title, research and data-type, description of project, link to the DMP, and where possible external links to related publications, grant pages, or French language versions. This CSV document serves as the content for a McMaster Data Management Plan (DMP) Database as part of the Research Data Management (RDM) Services website, located at https://u.mcmaster.ca/dmps. Other universities and organizations are encouraged to link to the DMP Database or use this dataset as the content for their own DMP Database. This dataset will be updated regularly to include new additions and will be versioned as such. We are gathering submissions at https://u.mcmaster.ca/submit-a-dmp to continue to expand the collection.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
# FiN: A Smart Grid and Powerline Communication Dataset
Within the Fühler-im-Netz (FiN) project 38 BPL modems were distributed in three different areas of a German city with about 150.000 inhabitants. Over a period of 22 months, an SNR spectrum of each connection between adjacent BPL modems was generated every quarter of an hour. The availability of this data from actual practical use opens up new possibilities to face the increasing complex challenges in smart grids.
~~ For detailed information we would like to refer to the full paper. ~~
Attributs | FiN 1
-------- | --------
SNR measurements | 3.3 Mio
Timespan | ~2.5yrs
*Metadata* |
Sleeve count per section | ☑
Cable length, typ, cross section | ☑
Number of conductors | ☑
Year of installation | ☑
Weather by openweather | ☑
## Paper abstract
The increasing complexity of low-voltage networks poses a growing challenge for the reliable and fail-safe operation of power grids. The reasons for this are, for example, a more decentralized energy generation (photovoltaic systems, wind power, ...) and the emergence of new types of consumers (e-mobility, domestic electricity storage, ...). At the same time, the low-voltage grid is largely unmonitored and local power failures are sometimes detected only when consumers report the outage. To end the blind flight within the low voltage network, the use of a broadband over power line (BPL) infrastructure is a possible solution. In addition to the purpose of establishing a communication infrastructure, BPL also offers the possibility of evaluating the cables themselves, as well as the connection quality between individual cable distributors based on their Signal-to-Noise-Ratio (SNR). Within the Fühler-im-Netz pilot project 38 BPL modems were distributed in three different areas of a German city with about 100.000 inhabitants. Over a period of 21 months, an SNR spectrum of each connection between adjacent BPL modems was generated every quarter of an hour. The availability of this data from actual practical use opens up new possibilities to react agilely to the increasingly complex challenges.
# FiN-Dataset release 1.0
### Content
- 68 data .npz files
- 3 weather csv files
- 2 metadata csv files
- this readme
### Summary
The dataset contains ~3.7B SNR measurements divided into 68 1-to-1 connections. Each of the 1-to-1 connections can split into additional segments, e.g. if part of a cable was replaced due to a cable break.
All 68 connections are formed by 38 different nodes distributed over three different locations. Due to data protection regulations, the exact location of the nodes cannot be given. Therefore, each of the 38 nodes is uniquely identified by an ID.
### Data
The filename specifies the location, the ID of the source node and the destination ID.
Example: "loc03_from26_to27.npz"
-> Node is in lcation 3
-> Source node is 26
-> Destination node is 27
The .npz file contains a Python dict that is structured as follows:
data_dict = {"timestamps": np.array(...), --> Nx1 Timestamps
"spectrum_rx": np.array(...), --> Nx1536 SNR assesments on 1536 channels in RX directions. Range is 0.00dB...40.00dB
"tonemap_rx": np.array(...), --> Nx1536 Tonemaps in RX directions. Range is 0...7
"tonemap_tx": np.array(...)} --> Nx1536 Tonemaps in TX directions. Range is 0...7
### Weather
In addition to the measured data, we add weather data provided by https://openweathermap.org for all three locations. The weather data is stored in CSV format and contains many different weather attributes. Detailed information on the weather data can be found in the official documentation: https://openweathermap.org/history-bulk
### Metadata
--> nodes.csv
Contains in overview of all nodes, their id, corresponding location and voltage level.
--> connections.csv
Contains all available metadata for the 68 1-to-1 connections and their individual segements.
+ year_of_installation -> year in which the cable was installed
+ year_approximated -> Indicates whether the year was approximated or not (e.g. due to missing records)
+ cable_section -> identifies the segment or section described by the metadata
+ length -> length in meters
+ number_of_conductors -> identifier for the conductor structure in the cable
+ cross-section -> cross-section of the conductors
+ voltage_level -> identifier for the voltage level (MV=mid voltage; LV=low voltage)
+ t_sleeves -> number of T-sleeves installed within a section
+ type -> cable type
+ src_id -> id of the source node
+ dst_id -> id of the destination node
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is prepared and intended as a data source for development of a stress analysis method based on machine learning. It consists of finite element stress analyses of randomly generated mechanical structures. The dataset contains more than 270,794 pairs of stress analyses images (von Mises stress) of randomly generated 2D structures with predefined thickness and material properties. All the structures are fixed at their bottom edges and loaded with gravity force only. See PREVIEW directory with some examples. The zip file contains all the files in the dataset.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The ont-open-data registry provides reference sequencing data from Oxford Nanopore Technologies to support, 1) Exploration of the characteristics of nanopore sequence data. 2) Assessment and reproduction of performance benchmarks 3) Development of tools and methods. The data deposited showcases DNA sequences from a representative subset of sequencing chemistries. The datasets correspond to publicly-available reference samples (e.g. Genome In A Bottle reference cell lines). Raw data are provided with metadata and scripts to describe sample and data provenance.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Version 1.0 - This version is the final revised one.
This is the LamaH-CE dataset accompanying the paper: Klingler et al., LamaH-CE | LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe, published at Earth System Science Data (ESSD), 2021 (https://doi.org/10.5194/essd-13-4529-2021).
LamaH-CE contains a collection of runoff and meteorological time series as well as various (catchment) attributes for 859 gauged basins. The hydrometeorological time series are provided with daily and hourly time resolution including quality flags. All meteorological and the majority of runoff time series cover a span of over 35 years, which enables long-term analyses with high temporal resolution. LamaH is in its basics quite sililar to the well-known CAMELS datasets for the contiguous United States (https://doi.org/10.5194/hess-21-5293-2017), Chile (https://doi.org/10.5194/hess-22-5817-2018), Brazil (https://doi.org/10.5194/essd-12-2075-2020), Great Britain (https://doi.org/10.5194/essd-12-2459-2020) and Australia (https://doi.org/10.5194/essd-13-3847-2021), but new features like additional basin delineations (intermediate catchments) and attributes allow to consider the hydrological network and river topology in further applications.
We provide two different files to download: 1) Hydrometeorological time series with daily and hourly resolution, which requires decompressed about 70 GB of free disk space. 2) Hydrometeorological time series only with daily resolution, which requires 5 GB. Beyond the temporal resolution of the time series, there are no differences.
Note: It is recommended to read the supplementary info file before using the dataset. For example, it clarifies the time conventions and that NAs are indicated by the number -999 in the runoff time series.
Disclaimer: We have created LamaH with care and checked the outputs for plausibility. By downloading the dataset, you agree that we nor the provider of the used source datasets (e.g. runoff time series) cannot be liable for the data provided. The runoff time series of the German federal states Bavaria and Baden-Württemberg are retrospective checked and updated by the hydrographic services. Therefore, it might be appropriate to obtain more up-to-date runoff data from Bavaria (https://www.gkd.bayern.de/en/rivers/discharge/tables) and Baden-Württemberg (https://udo.lubw.baden-wuerttemberg.de/public/p/pegel_messwerte_leer). Runoff data from the Czech Republic may not be used to set up operational warning systems (https://www.chmi.cz/files/portal/docs/hydro/denni_data/Podminky_uziti.pdf).
License: This work is licensed with CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/). This means that you may freely use and modify the data (even for commercial purposes). But you have to give appropriate credit (associated ESSD paper, version of dataset and all sources which are declared in the folder "Info"), indicate if and what changes were made and distribute your work under the same public license as the original.
Additional references: We ask kindly for compliance in citing the following references when using LamaH, as an agreement to cite was usually a condition of sharing the data: BAFU (2020), CHMI (2020), GKD (2020), HZB (2020), LUBW (2020), BMLFUW (2013), Broxton et al. (2014), CORINE (2012), EEA (2019), ESDB (2004), Farr et al. (2007), Friedl and Sulla-Menashe (2019), Gleeson et al. (2014), HAO (2007), Hartmann and Moosdorf (2012), Hiederer (2013a, b), Linke et al. (2019), Muñoz Sabater et al. (2021), Muñoz Sabater (2019a), Myneni et al. (2015), Pelletier et al. (2016), Toth et al. (2017), Trabucco and Zomer (2019), and Vermote (2015). These references are listed in detail in the accompanying paper.
Supplements: We have created additional files after publication (therefore non peer-reviewed): 1) Shapefiles for reservoirs (points) and cross-basin water transfers (lines) including several attributes as well as tables with information about the accumulated storage volume and effective catchment area (considerung artificial in- and outflows) for every runoff gauge. 2) Water quality data (e.g. dissolved oxygen, water temperature, conductivity, NO3-N), which are suitable to the gauges. The data for water quality may not be used for commercial purposes. If you are interessted, just send us an email with your name, affiliation and the intended purpose for the requested files to the address listed below. If you find any errors in the dataset, feel free to send us an email to: christoph.klingler@boku.ac.at
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”
A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org
Please cite this when using the dataset.
Detailed description of the dataset:
1 Film Dataset: Festival Programs
The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.
The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.
The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.
The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.
2 Survey Dataset
The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.
The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.
The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.
The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.
3 IMDb & Scripts
The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.
The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.
The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.
The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.
The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.
The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.
The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.
The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.
The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.
The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.
The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.
The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.
The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.
The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.
The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.
The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.
The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.
The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.
The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.
4 Festival Library Dataset
The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.
The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories, units of measurement, data sources and coding and missing data.
The csv file “4_festival-library_dataset_imdb-and-survey” contains data on all unique festivals collected from both IMDb and survey sources. This dataset appears in wide format, all information for each festival is listed in one row. This