Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The XBT/CTD pairs dataset (Version 2) contains additional datasets and updated datasets from the Version 1 data. Version 1 data was used to update the calculation of historical XBT fall rate and temperature corrections presented in Cowley, R., Wijffels, S., Cheng, L., Boyer, T., and Kizu, S. (2013). Biases in Expendable Bathythermograph Data: A New View Based on Historical Side-by-Side Comparisons. Journal of Atmospheric and Oceanic Technology, 30, 1195–1225, doi:10.1175/JTECH-D-12-00127.1. http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-12-00127.1 Version 2 contains 1,188 pairs from seven datasets that add to Version 1 which contains 4,115 pairs from 114 datasets. There are also 10 updated datasets included in Version 2. The updates apply to the CTD depth data in the Quality Controlled version of the 10 datasets. The 10 updated Version 2 datasets should be used in preference to the copies in Version 1. Note that future versions of the XBT/CTD pairs database may supersede this version. Please check more recent versions for updates to individual datasets. Each dataset contains the scientifically quality controlled version and (where available) the originator's data. The XBT/CTD pairs are identified in the document 'XBT_CTDpairs_metadata_V2.csv'. Although the XBT data in the additional datasets was collected after 2008, much of the probes in the ss2012t01 dataset were manufactured during the mid-1980s. Lineage: Data is sourced from CSIRO Oceans and Atmosphere Flagship, Australian Antarctic Division and Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Original and raw data files are included where available. Quality controlled datasets follow the procedure of Bailey, R., Gronell, A., Phillips, H., Tanner, E., and Meyers, G. (1994). Quality control cookbook for XBT data, Version 1.1. CSIRO Marine Laboratories Reports, 221. Quality controlled data is in the 'MQNC' format used at CSIRO Marine and Atmospheric Research. The MQNC format is described in the document 'XBT_CTDpairs_descriptionV2.pdf'. Note that future versions of the XBT/CTD pairs database may supersede this version. Please check more recent versions for updates to individual datasets.
Abstract:
In recent years there has been an increased interest in Artificial Intelligence for IT Operations (AIOps). This field utilizes monitoring data from IT systems, big data platforms, and machine learning to automate various operations and maintenance (O&M) tasks for distributed systems.
The major contributions have been materialized in the form of novel algorithms.
Typically, researchers took the challenge of exploring one specific type of observability data sources, such as application logs, metrics, and distributed traces, to create new algorithms.
Nonetheless, due to the low signal-to-noise ratio of monitoring data, there is a consensus that only the analysis of multi-source monitoring data will enable the development of useful algorithms that have better performance.
Unfortunately, existing datasets usually contain only a single source of data, often logs or metrics. This limits the possibilities for greater advances in AIOps research.
Thus, we generated high-quality multi-source data composed of distributed traces, application logs, and metrics from a complex distributed system. This paper provides detailed descriptions of the experiment, statistics of the data, and identifies how such data can be analyzed to support O&M tasks such as anomaly detection, root cause analysis, and remediation.
General Information:
This repository contains the simple scripts for data statistics, and link to the multi-source distributed system dataset.
You may find details of this dataset from the original paper:
Sasho Nedelkoski, Ajay Kumar Mandapati, Jasmin Bogatinovski, Soeren Becker, Jorge Cardoso, Odej Kao, "Multi-Source Distributed System Data for AI-powered Analytics". [link very soon]
If you use the data, implementation, or any details of the paper, please cite!
The multi-source/multimodal dataset is composed of distributed traces, application logs, and metrics produced from running a complex distributed system (Openstack). In addition, we also provide the workload and fault scripts together with the Rally report which can serve as ground truth (all at the Zenodo link below). We provide two datasets, which differ on how the workload is executed. The openstack_multimodal_sequential_actions is generated via executing workload of sequential user requests. The openstack_multimodal_concurrent_actions is generated via executing workload of concurrent user requests.
The difference of the concurrent dataset is that:
Due to the heavy load on the control node, the metric data for wally113 (control node) is not representative and we excluded it.
Three rally actions are executed in parallel: boot_and_delete, create_and_delete_networks, create_and_delete_image, whereas for the sequential there were 5 actions executed.
The raw logs in both datasets contain the same files. If the user wants the logs filetered by time with respect to the two datasets, should refer to the timestamps at the metrics (they provide the time window). In addition, we suggest to use the provided aggregated time ranged logs for both datasets in CSV format.
Important: The logs and the metrics are synchronized with respect time and they are both recorded on CEST (central european standard time). The traces are on UTC (Coordinated Universal Time -2 hours). They should be synchronized if the user develops multimodal methods.
Our GitHub repository can be found at: https://github.com/SashoNedelkoski/multi-source-observability-dataset/
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The open-source big data tools market is experiencing robust growth, driven by the increasing need for scalable, cost-effective data management and analysis solutions across diverse sectors. The market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 18% from 2025 to 2033. This expansion is fueled by several key factors. Firstly, the rising volume and velocity of data generated across industries, from banking and finance to manufacturing and government, necessitate powerful and adaptable tools. Secondly, the cost-effectiveness and flexibility of open-source solutions compared to proprietary alternatives are major drawcards, especially for smaller organizations and startups. The ease of customization and community support further enhance their appeal. Growth is also being propelled by technological advancements such as the development of more sophisticated data analytics tools, improved cloud integration, and increased adoption of containerization technologies like Docker and Kubernetes for deployment and management. The market's segmentation across application (banking, manufacturing, etc.) and tool type (data collection, storage, analysis) reflects the diverse range of uses and specialized tools available. Key restraints to market growth include the complexity associated with implementing and managing open-source solutions, requiring skilled personnel and ongoing maintenance. Security concerns and the need for robust data governance frameworks also pose challenges. However, the growing maturity of the open-source ecosystem, coupled with the emergence of managed services providers offering support and expertise, is mitigating these limitations. The continued advancements in artificial intelligence (AI) and machine learning (ML) are further integrating with open-source big data tools, creating synergistic opportunities for growth in predictive analytics and advanced data processing. This integration, alongside the ever-increasing volume of data needing analysis, will undoubtedly drive continued market expansion over the forecast period.
The Nature Management Plan includes a map with Nature Management Area (Management Type Map). Changes to this card can take place in 2 ways. [1] With a draft decision, a consultation period, followed by a final decision by way of views. [2] With a Card Adaptation Decision that is immediately final. This map shows differences from [1] Design and views. The April version of this map shows the differences of the Draft Decision, the September version shows the differences of the Draft Decision including views. The differences are compared to the previous definitive version of the Management Type Card.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comparison in terms of the Wilcoxon rank-sum statistical test with 5% among the BIMGO and the 8 comparison algorithms.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This description is part of the blog post "Systematic Literature Review of teaching Open Science" https://sozmethode.hypotheses.org/839
According to my opinion, we do not pay enough attention to teaching Open Science in higher education. Therefore, I designed a seminar to teach students the practices of Open Science by doing qualitative research.About this seminar, I wrote the article ”Teaching Open Science and qualitative methods“. For the article ”Teaching Open Science and qualitative methods“, I started to review the literature on ”Teaching Open Science“. The result of my literature review is that certain aspects of Open Science are used for teaching. However, Open Science with all its aspects (Open Access, Open Data, Open Methodology, Open Science Evaluation and Open Science Tools) is not an issue in publications about teaching.
Based on this insight, I have started a systematic literature review. I realized quickly that I need help to analyse and interpret the articles and to evaluate my preliminary findings. Especially different disciplinary cultures of teaching different aspects of Open Science are challenging, as I myself, as a social scientist, do not have enough insight to be able to interpret the results correctly. Therefore, I would like to invite you to participate in this research project!
I am now looking for people who would like to join a collaborative process to further explore and write the systematic literature review on “Teaching Open Science“. Because I want to turn this project into a Massive Open Online Paper (MOOP). According to the 10 rules of Tennant et al (2019) on MOOPs, it is crucial to find a core group that is enthusiastic about the topic. Therefore, I am looking for people who are interested in creating the structure of the paper and writing the paper together with me. I am also looking for people who want to search for and review literature or evaluate the literature I have already found. Together with the interested persons I would then define, the rules for the project (cf. Tennant et al. 2019). So if you are interested to contribute to the further search for articles and / or to enhance the interpretation and writing of results, please get in touch. For everyone interested to contribute, the list of articles collected so far is freely accessible at Zotero: https://www.zotero.org/groups/2359061/teaching_open_science. The figure shown below provides a first overview of my ongoing work. I created the figure with the free software yEd and uploaded the file to zenodo, so everyone can download and work with it:
To make transparent what I have done so far, I will first introduce what a systematic literature review is. Secondly, I describe the decisions I made to start with the systematic literature review. Third, I present the preliminary results.
Systematic literature review – an Introduction
Systematic literature reviews “are a method of mapping out areas of uncertainty, and identifying where little or no relevant research has been done.” (Petticrew/Roberts 2008: 2). Fink defines the systematic literature review as a “systemic, explicit, and reproducible method for identifying, evaluating, and synthesizing the existing body of completed and recorded work produced by researchers, scholars, and practitioners.” (Fink 2019: 6). The aim of a systematic literature reviews is to surpass the subjectivity of a researchers’ search for literature. However, there can never be an objective selection of articles. This is because the researcher has for example already made a preselection by deciding about search strings, for example “Teaching Open Science”. In this respect, transparency is the core criteria for a high-quality review.
In order to achieve high quality and transparency, Fink (2019: 6-7) proposes the following seven steps:
I have adapted these steps for the “Teaching Open Science” systematic literature review. In the following, I will present the decisions I have made.
Systematic literature review – decisions I made
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. First, the gazelle population is initialized using iterative chaotic map with infinite collapses (ICMIC) mapping, which increases the diversity of the population. Second, a nonlinear control factor is introduced to balance the exploration and exploitation components of the algorithm. Individuals in the population are perturbed using a spiral perturbation mechanism to enhance the local search capability of the algorithm. Finally, a neighborhood search strategy is used for the optimal individuals to enhance the exploitation and convergence capabilities of the algorithm. The superior ability of the IMGO algorithm to solve continuous problems is demonstrated on 23 benchmark datasets. Then, BIMGO is evaluated on 16 medical datasets of different dimensions and compared with 8 well-known metaheuristic algorithms. The experimental results indicate that BIMGO outperforms the competing algorithms in terms of the fitness value, number of selected features and sensitivity. In addition, the statistical results of the experiments demonstrate the significantly superior ability of BIMGO to select the most effective features in medical datasets.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The XBT/CTD pairs dataset (Version 2) contains additional datasets and updated datasets from the Version 1 data. Version 1 data was used to update the calculation of historical XBT fall rate and temperature corrections presented in Cowley, R., Wijffels, S., Cheng, L., Boyer, T., and Kizu, S. (2013). Biases in Expendable Bathythermograph Data: A New View Based on Historical Side-by-Side Comparisons. Journal of Atmospheric and Oceanic Technology, 30, 1195–1225, doi:10.1175/JTECH-D-12-00127.1. http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-12-00127.1 Version 2 contains 1,188 pairs from seven datasets that add to Version 1 which contains 4,115 pairs from 114 datasets. There are also 10 updated datasets included in Version 2. The updates apply to the CTD depth data in the Quality Controlled version of the 10 datasets. The 10 updated Version 2 datasets should be used in preference to the copies in Version 1. Note that future versions of the XBT/CTD pairs database may supersede this version. Please check more recent versions for updates to individual datasets. Each dataset contains the scientifically quality controlled version and (where available) the originator's data. The XBT/CTD pairs are identified in the document 'XBT_CTDpairs_metadata_V2.csv'. Although the XBT data in the additional datasets was collected after 2008, much of the probes in the ss2012t01 dataset were manufactured during the mid-1980s. Lineage: Data is sourced from CSIRO Oceans and Atmosphere Flagship, Australian Antarctic Division and Italian National Agency for New Technologies, Energy and Sustainable Economic Development. Original and raw data files are included where available. Quality controlled datasets follow the procedure of Bailey, R., Gronell, A., Phillips, H., Tanner, E., and Meyers, G. (1994). Quality control cookbook for XBT data, Version 1.1. CSIRO Marine Laboratories Reports, 221. Quality controlled data is in the 'MQNC' format used at CSIRO Marine and Atmospheric Research. The MQNC format is described in the document 'XBT_CTDpairs_descriptionV2.pdf'. Note that future versions of the XBT/CTD pairs database may supersede this version. Please check more recent versions for updates to individual datasets.