This dataset, compiled by NREL using data from ABB, the Velocity Suite and the U.S. Energy Information Administration dataset 861, provides average residential, commercial and industrial electricity rates with likely zip codes for both investor owned utilities (IOU) and non-investor owned utilities. Note: the files include average rates for each utility (not average rates per zip code), but not the detailed rate structure data found in the OpenEI U.S. Utility Rate Database.
The Utility Energy Registry (UER) is a database platform that provides streamlined public access to aggregated community-scale utility-reported energy data. The UER is intended to promote and facilitate community-based energy planning and energy use awareness and engagement. On April 19, 2018, the New York State Public Service Commission (PSC) issued the Order Adopting the Utility Energy Registry under regulatory CASE 17-M-0315. The order requires utilities under its regulation to develop and report community energy use data to the UER. This dataset includes electricity and natural gas usage data reported at the ZIP Code level collected under a data protocol in effect between 2016 and 2021. Other UER datasets include energy use data reported at the city, town, village, and county level. Data collected after 2021 were collected according to a modified protocol. Those data may be found at https://data.ny.gov/Energy-Environment/Utility-Energy-Registry-Monthly-ZIP-Code-Energy-Us/g2x3-izm4. Data in the UER can be used for several important purposes such as planning community energy programs, developing community greenhouse gas emissions inventories, and relating how certain energy projects and policies may affect a particular community. It is important to note that the data are subject to privacy screening and fields that fail the privacy screen are withheld. The New York State Energy Research and Development Authority (NYSERDA) offers objective information and analysis, innovative programs, technical expertise, and support to help New Yorkers increase energy efficiency, save money, use renewable energy, and accelerate economic growth. reduce reliance on fossil fuels. To learn more about NYSERDA’s programs, visit nyserda.ny.gov or follow us on X, Facebook, YouTube, or Instagram.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Monthly utility data for all City of Boston accounts. This data comes from Boston’s Enterprise Energy Management System. This software tool serves as the system of record for all municipal utility expenditures and energy/water use.
This dataset, compiled by NREL using data from ABB, the Velocity Suite (http://energymarketintel.com/) and the U.S. Energy Information Administration dataset 861 (http://www.eia.gov/electricity/data/eia861/), provides average residential, commercial and industrial electricity rates with likely zip codes for both investor owned utilities (IOU) and non-investor owned utilities. Note: the files include average rates for each utility (not average rates per zip code), but not the detailed rate structure data found in the OpenEI U.S. Utility Rate Database (https://openei.org/apps/USURDB/).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PUDL v2025.2.0 Data Release
This is our regular quarterly release for 2025Q1. It includes updates to all the datasets that are published with quarterly or higher frequency, plus initial verisons of a few new data sources that have been in the works for a while.
One major change this quarter is that we are now publishing all processed PUDL data as Apache Parquet files, alongside our existing SQLite databases. See Data Access for more on how to access these outputs.
Some potentially breaking changes to be aware of:
In the EIA Form 930 – Hourly and Daily Balancing Authority Operations Report a number of new energy sources have been added, and some old energy sources have been split into more granular categories. See Changes in energy source granularity over time.
We are now running the EPA’s CAMD to EIA unit crosswalk code for each individual year starting from 2018, rather than just 2018 and 2021, resulting in more connections between these two datasets and changes to some sub-plant IDs. See the note below for more details.
Many thanks to the organizations who make these regular updates possible! Especially GridLab, RMI, and the ZERO Lab at Princeton University. If you rely on PUDL and would like to help ensure that the data keeps flowing, please consider joining them as a PUDL Sustainer, as we are still fundraising for 2025.
New Data
EIA 176
Add a couple of semi-transformed interim EIA-176 (natural gas sources and dispositions) tables. They aren’t yet being written to the database, but are one step closer. See #3555 and PRs #3590, #3978. Thanks to @davidmudrauskas for moving this dataset forward.
Extracted these interim tables up through the latest 2023 data release. See #4002 and #4004.
EIA 860
Added EIA 860 Multifuel table. See #3438 and #3946.
FERC 1
Added three new output tables containing granular utility accounting data. See #4057, #3642 and the table descriptions in the data dictionary:
out_ferc1_yearly_detailed_income_statements
out_ferc1_yearly_detailed_balance_sheet_assets
out_ferc1_yearly_detailed_balance_sheet_liabilities
SEC Form 10-K Parent-Subsidiary Ownership
We have added some new tables describing the parent-subsidiary company ownership relationships reported in the SEC’s Form 10-K, Exhibit 21 “Subsidiaries of the Registrant”. Where possible these tables link the SEC filers or their subsidiary companies to the corresponding EIA utilities. This work was funded by a grant from the Mozilla Foundation. Most of the ML models and data preparation took place in the mozilla-sec-eia repository separate from the main PUDL ETL, as it requires processing hundreds of thousands of PDFs and the deployment of some ML experiment tracking infrastructure. The new tables are handed off as nearly finished products to the PUDL ETL pipeline. Note that these are preliminary, experimental data products and are known to be incomplete and to contain errors. Extracting data tables from unstructured PDFs and the SEC to EIA record linkage are necessarily probabalistic processes.
See PRs #4026, #4031, #4035, #4046, #4048, #4050 and check out the table descriptions in the PUDL data dictionary:
out_sec10k_parents_and_subsidiaries
core_sec10k_quarterly_filings
core_sec10k_quarterly_exhibit_21_company_ownership
core_sec10k_quarterly_company_information
Expanded Data Coverage
EPA CEMS
Added 2024 Q4 of CEMS data. See #4041 and #4052.
EPA CAMD EIA Crosswalk
In the past, the crosswalk in PUDL has used the EPA’s published crosswalk (run with 2018 data), and an additional crosswalk we ran with 2021 EIA 860 data. To ensure that the crosswalk reflects updates in both EIA and EPA data, we re-ran the EPA R code which generates the EPA CAMD EIA crosswalk with 4 new years of data: 2019, 2020, 2022 and 2023. Re-running the crosswalk pulls the latest data from the CAMD FACT API, which results in some changes to the generator and unit IDs reported on the EPA side of the crosswalk, which feeds into the creation of core_epa_assn_eia_epacamd.
The changes only result in the addition of new units and generators in the EPA data, with no changes to matches at the plant level. However, the updates to generator and unit IDs have resulted in changes to the subplant IDs - some EIA boilers and generators which previously had no matches to EPA data have now been matched to EPA unit data, resulting in an overall reduction in the number of rows in the core_epa_assn_eia_epacamd_subplant_ids table. See issues #4039 and PR #4056 for a discussion of the changes observed in the course of this update.
EIA 860M
Added EIA 860m through December 2024. See #4038 and #4047.
EIA 923
Added EIA 923 monthly data through September 2024. See #4038 and #4047.
EIA Bulk Electricity Data
Updated the EIA Bulk Electricity data to include data published up through 2024-11-01. See #4042 and PR #4051.
EIA 930
Updated the EIA 930 data to include data published up through the beginning of February 2025. See #4040 and PR #4054. 10 new energy sources were added and 3 were retired; see Changes in energy source granularity over time for more information.
Bug Fixes
Fix an accidentally swapped set of starting balance / ending balance column rename parameters in the pre-2021 DBF derived data that feeds into core_ferc1_yearly_other_regulatory_liabilities_sched278. See issue #3952 and PRs #3969, #3979. Thanks to @yolandazzz13 for making this fix.
Added preliminary data validation checks for several FERC 1 tables that were missing it #3860.
Fix spelling of Lake Huron and Lake Saint Clair in out_vcerare_hourly_available_capacity_factor and related tables. See issue #4007 and PR #4029.
Quality of Life Improvements
We added a sources parameter to pudl.metadata.classes.DataSource.from_id() in order to make it possible to use the pudl-archiver repository to archive datasets that won’t necessarily be ingested into PUDL. See this PUDL archiver issue and PRs #4003 and #4013.
Other PUDL v2025.2.0 Resources
PUDL v2025.2.0 Data Dictionary
PUDL v2025.2.0 Documentation
PUDL in the AWS Open Data Registry
PUDL v2025.2.0 in a free, public AWS S3 bucket: s3://pudl.catalyst.coop/v2025.2.0/
PUDL v2025.2.0 in a requester-pays GCS bucket: gs://pudl.catalyst.coop/v2025.2.0/
Zenodo archive of the PUDL GitHub repo for this release
PUDL v2025.2.0 release on GitHub
PUDL v2025.2.0 package in the Python Package Index (PyPI)
Contact Us
If you're using PUDL, we would love to hear from you! Even if it's just a note to let us know that you exist, and how you're using the software or data. Here's a bunch of different ways to get in touch:
Follow us on GitHub
Use the PUDL Github issue tracker to let us know about any bugs or data issues you encounter
GitHub Discussions is where we provide user support.
Watch our GitHub Project to see what we're working on.
Email us at hello@catalyst.coop for private communications.
On Mastodon: @CatalystCoop@mastodon.energy
On BlueSky: @catalyst.coop
On Twitter: @CatalystCoop
Connect with us on LinkedIn
Play with our data and notebooks on Kaggle
Combine our data with ML models on HuggingFace
Learn more about us on our website: https://catalyst.coop
Subscribe to our announcements list for email updates.
The Utility Energy Registry (UER) is a database platform that provides streamlined public access to aggregated community-scale energy data. The UER is intended to promote and facilitate community-based energy planning and energy use awareness and engagement. On April 19, 2018, the New York State Public Service Commission (PSC) issued the Order Adopting the Utility Energy Registry under regulatory CASE 17-M-0315. The order requires utilities and CCA administrators under its regulation to develop and report community energy use data to the UER.
This dataset includes electricity and natural gas usage data reported at the ZIP Code level. Other UER datasets include energy use data reported at the city, town, village, and county level.
Data in the UER can be used for several important purposes such as planning community energy programs, developing community greenhouse gas emissions inventories, and relating how certain energy projects and policies may affect a particular community. It is important to note that the data are subject to privacy screening and fields that fail the privacy screen are withheld.
The New York State Energy Research and Development Authority (NYSERDA) offers objective information and analysis, innovative programs, technical expertise, and support to help New Yorkers increase energy efficiency, save money, use renewable energy, and reduce reliance on fossil fuels. To learn more about NYSERDA’s programs, visit nyserda.ny.gov or follow us on X, Facebook, YouTube, or Instagram.
This spreadsheet contains information reported by over 200 investor-owned utilities to the Federal Energy Regulatory Commission in the annual filing FERC Form 1 for the years 1994-2019. It contains 1) annual capital costs for new transmission, distribution, and administrative infrastructure; 2) annual operation and maintenance costs for transmission, distribution, and utility business administration; 3) total annual MWh sales and sales by customer class; 4) annual peak demand in MW; and 5) total customer count and the number of customers by class. Annual spending on new capital infrastructure is read from pages 204 to 207 of FERC Form 1, titled Electric Plant in Service. Annual transmission capital additions are recorded from Line 58, Column C - Total Transmission Plant Additions. Likewise, annual distribution capital additions are recorded from Line 75, Column C - Total Distribution Plant Additions. Administrative capital additions are recorded from Line 5, Column C - Total Intangible Plant Additions, and Line 99, Column C - Total General Plant Additions. Operation and maintenance costs associated with transmission, distribution, and utility administration are read from pages 320 to 323 of FERC Form 1, titled Electric Operation and Maintenance Expenses. Annual transmission operation and maintenance are recorded from Line 99, Column B - Total Transmission Operation Expenses for Current Year, and Line 111, Column B - Total Transmission Maintenance Expenses for Current Year. Likewise, annual distribution operation and maintenance costs are recorded from Line 144, Column B - Total Distribution Operation Expenses, and Line 155, Column B - Total Distribution Maintenance Expenses. Administrative operation and maintenance costs are recorded from: Line 164, Column B - Total Customers Accounts Expenses; Line 171, Column B - Total Customer Service and Information Expenses; Line 178, Column B - Total Sales Expenses; and Line 197, Column B - Total Administrative and General Expenses. The annual peak demand in MW over the year is read from page 401, titled Monthly Peaks and Output. The monthly peak demand is listed in Lines 29 to 40, Column D. The maximum of these monthly reports during each year is taken as the annual peak demand in MW. The annual energy sales and customer count data come from page 300, Electric Operating Revenues. The values are provided in Line 2 - Residential Sales, Line 4 - Commercial Sales, Line 5 - Industrial Sales, and Line 10 - Total Sales to Ultimate Consumers. More information about the database is available in an associated report published by the University of Texas at Austin Energy Institute: https://live-energy-institute.pantheonsite.io/sites/default/files/UTAustin_FCe_TDA_2016.pdf Also see an associated paper published in the journal Energy Policy: Fares, Robert L., and Carey W. King. "Trends in transmission, distribution, and administration costs for US investor-owned electric utilities." Energy Policy 105 (2017): 354-362. https://doi.org/10.1016/j.enpol.2017.02.036 All data come from the Federal Energy Regulatory Commission FERC Form 1 Database available in Microsoft Visual FoxPro Format: https://www.ferc.gov/docs-filing/forms/form-1/data.asp
The Utility Rate Database (URDB) is a free storehouse of rate structure information from utilities in the United States. Here, you can search for your utilities and rates to find out exactly how you are charged for your electric energy usage. Understanding this information can help reduce your bill, for example, by running your appliances during off-peak hours (times during the day when electricity prices are less expensive) and help you make more informed decisions regarding your energy usage.
Rates are also extremely important to the energy analysis community for accurately determining the value and economics of distributed generation such as solar and wind power. In the past, collecting rates has been an effort duplicated across many institutions. Rate collection can be tedious and slow, however, with the introduction of the URDB, OpenEI aims to change how analysis of rates is performed. The URDB allows anyone to access these rates in a computer-readable format for use in their tools and models. OpenEI provides an API for software to automatically download the appropriate rates, thereby allowing detailed economic analysis to be done without ever having to directly handle complex rate structures. Essentially, rate collection and processing that used to take weeks or months can now be done in seconds!
NREL’s System Advisor Model (formerly Solar Advisor Model or SAM), currently has the ability to communicate with the OpenEI URDB over the internet. SAM can download any rate from the URDB directly into the program, thereby enabling users to conduct detailed studies on various power systems ranging in size from a small residential rooftop solar system to large utility scale installations. Other applications available at NREL, such as OpenPV and IMBY, will also utilize the URDB data.
Upcoming features include better support for entering net metering parameters, maps to summarize the data, geolocation capabilities, and hundreds of additional rates!
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This feature class represents electric power retail service territories. These are areas serviced by electric power utilities responsible for the retail sale of electric power to local customers, whether residential, industrial, or commercial. The following updates have been made since the previous release: 7 features added, numerous geometries improved, and geographic coverage expanded to include American Samoa, Guam, Northern Mariana Islands, and Virgin Islands.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Map of the electric utility service areas in California.
https://www.globaldata.com/privacy-policy/https://www.globaldata.com/privacy-policy/
Assess the emissions outlook for utility companies, focusing on regulatory impacts, sustainability initiatives, and competitive landscape. Read More
Lawrence Berkeley National Laboratory (Berkeley Lab) estimates hourly project-level generation data for utility-scale solar projects and hourly county-level generation data for residential and non-residential distributed photovoltaic (PV) systems in the seven organized wholesale markets and 10 additional Balancing Areas. To encourage its broader use, Berkeley Lab has made this data file public here at OEDI, covering the years 2012-2020. The public project-level dataset is updated annually with data from the previous calendar year. For more information about the research project, including a technical report, briefing material, visualizations, and additional data, please visit the project homepage linked in this submission.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This data set shows utility lines that provide services for: * power * water * communications * heating fuel They include: * communication lines/submerged communication lines * hydro lines/submerged hydro lines * natural gas pipelines/submerged natural gas pipelines * water pipelines/submerged water pipelines * unknown pipelines * unknown transmission lines This product requires the use of GIS software. *[GIS]: geographic information system
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The underground utilities survey layer contains the extents of underground utilities survey completed to Main Roads specifications and standards for use in project planning, design, construction and asset management.This data is used for road investigation, planning, design, construction and asset management.The data within this layer is continually maintained and edited on a daily basis.Data Dictionary: https://bit.ly/3dxlVM0 Show full description
This data is a graphic representation of electric utility service territories. The file has not been certified by a Professional Surveyor. This data is not suitable for legal purposes. The purpose of this data is to provide a generalized statewide view of electric service territories. The data does not include individual or commercial releases. A release is an agreement between adjoining utilities that release customers from one utility to be served by the adjoining utility. A customer release does not change the territory boundary. The file has been compiled from numerous sources and as such contains errors. The data only contains the electric utility service territories and the name of the utility.
This dataset is a fusion of three data types (operations and maintenance tickets, weather data, and production data) that was used to support machine learning analysis and evaluation of drivers for low performance at photovoltaic (PV) sites during compound, extreme weather events. After being processed with machine learning, the data was used in the "Evaluation of Extreme Weather Impacts on Utility-scale Photovoltaic Plant Performance in the United States" manuscript. Additional details are captured in the associated manuscript.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Supply and disposition characteristics of electric power are presented, such as generation, imports, exports, sales and others. Data are presented at the national and provincial levels, not all combinations are available. These data include estimates (Electricity quantity and Electricity value).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The GIS in Utility Industry market is experiencing robust growth, projected to reach $2.42 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 19.8% from 2025 to 2033. This expansion is fueled by several key drivers. Increasing demand for improved operational efficiency and asset management within utility companies is a primary factor. GIS technologies provide utilities with powerful tools to optimize grid management, streamline maintenance operations, and enhance service delivery. Furthermore, the growing adoption of cloud-based GIS solutions offers enhanced scalability, accessibility, and cost-effectiveness, accelerating market penetration. The integration of advanced technologies such as IoT sensors, AI, and machine learning into GIS platforms further improves data analysis capabilities, enabling predictive maintenance and proactive risk mitigation. While the initial investment in GIS infrastructure can be a restraint for some smaller utility providers, the long-term cost savings and improved operational efficiency are compelling arguments for adoption. Market segmentation reveals a significant demand for software solutions, followed by data and services components. Cloud deployment models are rapidly gaining popularity, surpassing on-premises deployments due to their inherent advantages. Geographically, North America and Europe currently hold significant market share, driven by advanced technological infrastructure and high adoption rates. However, rapidly developing economies in APAC, particularly China and India, are expected to show substantial growth in the coming years, presenting attractive opportunities for market expansion. The competitive landscape is populated by a mix of established players and emerging technology providers, leading to innovation and competitive pricing. The diverse range of GIS solutions available caters to specific utility needs, including electric power, water, gas, and telecom. Software solutions form the core of the market, providing the tools for data visualization, analysis, and management. Data services, including high-resolution imagery and spatial data analytics, are crucial for effective decision-making. The market's future trajectory is positive, propelled by ongoing technological advancements and the urgent need for efficient and resilient utility infrastructure. The increasing focus on sustainability and renewable energy further amplifies the demand for GIS solutions that support grid modernization and the integration of distributed energy resources. The industry's focus will shift towards integrating GIS with other technologies to enhance decision-making processes and operational efficiency, and continued innovation in data analytics and AI will further refine GIS capabilities within the sector.
Major electric utility lines covering the City of Raleigh jurisdiction. Features are derived from annual aerial photography updates. This layer is updated for a quarter of the city every year and is not a depiction of current conditions.Update Frequency: AnnuallyTime Period: Current as of last flight (see update date on individual features)
This dataset, compiled by NREL using data from ABB, the Velocity Suite and the U.S. Energy Information Administration dataset 861, provides average residential, commercial and industrial electricity rates with likely zip codes for both investor owned utilities (IOU) and non-investor owned utilities. Note: the files include average rates for each utility (not average rates per zip code), but not the detailed rate structure data found in the OpenEI U.S. Utility Rate Database.