100+ datasets found
  1. TPS 10/21 - TF Dataset & Feather Formats

    • kaggle.com
    Updated Oct 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Sizemore (2021). TPS 10/21 - TF Dataset & Feather Formats [Dataset]. https://www.kaggle.com/datasets/rsizem2/tps-october-2021-reduced-memory
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 13, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Robert Sizemore
    Description

    Dataset

    This dataset was created by Robert Sizemore

    Contents

  2. GISLR TF Data

    • kaggle.com
    Updated May 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kɔuq Wang (2023). GISLR TF Data [Dataset]. https://www.kaggle.com/gmhost/gislr-tf-data/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 11, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kɔuq Wang
    Description

    Dataset

    This dataset was created by kwang

    Contents

  3. T

    mnist

    • tensorflow.org
    • universe.roboflow.com
    • +3more
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). mnist [Dataset]. https://www.tensorflow.org/datasets/catalog/mnist
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    The MNIST database of handwritten digits.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('mnist', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/mnist-3.0.1.png" alt="Visualization" width="500px">

  4. T

    cifar10

    • tensorflow.org
    • opendatalab.com
    • +3more
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). cifar10 [Dataset]. https://www.tensorflow.org/datasets/catalog/cifar10
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('cifar10', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/cifar10-3.0.2.png" alt="Visualization" width="500px">

  5. Z

    Dataset for "Enhancing Cloud Detection in Sentinel-2 Imagery: A...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wang Guizhou (2024). Dataset for "Enhancing Cloud Detection in Sentinel-2 Imagery: A Spatial-Temporal Approach and Dataset" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8419699
    Explore at:
    Dataset updated
    Feb 4, 2024
    Dataset provided by
    He Guojin
    Wang Guizhou
    Gong Chengjuan
    Jiao Weili
    Long Tengfei
    Yin Ranyu
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset is built for time-series Sentinel-2 cloud detection and stored in Tensorflow TFRecord (refer to https://www.tensorflow.org/tutorials/load_data/tfrecord).

    Each file is compressed in 7z format and can be decompressed using Bandzip or 7-zip software.

    Dataset Structure:

    Each filename can be split into three parts using underscores. The first part indicates whether it is designated for training or validation ('train' or 'val'); the second part indicates the Sentinel-2 tile name, and the last part indicates the number of samples in this file.

    For each sample, it includes:

    Sample ID;

    Array of time series 4 band image patches in 10m resolution, shaped as (n_timestamps, 4, 42, 42);

    Label list indicating cloud cover status for the center (6\times6) pixels of each timestamp;

    Ordinal list for each timestamp;

    Sample weight list (reserved);

    Here is a demonstration function for parsing the TFRecord file:

    import tensorflow as tf

    init Tensorflow Dataset from file name

    def parseRecordDirect(fname): sep = '/' parts = tf.strings.split(fname,sep) tn = tf.strings.split(parts[-1],sep='_')[-2] nn = tf.strings.to_number(tf.strings.split(parts[-1],sep='_')[-1],tf.dtypes.int64) t = tf.data.Dataset.from_tensors(tn).repeat().take(nn) t1 = tf.data.TFRecordDataset(fname) ds = tf.data.Dataset.zip((t, t1)) return ds

    keys_to_features_direct = { 'localid': tf.io.FixedLenFeature([], tf.int64, -1), 'image_raw_ldseries': tf.io.FixedLenFeature((), tf.string, ''), 'labels': tf.io.FixedLenFeature((), tf.string, ''), 'dates': tf.io.FixedLenFeature((), tf.string, ''), 'weights': tf.io.FixedLenFeature((), tf.string, '') }

    The Decoder (Optional)

    class SeriesClassificationDirectDecorder(decoder.Decoder): """A tf.Example decoder for tfds classification datasets.""" def init(self) -> None: super()._init_()

    def decode(self, tid, ds): parsed = tf.io.parse_single_example(ds, keys_to_features_direct) encoded = parsed['image_raw_ldseries'] labels_encoded = parsed['labels'] decoded = tf.io.decode_raw(encoded, tf.uint16) label = tf.io.decode_raw(labels_encoded, tf.int8) dates = tf.io.decode_raw(parsed['dates'], tf.int64) weight = tf.io.decode_raw(parsed['weights'], tf.float32) decoded = tf.reshape(decoded,[-1,4,42,42]) sample_dict = { 'tid': tid, # tile ID 'dates': dates, # Date list 'localid': parsed['localid'], # sample ID 'imgs': decoded, # image array 'labels': label, # label list 'weights': weight } return sample_dict

    simple function

    def preprocessDirect(tid, record): parsed = tf.io.parse_single_example(record, keys_to_features_direct) encoded = parsed['image_raw_ldseries'] labels_encoded = parsed['labels'] decoded = tf.io.decode_raw(encoded, tf.uint16) label = tf.io.decode_raw(labels_encoded, tf.int8) dates = tf.io.decode_raw(parsed['dates'], tf.int64) weight = tf.io.decode_raw(parsed['weights'], tf.float32) decoded = tf.reshape(decoded,[-1,4,42,42]) return tid, dates, parsed['localid'], decoded, label, weight

    t1 = parseRecordDirect('filename here') dataset = t1.map(preprocessDirect, num_parallel_calls=tf.data.experimental.AUTOTUNE)

    #

    Class Definition:

    0: clear

    1: opaque cloud

    2: thin cloud

    3: haze

    4: cloud shadow

    5: snow

    Dataset Construction:

    First, we randomly generate 500 points for each tile, and all these points are aligned to the pixel grid center of the subdatasets in 60m resolution (eg. B10) for consistence when comparing with other products. It is because that other cloud detection method may use the cirrus band as features, which is in 60m resolution.

    Then, the time series image patches of two shapes are cropped with each point as the center.The patches of shape (42 \times 42) are cropped from the bands in 10m resolution (B2, B3, B4, B8) and are used to construct this dataset.And the patches of shape (348 \times 348) are cropped from the True Colour Image (TCI, details see sentinel-2 user guide) file and are used to interpreting class labels.

    The samples with a large number of timestamps could be time-consuming in the IO stage, thus the time series patches are divided into different groups with timestamps not exceeding 100 for every group.

  6. Data from: BOREAS TF-08 NSA-OJP Tower Flux, Meteorological, and Soil...

    • catalog.data.gov
    • cmr.earthdata.nasa.gov
    • +1more
    Updated Jul 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ORNL_DAAC (2025). BOREAS TF-08 NSA-OJP Tower Flux, Meteorological, and Soil Temperature Data [Dataset]. https://catalog.data.gov/dataset/boreas-tf-08-nsa-ojp-tower-flux-meteorological-and-soil-temperature-data-62171
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Oak Ridge National Laboratory Distributed Active Archive Center
    Description

    The BOREAS TF-08 team collected energy, CO2, and water vapor flux data at the BOREAS NSA-OJP site during the growing season of 1994 and most of the year for 1996.

  7. b

    TF-IDF BOM Classification - Datasets - data.bris

    • data.bris.ac.uk
    Updated Jul 31, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). TF-IDF BOM Classification - Datasets - data.bris [Dataset]. https://data.bris.ac.uk/data/dataset/359eijlclh9u22gjoc0on9o545
    Explore at:
    Dataset updated
    Jul 31, 2017
    Description

    This deposit contains the underlying data related to the conference publication "Improving engineering information retrieval by combining TF-IDF and product structure classification" Complete download (zip, 13.4 MiB)

  8. T

    fashion_mnist

    • tensorflow.org
    • opendatalab.com
    • +3more
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). fashion_mnist [Dataset]. https://www.tensorflow.org/datasets/catalog/fashion_mnist
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    Fashion-MNIST is a dataset of Zalando's article images consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('fashion_mnist', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/fashion_mnist-3.0.1.png" alt="Visualization" width="500px">

  9. tf-2-data-extraction-3

    • kaggle.com
    Updated Nov 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajnish Chauhan (2019). tf-2-data-extraction-3 [Dataset]. https://www.kaggle.com/rajnishe/tf-data-file-3/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 12, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rajnish Chauhan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Rajnish Chauhan

    Released under CC0: Public Domain

    Contents

  10. Data from: BOREAS TF-02 SSA-OA Tethersonde Meteorological and Ozone Data

    • s.cnmilf.com
    • search.dataone.org
    • +4more
    Updated Jul 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ORNL_DAAC (2025). BOREAS TF-02 SSA-OA Tethersonde Meteorological and Ozone Data [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/boreas-tf-02-ssa-oa-tethersonde-meteorological-and-ozone-data-83700
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Oak Ridge National Laboratory Distributed Active Archive Center
    Description

    Members of the BOREAS TF-02 team collected meteorological and ozone measurements from instruments mounted below a tethered balloon. These data were collected at the SSA-OA site to extend meteorological and ozone measurements made from the flux tower to heights of 300 m. The tethersonde operated during the fall of 1993 and the spring, summer, and fall of 1994.

  11. T

    imdb_reviews

    • tensorflow.org
    • kaggle.com
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). imdb_reviews [Dataset]. https://www.tensorflow.org/datasets/catalog/imdb_reviews
    Explore at:
    Dataset updated
    Sep 20, 2024
    Description

    Large Movie Review Dataset. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imdb_reviews', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  12. BOREAS TF-11 CO2 and CH4 Flux Data from the SSA-Fen

    • catalog.data.gov
    • search.dataone.org
    • +4more
    Updated Jul 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ORNL_DAAC (2025). BOREAS TF-11 CO2 and CH4 Flux Data from the SSA-Fen [Dataset]. https://catalog.data.gov/dataset/boreas-tf-11-co2-and-ch4-flux-data-from-the-ssa-fen-1e291
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Oak Ridge National Laboratory Distributed Active Archive Center
    Description

    The BOREAS TF-11 team collected several data sets in their efforts to fully describe the flux and site characteristics at the SSA-Fen site. This data set contains fluxes of methane and carbon dioxide at the SSA fen site measured using static chambers. The measurements were conducted as part of a 2x2 factorial experiment in which we added carbon (300 g m-2 as wheat straw) and nitrogen (6 g m-2 as urea) to four replicate locations in the vicinity of the TF-11 tower. In addition to siting and treatment variables, it reports air temperature and water table height relative to the average peat surface during each measurement. The data set covers the period from the first week of June 1994 through the second week of September, 1994.

  13. tf-2-data-extraction-2

    • kaggle.com
    Updated Nov 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajnish Chauhan (2019). tf-2-data-extraction-2 [Dataset]. https://www.kaggle.com/rajnishe/tf-data-file-2/notebooks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 12, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rajnish Chauhan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Rajnish Chauhan

    Released under CC0: Public Domain

    Contents

  14. o

    T F Hicks Cross Street Data in New Hudson, MI

    • ownerly.com
    Updated Dec 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ownerly (2021). T F Hicks Cross Street Data in New Hudson, MI [Dataset]. https://www.ownerly.com/mi/new-hudson/t-f-hicks-home-details
    Explore at:
    Dataset updated
    Dec 25, 2021
    Dataset authored and provided by
    Ownerly
    Area covered
    New Hudson, Michigan, T F Hicks Court
    Description

    This dataset provides information about the number of properties, residents, and average property values for T F Hicks cross streets in New Hudson, MI.

  15. Data from: BOREAS TF-01 SSA-OA Understory Flux, Meteorological, and Soil...

    • catalog.data.gov
    • search.dataone.org
    • +4more
    Updated Jul 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ORNL_DAAC (2025). BOREAS TF-01 SSA-OA Understory Flux, Meteorological, and Soil Temperature Data [Dataset]. https://catalog.data.gov/dataset/boreas-tf-01-ssa-oa-understory-flux-meteorological-and-soil-temperature-data-5ddde
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Oak Ridge National Laboratory Distributed Active Archive Center
    Description

    The BOREAS TF-01 team collected energy, carbon dioxide, and momentum flux data under the canopy along with meteorological and soils data at the BOREAS SSA-OA site from mid-October to mid-November of 1993 and throughout all of 1994.

  16. Z

    Screw Detection TF Records

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yildiz, Erenus (2021). Screw Detection TF Records [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4727705
    Explore at:
    Dataset updated
    Apr 30, 2021
    Dataset authored and provided by
    Yildiz, Erenus
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Tensorflow Records for the Screw Detection module. The records are loaded by the module for training the DCNN.

  17. d

    Taxable Sales And Purchases Quarterly Data: Beginning Sales Tax Year...

    • datasets.ai
    • data.ny.gov
    • +1more
    23, 40, 55, 8
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of New York, Taxable Sales And Purchases Quarterly Data: Beginning Sales Tax Year 2013-2014 [Dataset]. https://datasets.ai/datasets/taxable-sales-and-purchases-quarterly-data-beginning-sales-tax-year-2013-2014
    Explore at:
    8, 40, 23, 55Available download formats
    Dataset authored and provided by
    State of New York
    Description

    These statistics come from more than three million data items reported on about 250,000 sales tax returns filed quarterly and on about 300,000 returns filed annually. The dataset categorizes quarterly sales and purchases data by industry group using the North American Industry Classification System. The status of data will change as preliminary data becomes final.

  18. swin_transformer_tf

    • kaggle.com
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HyeongChan Kim (2025). swin_transformer_tf [Dataset]. https://www.kaggle.com/kozistr/swin-transformer-tf/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    HyeongChan Kim
    Description

    Swin Transformer (Tensorflow)

    Tensorflow reimplementation of Swin Transformer model.

    Based on Official Pytorch implementation. https://user-images.githubusercontent.com/24825165/121768619-038e6d80-cb9a-11eb-8cb7-daa827e7772b.png" alt="image">

    Requirements

    • tensorflow >= 2.4.1

    Pretrained Swin Transformer Checkpoints

    ImageNet-1K and ImageNet-22K Pretrained Checkpoints
    | name | pretrain | resolution |acc@1 | #params | model | | :---: | :---: | :---: | :---: | :---: | :---: | |swin_tiny_224 |ImageNet-1K |224x224|81.2|28M|github| |swin_small_224|ImageNet-1K |224x224|83.2|50M|github| |swin_base_224 |ImageNet-22K|224x224|85.2|88M|github| |swin_base_384 |ImageNet-22K|384x384|86.4|88M|github| |swin_large_224|ImageNet-22K|224x224|86.3|197M|github| |swin_large_384|ImageNet-22K|384x384|87.3|197M|github|

    Examples

    Initializing the model: ```python from swintransformer import SwinTransformer

    model = SwinTransformer('swin_tiny_224', num_classes=1000, include_top=True, pretrained=False) You can use a pretrained model like this:python import tensorflow as tf from swintransformer import SwinTransformer

    model = tf.keras.Sequential([ tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), input_shape=[*IMAGE_SIZE, 3]), SwinTransformer('swin_tiny_224', include_top=False, pretrained=True), tf.keras.layers.Dense(NUM_CLASSES, activation='softmax') ]) If you use a pretrained model with TPU on kaggle, specify `use_tpu` option:python import tensorflow as tf from swintransformer import SwinTransformer

    model = tf.keras.Sequential([ tf.keras.layers.Lambda(lambda data: tf.keras.applications.imagenet_utils.preprocess_input(tf.cast(data, tf.float32), mode="torch"), input_shape=[*IMAGE_SIZE, 3]), SwinTransformer('swin_tiny_224', include_top=False, pretrained=True, use_tpu=True), tf.keras.layers.Dense(NUM_CLASSES, activation='softmax') ]) ``` Example: TPU training on Kaggle

    Citation

    @article{liu2021Swin,
     title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
     author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
     journal={arXiv preprint arXiv:2103.14030},
     year={2021}
    }
    
  19. d

    Property Assessment Data from Local Assessment Rolls

    • datasets.ai
    • gimi9.com
    • +2more
    23, 40, 55, 8
    Updated Sep 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of New York (2024). Property Assessment Data from Local Assessment Rolls [Dataset]. https://datasets.ai/datasets/property-assessment-data-from-local-assessment-rolls
    Explore at:
    23, 40, 55, 8Available download formats
    Dataset updated
    Sep 1, 2024
    Dataset authored and provided by
    State of New York
    Description

    This dataset is comprised of the final assessment rolls submitted to the New York State Department of Taxation and Finance – Office of Real Property Tax Services by 996 local governments. Together, the assessment rolls provide the details of the more than 4.7 million parcels in New York State.

    The dataset includes assessment rolls for all cities and towns, except New York City. (For New York City assessment roll data, see NYC Open Data [https://opendata.cityofnewyork.us])

    For each property, the dataset includes assessed value, full market value, property size, owners, exemption information, and other fields.

    Tip: For a unique identifier for every property in New York State, combine the SWIS code and print key fields.

  20. a

    Latnjajaure Site, CLIP 4-TF 2 Community Data [Alatalo]

    • arcticdata.io
    • search.dataone.org
    • +1more
    Updated Oct 21, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juha Alatalo (2016). Latnjajaure Site, CLIP 4-TF 2 Community Data [Alatalo] [Dataset]. https://arcticdata.io/catalog/view/urn%3Auuid%3A9d66f740-9d56-411b-8c67-6b1f1edd10a9
    Explore at:
    Dataset updated
    Oct 21, 2016
    Dataset provided by
    Arctic Data Center
    Authors
    Juha Alatalo
    Time period covered
    Jul 14, 1995 - Jul 19, 2000
    Area covered
    Description

    This dataset contains CLIP 4-TF 2 Community data from the Latnjajaure site, Sweden in 1995, 1996, 1997, 1999 & 2000. The Community Level Interaction Program (CLIP) data comprises a block of poor, dry heath. For more information, please see the readme file.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Robert Sizemore (2021). TPS 10/21 - TF Dataset & Feather Formats [Dataset]. https://www.kaggle.com/datasets/rsizem2/tps-october-2021-reduced-memory
Organization logo

TPS 10/21 - TF Dataset & Feather Formats

equivalent data provided in .feather format and Tensorflow Dataset format

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Oct 13, 2021
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Robert Sizemore
Description

Dataset

This dataset was created by Robert Sizemore

Contents

Search
Clear search
Close search
Google apps
Main menu