Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data organization for the figures in the document: Figure 3A LineOutWithSun_SSAzi_135to225_green_Correct_ROI5_INFO.xls Figure 3b LineOutWithSun_SSAzi_m45to45_green_Correct_ROI5_INFO.xls Figure 4 fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Correct_ROI5_INFO.xls fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Sim_Correct_ROI5_INFO.xls Figure 5a LineOut_Camera_Elevation_SqAzi_m180to0_green_Sim_Correct_ROI5_INFO.xls LineOut_Camera_Elevation_SqAzi_m180to0_green_Correct_ROI5_INFO.xls Figure 5b LineOut_Camera_Elevation_SqAzi_0to180_green_Correct_ROI5_INFO.xls LineOut_Camera_Elevation_SqAzi_0to180_green_Sim_Correct_ROI5_INFO.xls Figure 6a LineOutColor_SqAzi_m180to0_CP_20to50_Correct_ROI5_INFO.xls Figure 6b LineOutROI_SqAzi_m180to0_CP_20to50_green_Correct_INFO.xls Figure 7 fulllinear_inDic_SqAzi_m180to0_CP_20to50_green_Correct_ROI5_INFO.xls LineOut_MeshAoPDif_Camera_Elevation_SqAzi_0to180_green_Correct_ROI5_INFO.xls LineOut_MeshAoPDif_Camera_Elevation_SqAzi_m180to0_green_Correct_ROI5_INFO.xls
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the attached Excel file, "Example Student Data", there are 6 sheets. There are three sheets with sample datasets, one for each of the three different exercise protocols described. Additionally, there are three sheets with sample graphs created using one of the three datasets. · Sheets 1 and 2: This is an example of a dataset and graph created from an exercise protocol designed to stress the creatine phosphate system. Here, the subject was a track and field athlete who threw the shot put for the DeSales University track team. The NIRS monitor was placed on the right triceps muscle, and the student threw the shot put six times with a minute rest in between throws. Data was collected telemetrically by the NIRS device and then downloaded after the student had completed the protocol. · Sheets 3 and 4: This is an example of a dataset and graph created from an exercise protocol designed to stress the glycolytic energy system. In this example, the subject performed continuous squat jumps for 30 seconds, followed by a 90 second rest period, for a total of three exercise bouts. The NIRS monitor was place on the left gastrocnemius muscle. Here again, data was collected telemetrically by the NIRS device and then downloaded after he had completed the protocol. · Sheets 5 and 6: In this example, the dataset and graph are from an exercise protocol designed to stress the oxidative system. Here, the student held a light-intensity, isometric biceps contraction (pushing against a table). The NIRS monitor was attached to the left biceps muscle belly. Here, data was collected by a student observing the SmO2 values displayed on a secondary device; specifically, a smartphone with the IPSensorMan APP displaying data. The recorder student observed and recorded the data on an Excel Spreadsheet, and marked the times that exercise began and ended on the Spreadsheet.
The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel
This dataset contains the valuation template the researcher can use to retrieve real-time Excel stock price and stock price in Google Sheets. The dataset is provided by Finsheet, the leading financial data provider for spreadsheet users. To get more financial data, visit the website and explore their function. For instance, if a researcher would like to get the last 30 years of income statement for Meta Platform Inc, the syntax would be =FS_EquityFullFinancials("FB", "ic", "FY", 30) In addition, this syntax will return the latest stock price for Caterpillar Inc right in your spreadsheet. =FS_Latest("CAT") If you need assistance with any of the function, feel free to reach out to their customer support team. To get starter, install their Excel and Google Sheets add-on.
GSA, the nation's largest public real estate organization, provides workspace for over one million federal workers. These employees, along with government property, are housed in space owned by the federal government and in leased properties including buildings, land, antenna sites, etc. across the country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In "Sample Student Data", there are 6 sheets. There are three sheets with sample datasets, one for each of the three different exercise protocols described (CrP Sample Dataset, Glycolytic Dataset, Oxidative Dataset). Additionally, there are three sheets with sample graphs created using one of the three datasets (CrP Sample Graph, Glycolytic Graph, Oxidative Graph). Each dataset and graph pairs are from different subjects. · CrP Sample Dataset and CrP Sample Graph: This is an example of a dataset and graph created from an exercise protocol designed to stress the creatine phosphate system. Here, the subject was a track and field athlete who threw the shot put for the DeSales University track team. The NIRS monitor was placed on the right triceps muscle, and the student threw the shot put six times with a minute rest in between throws. Data was collected telemetrically by the NIRS device and then downloaded after the student had completed the protocol. · Glycolytic Dataset and Glycolytic Graph: This is an example of a dataset and graph created from an exercise protocol designed to stress the glycolytic energy system. In this example, the subject performed continuous squat jumps for 30 seconds, followed by a 90 second rest period, for a total of three exercise bouts. The NIRS monitor was place on the left gastrocnemius muscle. Here again, data was collected telemetrically by the NIRS device and then downloaded after he had completed the protocol. · Oxidative Dataset and Oxidative Graph: In this example, the dataset and graph are from an exercise protocol designed to stress the oxidative system. Here, the student held a sustained, light-intensity, isometric biceps contraction (pushing against a table). The NIRS monitor was attached to the left biceps muscle belly. Here, data was collected by a student observing the SmO2 values displayed on a secondary device; specifically, a smartphone with the IPSensorMan APP displaying data. The recorder student observed and recorded the data on an Excel Spreadsheet, and marked the times that exercise began and ended on the Spreadsheet.
This template is for recording genome data from the NimbleGen platform. This template was taken from the GEO website (http://www.ncbi.nlm.nih.gov/geo/info/spreadsheet.html) and modified to conform to the SysMO-JERM (Just enough Results Model) for transcriptomics. Using these templates will mean easier submission to GEO/ArrayExpress and greater consistency of data in SEEK.
https://assets.publishing.service.gov.uk/media/6707823292bb81fcdbe7b5ff/fire-statistics-data-tables-fire1120-191023.xlsx">FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (19 October 2023) (MS Excel Spreadsheet, 194 KB)
https://assets.publishing.service.gov.uk/media/652d3a7f6b6fbf0014b756d9/fire-statistics-data-tables-fire1120-201022.xlsx">FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (20 October 2022) (MS Excel Spreadsheet, 293 KB)
https://assets.publishing.service.gov.uk/media/634e7f238fa8f5346ba7099b/fire-statistics-data-tables-fire1120-051121.xlsx">FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (05 November 2021) (MS Excel Spreadsheet, 220 KB)
https://assets.publishing.service.gov.uk/media/61853a37e90e07198018fb0b/fire-statistics-data-tables-fire1120-211021.xlsx">FIRE1120: Staff joining fire authorities (headcount), by fire and rescue authority, gender and role (21 October 2021) (MS Excel Spreadsheet, 210 KB)
https://assets.publishing.service.gov.uk/media/616d7d218fa8f5298406229e/fire-statistics-data-tables-fire1120-221020.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (22 October 2020) (MS Excel Spreadsheet, 157 KB)
https://assets.publishing.service.gov.uk/media/5f86b42b8fa8f517090ab0e4/fire-statistics-data-tables-fire1120-141119.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (14 November 2019) (MS Excel Spreadsheet, 116 KB)
https://assets.publishing.service.gov.uk/media/5dc9869ee5274a5c51437e43/fire-statistics-data-tables-fire1120-311019.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (31 October 2019) (MS Excel Spreadsheet, 116 KB)
https://assets.publishing.service.gov.uk/media/5db7098040f0b6379a7acbc4/fire-statistics-data-tables-fire1120-170119.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (17 January 2019) (MS Excel Spreadsheet, 74.5 KB)
https://assets.publishing.service.gov.uk/media/5c34bd7ee5274a65ab281de8/fire-statistics-data-tables-fire1120-18oct2018.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (18 October 2018) (MS Excel Spreadsheet, 74.3 KB)
https://assets.publishing.service.gov.uk/media/5bbcc352e5274a3611919f80/fire-statistics-data-tables-fire1120.xlsx">FIRE1120: Staff joining fire authorities, by fire and rescue authority, gender and role (26 October 2017) (MS Excel Spreadsheet, 24.3 KB)
<a href="https://www.gov.uk/government/statistical-data-sets/fire-
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A messy data for demonstrating "how to clean data using spreadsheet". This dataset was intentionally formatted to be messy, for the purpose of demonstration. It was collated from here - https://openafrica.net/dataset/historic-and-projected-rainfall-and-runoff-for-4-lake-victoria-sub-regions
In order to test hypotheses about groundwater flow under and into estuaries and the Atlantic Ocean, geophysical surveys, geophysical probing, submarine groundwater sampling, and sediment coring were conducted by U.S. Geological Survey (USGS) scientists at Cape Cod National Seashore (CCNS) from 2004 through 2006. Coastal resource managers at CCNS and elsewhere are concerned about nutrients that are entering coastal waters via submarine groundwater discharge, which are contributing to eutrophication and harmful algal blooms. The research carried out as part of the study described here was designed, in part, to help refine assumptions required by earlier versions of models about the nature of submarine groundwater flow and discharge at CCNS. This study was conducted in four phases, with a variety of field techniques and equipment employed in each phase. Phase 1 consisted of continuous resistivity profiling (CRP) surveys of the entire study area conducted in 2004. Phase 2 consisted of CRP ground-truthing via resistivity probe measurements and submarine groundwater sampling from hydraulically-drive piezometers using a barge in the Salt Pond/Nauset Marsh area in 2005. Phase 3 consisted of supplemental detailed CRP surveys in the Salt Pond/Nauset Marsh area in 2006. Finally, Phase 4 consisted of sediment coring and porewater extraction in the Salt Pond/Nauset Marsh area later in 2006 to supplement the 2005 sampling.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT) was developed as a way to distill large amounts of geothermal project data into an objective, reportable data set that can be used to communicate with experts and non-experts. GeoRePORT summarizes (1) resource grade and certainty and (2) project readiness. This Excel file allows users to easily navigate through the resource grade attributes, using drop-down menus to pick grades and project readiness, and then easily print and share the summary with others. This spreadsheet is the first draft, for which we are soliciting expert feedback. The spreadsheet will be updated based on this feedback to increase usability of the tool. If you have any comments, please feel free to contact us.
The first row of the Excel spreadsheet describes the data - ID number, Metamorphic Relation Topic, Title of Comment, Type of Comment, Content of the Comment. Our original dataset contained names but these were removed from the dataset.
Download Employee Travel Excel SheetThis dataset contains information about the employee travel expenses for the year 2020. Details are provided on the employee (name, title, department), the travel (dates, location, purpose) and the cost (expenses, recoveries). Expenses are broken down in separate tabs by Quarter (Q1, Q2, Q3 and Q4). Updated quarterly when expenses are prepared. Expenses for other years are available in separate datasets.
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided that tabulates best models for each downscaled climate dataset and for all downscaled climate datasets considered together. Best models were identified based on how well the models capture the climatology and interannual variability of four climate extreme indices using the Model Climatology Index (MCI) and the Model Variability Index (MVI) of Srivastava and others (2020). The four indices consist of annual maxima consecutive precipitation for durations of 1, 3, 5, and 7 days compared against the same indices computed based on the PRISM and SFWMD gridded precipitation datasets for two climate regions: climate region 4 in South Central Florida, and climate region 5 in South Florida. The PRISM dataset is based on the Parameter-elevation Relationships on Independent Slopes Model interpolation method of Daly and others (2008). The South Florida Water Management District’s (SFWMD) precipitation super-grid is a gridded precipitation dataset developed by modelers at the agency for use in hydrologic modeling (SFWMD, 2005). This dataset is considered by the SFWMD as the best available gridded rainfall dataset for south Florida. Best models were selected based on MCI and MVI evaluated within each individual downscaled dataset. In addition, best models were selected by comparison across datasets and referred to as "ALL DATASETS" hereafter. Due to the small sample size, all models in the using the Weather Research and Forecasting Model (JupiterWRF) dataset were considered as best models.
In order to test hypotheses about groundwater flow under and into estuaries and the Atlantic Ocean, geophysical surveys, geophysical probing, submarine groundwater sampling, and sediment coring were conducted by U.S. Geological Survey (USGS) scientists at Cape Cod National Seashore (CCNS) from 2004 through 2006. Coastal resource managers at CCNS and elsewhere are concerned about nutrients that are entering coastal waters via submarine groundwater discharge, which are contributing to eutrophication and harmful algal blooms. The research carried out as part of the study described here was designed, in part, to help refine assumptions required by earlier versions of models about the nature of submarine groundwater flow and discharge at CCNS. This study was conducted in four phases, with a variety of field techniques and equipment employed in each phase. Phase 1 consisted of continuous resistivity profiling (CRP) surveys of the entire study area conducted in 2004. Phase 2 consisted of CRP ground-truthing via resistivity probe measurements and submarine groundwater sampling from hydraulically-drive piezometers using a barge in the Salt Pond/Nauset Marsh area in 2005. Phase 3 consisted of supplemental detailed CRP surveys in the Salt Pond/Nauset Marsh area in 2006. Finally, Phase 4 consisted of sediment coring and porewater extraction in the Salt Pond/Nauset Marsh area later in 2006 to supplement the 2005 sampling.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset for post-survey data (after required LinkedIn assignment); provided in Excel spreadsheet (.xlsx).
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global spreadsheets software market is experiencing robust growth, driven by increasing digitalization across industries and the rising adoption of cloud-based solutions. The market, estimated at $20 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $35 billion by 2033. This growth is fueled by several factors, including the expanding need for data analysis and visualization across SMEs and large enterprises, the increasing availability of user-friendly and feature-rich spreadsheet software, and the growing preference for collaborative tools that facilitate seamless teamwork. The market is segmented by operating system (Windows, Macintosh, Linux, Others) and user type (SMEs, Large Enterprises). While Microsoft Excel maintains a dominant market share, the rise of cloud-based alternatives like Google Sheets and collaborative platforms is challenging this dominance, fostering competition and innovation. Furthermore, the increasing integration of spreadsheets with other business intelligence tools further enhances their utility and fuels demand. Geographic expansion, particularly in developing economies with rising internet penetration, also contributes significantly to market expansion. However, factors such as the high initial investment in software licenses and the need for specialized training can restrain market growth, particularly for smaller businesses with limited budgets and technical expertise. The increasing complexity of data analysis necessitates enhanced security features and data protection measures, which add cost and require ongoing investment. Moreover, the emergence of advanced analytical tools and specialized data visualization software presents a competitive challenge, demanding continuous innovation and adaptation from existing spreadsheet software providers. Nevertheless, the overall market outlook remains positive, driven by sustained demand from diverse industries and technological advancements within the software landscape.
Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).