100+ datasets found
  1. Average data use of leading navigation apps in the U.S. 2020

    • statista.com
    Updated Oct 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Average data use of leading navigation apps in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1186009/data-use-leading-us-navigation-apps/
    Explore at:
    Dataset updated
    Oct 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2020
    Area covered
    United States
    Description

    As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.

  2. Google Maps Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jan 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Google Maps Dataset [Dataset]. https://brightdata.com/products/datasets/google-maps
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jan 8, 2023
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.

  3. Internet usage: route planning and road maps (e.g. Google Maps) in Germany...

    • statista.com
    • abripper.com
    Updated Nov 10, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Internet usage: route planning and road maps (e.g. Google Maps) in Germany 2013-2016 [Dataset]. https://www.statista.com/statistics/432169/online-route-planning-and-map-usage-eg-google-maps-germany/
    Explore at:
    Dataset updated
    Nov 10, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany
    Description

    This statistic shows the results of a survey on the usage of the internet for route planning, maps and road maps (e.g. Google Maps) in Germany from 2013 to 2016. In 2016, there were about ***** million people among the German-speaking population aged 14 years and older, who frequently used the internet to plan routes or to access maps and road maps.

  4. 🌎 Location Intelligence Data | From Google Map

    • kaggle.com
    zip
    Updated Apr 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Azhar Saleem (2024). 🌎 Location Intelligence Data | From Google Map [Dataset]. https://www.kaggle.com/datasets/azharsaleem/location-intelligence-data-from-google-map
    Explore at:
    zip(1911275 bytes)Available download formats
    Dataset updated
    Apr 21, 2024
    Authors
    Azhar Saleem
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    👨‍💻 Author: Azhar Saleem

    "https://github.com/azharsaleem18" target="_blank"> https://img.shields.io/badge/GitHub-Profile-blue?style=for-the-badge&logo=github" alt="GitHub Profile"> "https://www.kaggle.com/azharsaleem" target="_blank"> https://img.shields.io/badge/Kaggle-Profile-blue?style=for-the-badge&logo=kaggle" alt="Kaggle Profile"> "https://www.linkedin.com/in/azhar-saleem/" target="_blank"> https://img.shields.io/badge/LinkedIn-Profile-blue?style=for-the-badge&logo=linkedin" alt="LinkedIn Profile">
    "https://www.youtube.com/@AzharSaleem19" target="_blank"> https://img.shields.io/badge/YouTube-Profile-red?style=for-the-badge&logo=youtube" alt="YouTube Profile"> "https://www.facebook.com/azhar.saleem1472/" target="_blank"> https://img.shields.io/badge/Facebook-Profile-blue?style=for-the-badge&logo=facebook" alt="Facebook Profile"> "https://www.tiktok.com/@azhar_saleem18" target="_blank"> https://img.shields.io/badge/TikTok-Profile-blue?style=for-the-badge&logo=tiktok" alt="TikTok Profile">
    "https://twitter.com/azhar_saleem18" target="_blank"> https://img.shields.io/badge/Twitter-Profile-blue?style=for-the-badge&logo=twitter" alt="Twitter Profile"> "https://www.instagram.com/azhar_saleem18/" target="_blank"> https://img.shields.io/badge/Instagram-Profile-blue?style=for-the-badge&logo=instagram" alt="Instagram Profile"> "mailto:azharsaleem6@gmail.com"> https://img.shields.io/badge/Email-Contact%20Me-red?style=for-the-badge&logo=gmail" alt="Email Contact">

    Dataset Overview

    Welcome to the Google Places Comprehensive Business Dataset! This dataset has been meticulously scraped from Google Maps and presents extensive information about businesses across several countries. Each entry in the dataset provides detailed insights into business operations, location specifics, customer interactions, and much more, making it an invaluable resource for data analysts and scientists looking to explore business trends, geographic data analysis, or consumer behaviour patterns.

    Key Features

    • Business Details: Includes unique identifiers, names, and contact information.
    • Geolocation Data: Precise latitude and longitude for pinpointing business locations on a map.
    • Operational Timings: Detailed opening and closing hours for each day of the week, allowing analysis of business activity patterns.
    • Customer Engagement: Data on review counts and ratings, offering insights into customer satisfaction and business popularity.
    • Additional Attributes: Links to business websites, time zone information, and country-specific details enrich the dataset for comprehensive analysis.

    Potential Use Cases

    This dataset is ideal for a variety of analytical projects, including: - Market Analysis: Understand business distribution and popularity across different regions. - Customer Sentiment Analysis: Explore relationships between customer ratings and business characteristics. - Temporal Trend Analysis: Analyze patterns of business activity throughout the week. - Geospatial Analysis: Integrate with mapping software to visualise business distribution or cluster businesses based on location.

    Dataset Structure

    The dataset contains 46 columns, providing a thorough profile for each listed business. Key columns include:

    • business_id: A unique Google Places identifier for each business, ensuring distinct entries.
    • phone_number: The contact number associated with the business. It provides a direct means of communication.
    • name: The official name of the business as listed on Google Maps.
    • full_address: The complete postal address of the business, including locality and geographic details.
    • latitude: The geographic latitude coordinate of the business location, useful for mapping and spatial analysis.
    • longitude: The geographic longitude coordinate of the business location.
    • review_count: The total number of reviews the business has received on Google Maps.
    • rating: The average user rating out of 5 for the business, reflecting customer satisfaction.
    • timezone: The world timezone the business is located in, important for temporal analysis.
    • website: The official website URL of the business, providing further information and contact options.
    • category: The category or type of service the business provides, such as restaurant, museum, etc.
    • claim_status: Indicates whether the business listing has been claimed by the owner on Google Maps.
    • plus_code: A sho...
  5. d

    GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One Login for Global access [Dataset]. https://datarade.ai/data-products/gapmaps-live-location-intelligence-platform-map-data-easy-gapmaps
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Kenya, Egypt, Morocco, Oman, Thailand, India, United Arab Emirates, Malaysia, United States of America, Hong Kong
    Description

    GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.

    With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.

    Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live Map Data as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.

    Primary Use Cases for GapMaps Live Map Data include:

    1. Retail Site Selection - Identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers and where to find more of them.
    3. Analyse your catchment areas at a granular grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    6. Customer Profiling
    7. Target Marketing
    8. Market Share Analysis

    Some of features our clients love about GapMaps Live Map Data include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.

  6. Most popular navigation apps in the U.S. 2023, by downloads

    • statista.com
    Updated Feb 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most popular navigation apps in the U.S. 2023, by downloads [Dataset]. https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
    Explore at:
    Dataset updated
    Feb 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Google Maps was the most downloaded map and navigation app in the United States, despite being a standard pre-installed app on Android smartphones. Waze followed, with 9.89 million downloads in the examined period. The app, which comes with maps and the possibility to access information on traffic via users reports, was developed in 2006 by the homonymous Waze company, acquired by Google in 2013.

    Usage of navigation apps in the U.S. As of 2021, less than two in 10 U.S. adults were using a voice assistant in their cars, in order to place voice calls or follow voice directions to a destination. Navigation apps generally offer the possibility for users to download maps to access when offline. Native iOS app Apple Maps, which does not offer this possibility, was by far the navigation app with the highest data consumption, while Google-owned Waze used only 0.23 MB per 20 minutes.

    Usage of navigation apps worldwide In July 2022, Google Maps was the second most popular Google-owned mobile app, with 13.35 million downloads from global users during the examined month. In China, the Gaode Map app, which is operated along with other navigation services by the Alibaba owned AutoNavi, had approximately 730 million monthly active users as of September 2022.

  7. d

    Outscraper Google Maps Scraper

    • datarade.ai
    .json, .csv, .xls
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Outscraper Google Maps Scraper [Dataset]. https://datarade.ai/data-products/outscraper-google-maps-scraper-outscraper
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Dec 9, 2021
    Area covered
    United States
    Description

    Are you looking to identify B2B leads to promote your business, product, or service? Outscraper Google Maps Scraper might just be the tool you've been searching for. This powerful software enables you to extract business data directly from Google's extensive database, which spans millions of businesses across countless industries worldwide.

    Outscraper Google Maps Scraper is a tool built with advanced technology that lets you scrape a myriad of valuable information about businesses from Google's database. This information includes but is not limited to, business names, addresses, contact information, website URLs, reviews, ratings, and operational hours.

    Whether you are a small business trying to make a mark or a large enterprise exploring new territories, the data obtained from the Outscraper Google Maps Scraper can be a treasure trove. This tool provides a cost-effective, efficient, and accurate method to generate leads and gather market insights.

    By using Outscraper, you'll gain a significant competitive edge as it allows you to analyze your market and find potential B2B leads with precision. You can use this data to understand your competitors' landscape, discover new markets, or enhance your customer database. The tool offers the flexibility to extract data based on specific parameters like business category or geographic location, helping you to target the most relevant leads for your business.

    In a world that's growing increasingly data-driven, utilizing a tool like Outscraper Google Maps Scraper could be instrumental to your business' success. If you're looking to get ahead in your market and find B2B leads in a more efficient and precise manner, Outscraper is worth considering. It streamlines the data collection process, allowing you to focus on what truly matters – using the data to grow your business.

    https://outscraper.com/google-maps-scraper/

    As a result of the Google Maps scraping, your data file will contain the following details:

    Query Name Site Type Subtypes Category Phone Full Address Borough Street City Postal Code State Us State Country Country Code Latitude Longitude Time Zone Plus Code Rating Reviews Reviews Link Reviews Per Scores Photos Count Photo Street View Working Hours Working Hours Old Format Popular Times Business Status About Range Posts Verified Owner ID Owner Title Owner Link Reservation Links Booking Appointment Link Menu Link Order Links Location Link Place ID Google ID Reviews ID

    If you want to enrich your datasets with social media accounts and many more details you could combine Google Maps Scraper with Domain Contact Scraper.

    Domain Contact Scraper can scrape these details:

    Email Facebook Github Instagram Linkedin Phone Twitter Youtube

  8. Google Maps Restaurant Reviews

    • kaggle.com
    zip
    Updated Aug 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deniz Bilgin (2023). Google Maps Restaurant Reviews [Dataset]. https://www.kaggle.com/datasets/denizbilginn/google-maps-restaurant-reviews
    Explore at:
    zip(688734651 bytes)Available download formats
    Dataset updated
    Aug 19, 2023
    Authors
    Deniz Bilgin
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Data includes reviews of different restaurants on Google Maps. There are 1100 comments in total and pictures of each comment in the data set. The data is labeled according to 4 classes (Taste, Menu, Indoor atmosphere, Outdoor atmosphere) for the artificial intelligence to predict. The dataset has been prepared in a way that can be used in both text processing and image processing fields.

    The dataset contains the following columns: business_name, author_name, text, photo, rating, rating_category

    IMPORTANT: The rating_category column is related to the photo of the review. If you want to use this dataset for NLP, you need to label it yourself. I will label it for you when I am available.

  9. d

    Data used to model and map lithium concentrations in groundwater used as...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Data used to model and map lithium concentrations in groundwater used as drinking water for the conterminous United States [Dataset]. https://catalog.data.gov/dataset/data-used-to-model-and-map-lithium-concentrations-in-groundwater-used-as-drinking-water-fo
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States, Contiguous United States
    Description

    This data release contains data used to develop models and maps that estimate the occurrence of lithium in groundwater used as drinking water throughout the conterminous United States. An extreme gradient boosting model was developed to estimate the most probable lithium concentration category (≤4, >4 to ≤10, >10 to ≤30 or >30 µg/L). The model uses lithium concentration data from wells located throughout the conterminous United States and predictor variables that are available as geospatial data. The model is included in this data release in the zipped folder named Model_Archive and was used to produce maps that are also included in this data release. The model input data (predictor variables) that were used to make the maps are within a zipped folder (Map_Input_Data.zip) that contains 20 tif-raster files, one for each model predictor variable. The map probability estimates that are outputs from the model are in a zipped folder (Map_Output_Data.zip) that contains 10 tif-raster files, two model estimate maps for each of the lithium concentration categories and the category with the highest probability for public supply well depths and domestic supply well depths.

  10. Joined_cities_dataset_road_Seg

    • kaggle.com
    zip
    Updated Jul 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    misterEnny (2023). Joined_cities_dataset_road_Seg [Dataset]. https://www.kaggle.com/datasets/misterenny/joined-cities-dataset-road-seg
    Explore at:
    zip(5705720425 bytes)Available download formats
    Dataset updated
    Jul 5, 2023
    Authors
    misterEnny
    Description

    Dataset used for CIL ETH Zürich road segmentation semester Project. Data from Google Maps API. Data from 13 major cities. You find satellite images, map images road segmentation and lower resolution road segmentation (16x16 pixel blocks coloured as road if at least 25% road was present).

  11. MOOD Maps of Google community mobility change during the COVID-19 outbreak

    • figshare.com
    xlsx
    Updated Oct 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Wint; Neil Alexander (2022). MOOD Maps of Google community mobility change during the COVID-19 outbreak [Dataset]. http://doi.org/10.6084/m9.figshare.12130980.v155
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 28, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    William Wint; Neil Alexander
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The MOOD project (MOnitoring Outbreak events for Disease surveillance in a data science context. H2020) has geo-referenced the data Google has published as a series of PDF files presenting reports on national and subnational human mobility levels relative to a baseline data of late January 2020. The details and the PDF files can be found at https://www.google.com/covid19/mobility/.More detail on these files can be found at https://www.moodspatialdata.com/humanmobilityforcovid19 The first set of data were released on April 2 2020 and have been revised weekly since then. The maps now utilise the CSV data released by Google. Please note that the maps figures use a mean of the previous three days, while the Google PDFs use a single days data so there will be differences between values in our maps when compare to the Google PDFs.The authors have extracted the majority of these data into a series of excel spreadsheets. Each worksheet provides the data for % change in numbers of records at various types of location categories illustrated by: retail and recreation, grocery and pharmacy, parks and beaches, transit stations, workplaces and residential (columns f to K). A second set of columns calculates the difference of each value from the mean values for each category (columns L to P) Columns A to E contain geographical details. Column Q contains the names used to link to a mapping file.There are separate worksheets for the date of the data from each dated release (e.g. 2903, 0504 etc.) and separate worksheets calculating the changes between specific dates.A second spreadsheet has been added calculating the 3 day moving mean of each day from the 15th of February. Each day is referenced by the Gregorian calendar day count. So day 48 = Feb 17th.The maps (for EU & Global) display these data. We provide 600 dpi jpegs of the Global (“WD”) and European (“EU”) mapped values at the latest date available, for each of the mobility categories: retail and recreation (“retrec”) , grocery and pharmacy (“grocphar”) , parks (“parks”) , transit stations (“transit”), residential (“resid”) and workplaces (“work”). We also provide maps of the changes from the previous week (“ch”).All data extracting and subsequent processing have been carried out by ERGO (Environmental Research Group Oxford, c/o Dept Zoology, University of Oxford) on behalf of the MOOD H2020 project. Data will be periodically updated. Additional maps can be obtained on request to the authors.

  12. d

    Data from: Data used to model and map arsenic concentration exceedances in...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Data used to model and map arsenic concentration exceedances in private wells throughout the conterminous United States for human health studies [Dataset]. https://catalog.data.gov/dataset/data-used-to-model-and-map-arsenic-concentration-exceedances-in-private-wells-throughout-t
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, United States
    Description

    This data release contains data used to develop models and maps that estimate probabilities of exceeding various thresholds of arsenic concentrations in private domestic wells throughout the conterminous United States. Three boosted regression tree (BRT) models were developed separately to estimate the probability of private well arsenic concentrations exceeding 1, 5, and 10 micrograms per liter (µg/L). A random forest (RF) model was developed to estimate the most probable arsenic concentration category (≤5, >5 to ≤10, or >10 µg/L). The models use arsenic concentration data from private domestic wells located throughout the conterminous United States and independent variables that are available as geospatial data. The models were used to produce maps that are included in this data release. The model input data (predictor variables) that were used to make the maps are within a zipped folder (Map_Input_Data.zip) that contains 85 tif-raster files, one for each model predictor variable. The map probability estimates that are outputs from the model are in a zipped folder (Map_Output_Data.zip) that contains 13 tif-raster files, one model estimate map for each of the BRT models and four for the RF model, as well as 2 confidence interval maps for each BRT model.

  13. d

    Ground Truth Data Used to Map the Benthic Habitats of Puerto Rico

    • catalog.data.gov
    • fisheries.noaa.gov
    Updated May 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2025). Ground Truth Data Used to Map the Benthic Habitats of Puerto Rico [Dataset]. https://catalog.data.gov/dataset/ground-truth-data-used-to-map-the-benthic-habitats-of-puerto-rico6
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    This project is a cooperative effort among the National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Monitoring and Assessment; U.S. Geological Survey; National Park Service; and the National Geophysical Data Center, to produce benthic habitat maps and georeferenced imagery for Puerto Rico and the U.S. Virgin Islands. This project was conducted in support of the U.S. Coral Reef Task Force. These point data were generated while conducting ground validation during map preparation.

  14. S

    Google Usage Statistics 2025: Key Trends and Data Insights

    • sqmagazine.co.uk
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SQ Magazine (2025). Google Usage Statistics 2025: Key Trends and Data Insights [Dataset]. https://sqmagazine.co.uk/google-usage-statistics/
    Explore at:
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    SQ Magazine
    License

    https://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/

    Time period covered
    Jan 1, 2024 - Dec 31, 2025
    Area covered
    Global
    Description

    It starts with a simple habit: you open your browser and type a question. A few keystrokes later, Google gives you answers, videos, maps, and suggestions before you even finish your thought. For billions of people around the world, this daily interaction is second nature. But behind that blinking cursor...

  15. D

    Digital Map Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Digital Map Market Report [Dataset]. https://www.datainsightsmarket.com/reports/digital-map-market-12805
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 12, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The digital map market, currently valued at $25.55 billion in 2025, is experiencing robust growth, projected to expand at a Compound Annual Growth Rate (CAGR) of 13.39% from 2025 to 2033. This expansion is fueled by several key drivers. The increasing adoption of location-based services (LBS) across diverse sectors like automotive, logistics, and smart city initiatives is a primary catalyst. Furthermore, advancements in technologies such as AI, machine learning, and high-resolution satellite imagery are enabling the creation of more accurate, detailed, and feature-rich digital maps. The shift towards cloud-based deployment models offers scalability and cost-effectiveness, further accelerating market growth. While data privacy concerns and the high initial investment costs for sophisticated mapping technologies present some challenges, the overall market outlook remains overwhelmingly positive. The competitive landscape is dynamic, with established players like Google, TomTom, and ESRI vying for market share alongside innovative startups offering specialized solutions. The segmentation of the market by solution (software and services), deployment (on-premise and cloud), and industry reveals significant opportunities for growth in sectors like automotive navigation, autonomous vehicle development, and precision agriculture, where real-time, accurate mapping data is crucial. The Asia-Pacific region, driven by rapid urbanization and technological advancements in countries like China and India, is expected to witness particularly strong growth. The market's future hinges on continuous innovation. We anticipate a rise in the demand for 3D maps, real-time updates, and integration with other technologies like the Internet of Things (IoT) and augmented reality (AR). Companies are focusing on enhancing the accuracy and detail of their maps, incorporating real-time traffic data, and developing tailored solutions for specific industry needs. The increasing adoption of 5G technology promises to further boost the market by enabling faster data transmission and real-time updates crucial for applications like autonomous driving and drone delivery. The development of high-precision mapping solutions catering to specialized sectors like infrastructure management and disaster response will also fuel future growth. Ultimately, the digital map market is poised for continued expansion, driven by technological advancements and increased reliance on location-based services across a wide spectrum of industries. Recent developments include: December 2022 - The Linux Foundation has partnered with some of the biggest technology companies in the world to build interoperable and open map data in what is an apparent move t. The Overture Maps Foundation, as the new effort is called, is officially hosted by the Linux Foundation. The ultimate aim of the Overture Maps Foundation is to power new map products through openly available datasets that can be used and reused across applications and businesses, with each member throwing their data and resources into the mix., July 27, 2022 - Google declared the launch of its Street View experience in India in collaboration with Genesys International, an advanced mapping solutions company, and Tech Mahindra, a provider of digital transformation, consulting, and business re-engineering solutions and services. Google, Tech Mahindra, and Genesys International also plan to extend this to more than around 50 cities by the end of the year 2022.. Key drivers for this market are: Growth in Application for Advanced Navigation System in Automotive Industry, Surge in Demand for Geographic Information System (GIS); Increased Adoption of Connected Devices and Internet. Potential restraints include: Complexity in Integration of Traditional Maps with Modern GIS System. Notable trends are: Surge in Demand for GIS and GNSS to Influence the Adoption of Digital Map Technology.

  16. H

    Tutorial: How to use Google Data Studio and ArcGIS Online to create an...

    • hydroshare.org
    • dataone.org
    • +1more
    zip
    Updated Jul 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Beganskas (2020). Tutorial: How to use Google Data Studio and ArcGIS Online to create an interactive data portal [Dataset]. http://doi.org/10.4211/hs.9edae0ef99224e0b85303c6d45797d56
    Explore at:
    zip(2.9 MB)Available download formats
    Dataset updated
    Jul 31, 2020
    Dataset provided by
    HydroShare
    Authors
    Sarah Beganskas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).

    The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.

    Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.

    An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8

  17. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  18. a

    MAP for website - Satellite Maps Western Hemisphere

    • noaa.hub.arcgis.com
    Updated Aug 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2023). MAP for website - Satellite Maps Western Hemisphere [Dataset]. https://noaa.hub.arcgis.com/maps/4406a7daa7b94b5f8c8364f7f2dc9bf2
    Explore at:
    Dataset updated
    Aug 4, 2023
    Dataset authored and provided by
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    This application is intended for informational purposes only and is not an operational product. The tool provides the capability to access, view and interact with satellite imagery, and shows the latest view of Earth as it appears from space.For additional imagery from NOAA's GOES East and GOES West satellites, please visit our Imagery and Data page or our cooperative institute partners at CIRA and CIMSS.This website should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. In addition, we do not provide weather forecasts on this site — that is the mission of the National Weather Service. Please contact them for any forecast questions or issues. Using the Maps​What does the Layering Options icon mean?The Layering Options widget provides a list of operational layers and their symbols, and allows you to turn individual layers on and off. The order in which layers appear in this widget corresponds to the layer order in the map. The top layer ‘checked’ will indicate what you are viewing in the map, and you may be unable to view the layers below.Layers with expansion arrows indicate that they contain sublayers or subtypes.What does the Time Slider icon do?The Time Slider widget enables you to view temporal layers in a map, and play the animation to see how the data changes over time. Using this widget, you can control the animation of the data with buttons to play and pause, go to the previous time period, and go to the next time period.Do these maps work on mobile devices and different browsers?Yes!Why are there black stripes / missing data on the map?NOAA Satellite Maps is for informational purposes only and is not an operational product; there are times when data is not available.Why does the imagery load slowly?This map viewer does not load pre-generated web-ready graphics and animations like many satellite imagery apps you may be used to seeing. Instead, it downloads geospatial data from our data servers through a Map Service, and the app in your browser renders the imagery in real-time. Each pixel needs to be rendered and geolocated on the web map for it to load.How can I get the raw data and download the GIS World File for the images I choose?The geospatial data Map Service for the NOAA Satellite Maps GOES satellite imagery is located on our Satellite Maps ArcGIS REST Web Service ( available here ).We support open information sharing and integration through this RESTful Service, which can be used by a multitude of GIS software packages and web map applications (both open and licensed).Data is for display purposes only, and should not be used operationally.Are there any restrictions on using this imagery?NOAA supports an open data policy and we encourage publication of imagery from NOAA Satellite Maps; when doing so, please cite it as "NOAA" and also consider including a permalink (such as this one) to allow others to explore the imagery.For acknowledgment in scientific journals, please use:We acknowledge the use of imagery from the NOAA Satellite Maps application: LINKThis imagery is not copyrighted. You may use this material for educational or informational purposes, including photo collections, textbooks, public exhibits, computer graphical simulations and internet web pages. This general permission extends to personal web pages. About this satellite imageryWhat am I looking at in these maps?In this map you are seeing the past 24 hours (updated approximately every 10 minutes) of the Western Hemisphere and Pacific Ocean, as seen by the NOAA GOES East (GOES-16) and GOES West (GOES-18) satellites. In this map you can also view four different ‘layers’. The views show ‘GeoColor’, ‘infrared’, and ‘water vapor’.This maps shows the coverage area of the GOES East and GOES West satellites. GOES East, which orbits the Earth from 75.2 degrees west longitude, provides a continuous view of the Western Hemisphere, from the West Coast of Africa to North and South America. GOES West, which orbits the Earth at 137.2 degrees west longitude, sees western North and South America and the central and eastern Pacific Ocean all the way to New Zealand.What does the GOES GeoColor imagery show?The 'Merged GeoColor’ map shows the coverage area of the GOES East and GOES West satellites and includes the entire Western Hemisphere and most of the Pacific Ocean. This imagery uses a combination of visible and infrared channels and is updated approximately every 15 minutes in real time. GeoColor imagery approximates how the human eye would see Earth from space during daylight hours, and is created by combining several of the spectral channels from the Advanced Baseline Imager (ABI) – the primary instrument on the GOES satellites. The wavelengths of reflected sunlight from the red and blue portions of the spectrum are merged with a simulated green wavelength component, creating RGB (red-green-blue) imagery. At night, infrared imagery shows high clouds as white and low clouds and fog as light blue. The static city lights background basemap is derived from a single composite image from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band. For example, temporary power outages will not be visible. Learn more.What does the GOES infrared map show?The 'GOES infrared' map displays heat radiating off of clouds and the surface of the Earth and is updated every 15 minutes in near real time. Higher clouds colorized in orange often correspond to more active weather systems. This infrared band is one of 12 channels on the Advanced Baseline Imager, the primary instrument on both the GOES East and West satellites. on the GOES the multiple GOES East ABI sensor’s infrared bands, and is updated every 15 minutes in real time. Infrared satellite imagery can be "colorized" or "color-enhanced" to bring out details in cloud patterns. These color enhancements are useful to meteorologists because they signify “brightness temperatures,” which are approximately the temperature of the radiating body, whether it be a cloud or the Earth’s surface. In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are usually “clear sky,” while pale white areas typically indicate low-level clouds. During a hurricane, cloud top temperatures will be higher (and colder), and therefore appear dark red. This imagery is derived from band #13 on the GOES East and GOES West Advanced Baseline Imager.How does infrared satellite imagery work?The infrared (IR) band detects radiation that is emitted by the Earth’s surface, atmosphere and clouds, in the “infrared window” portion of the spectrum. The radiation has a wavelength near 10.3 micrometers, and the term “window” means that it passes through the atmosphere with relatively little absorption by gases such as water vapor. It is useful for estimating the emitting temperature of the Earth’s surface and cloud tops. A major advantage of the IR band is that it can sense energy at night, so this imagery is available 24 hours a day.What do the colors on the infrared map represent?In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are clear sky, while pale white areas indicate low-level clouds, or potentially frozen surfaces. Learn more about this weather imagery.What does the GOES water vapor map layer show?The GOES ‘water vapor’ map displays the concentration and location of clouds and water vapor in the atmosphere and shows data from both the GOES East and GOES West satellites. Imagery is updated approximately every 15 minutes in real time. Water vapor imagery, which is useful for determining locations of moisture and atmospheric circulations, is created using a wavelength of energy sensitive to the content of water vapor in the atmosphere. In this imagery, green-blue and white areas indicate the presence of high water vapor or moisture content, whereas dark orange and brown areas indicate little or no moisture present. This imagery is derived from band #10 on the GOES East and GOES West Advanced Baseline Imager.What do the colors on the water vapor map represent?In this imagery, green-blue and white areas indicate the presence of high water vapor or moisture content, whereas dark orange and brown areas indicate less moisture present. Learn more about this water vapor imagery.About the satellitesWhat are the GOES satellites?NOAA’s most sophisticated Geostationary Operational Environmental Satellites (GOES), known as the GOES-R Series, provide advanced imagery and atmospheric measurements of Earth’s Western Hemisphere, real-time mapping of lightning activity, and improved monitoring of solar activity and space weather.The first satellite in the series, GOES-R, now known as GOES-16, was launched in 2016 and is currently operational as NOAA’s GOES East satellite. In 2018, NOAA launched another satellite in the series, GOES-T, which joined GOES-16 in orbit as GOES-18. GOES-17 became operational as GOES West in January 2023.Together, GOES East and GOES West provide coverage of the Western Hemisphere and most of the Pacific Ocean, from the west coast of Africa all the way to New Zealand. Each satellite orbits the Earth from about 22,200 miles away.

  19. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    San Miguel Island, California
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  20. a

    RTB Mapping application

    • hub.arcgis.com
    • data.amerigeoss.org
    • +1more
    Updated Aug 12, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2015). RTB Mapping application [Dataset]. https://hub.arcgis.com/datasets/81ea77e8b5274b879b9d71010d8743aa
    Explore at:
    Dataset updated
    Aug 12, 2015
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2020). Average data use of leading navigation apps in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1186009/data-use-leading-us-navigation-apps/
Organization logo

Average data use of leading navigation apps in the U.S. 2020

Explore at:
Dataset updated
Oct 15, 2020
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Oct 2020
Area covered
United States
Description

As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.

Search
Clear search
Close search
Google apps
Main menu