Facebook
TwitterAll 311 Service Requests from 2010 to present. This information is automatically updated daily.
Click here to download data from 2011 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2011/fpz8-jqf4
Click here to download data from 2012 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2012/as38-8eb5
Click here to download data from 2013 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2013/hybb-af8n
Click here to download data from 2014 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2014/vtzg-7562
Click here to download data from 2015 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2015/57g5-etyj
Facebook
TwitterClick on any of the images below to explore an interactive data visualization:
Facebook
TwitterThis statistic shows the global data visualization market revenue in 2017 and 2023. In 2017, the total value of this market was estimated to be 4.51 billion US dollars. The market is expected to increase to 7.76 billion U.S. dollars by 2023, with a CAGR of 9.47 percent over the forecast period.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Netflix is a popular streaming service that offers a vast catalog of movies, TV shows, and original contents. This dataset is a cleaned version of the original version which can be found here. The data consist of contents added to Netflix from 2008 to 2021. The oldest content is as old as 1925 and the newest as 2021. This dataset will be cleaned with PostgreSQL and visualized with Tableau. The purpose of this dataset is to test my data cleaning and visualization skills. The cleaned data can be found below and the Tableau dashboard can be found here .
We are going to: 1. Treat the Nulls 2. Treat the duplicates 3. Populate missing rows 4. Drop unneeded columns 5. Split columns Extra steps and more explanation on the process will be explained through the code comments
--View dataset
SELECT *
FROM netflix;
--The show_id column is the unique id for the dataset, therefore we are going to check for duplicates
SELECT show_id, COUNT(*)
FROM netflix
GROUP BY show_id
ORDER BY show_id DESC;
--No duplicates
--Check null values across columns
SELECT COUNT(*) FILTER (WHERE show_id IS NULL) AS showid_nulls,
COUNT(*) FILTER (WHERE type IS NULL) AS type_nulls,
COUNT(*) FILTER (WHERE title IS NULL) AS title_nulls,
COUNT(*) FILTER (WHERE director IS NULL) AS director_nulls,
COUNT(*) FILTER (WHERE movie_cast IS NULL) AS movie_cast_nulls,
COUNT(*) FILTER (WHERE country IS NULL) AS country_nulls,
COUNT(*) FILTER (WHERE date_added IS NULL) AS date_addes_nulls,
COUNT(*) FILTER (WHERE release_year IS NULL) AS release_year_nulls,
COUNT(*) FILTER (WHERE rating IS NULL) AS rating_nulls,
COUNT(*) FILTER (WHERE duration IS NULL) AS duration_nulls,
COUNT(*) FILTER (WHERE listed_in IS NULL) AS listed_in_nulls,
COUNT(*) FILTER (WHERE description IS NULL) AS description_nulls
FROM netflix;
We can see that there are NULLS.
director_nulls = 2634
movie_cast_nulls = 825
country_nulls = 831
date_added_nulls = 10
rating_nulls = 4
duration_nulls = 3
The director column nulls is about 30% of the whole column, therefore I will not delete them. I will rather find another column to populate it. To populate the director column, we want to find out if there is relationship between movie_cast column and director column
-- Below, we find out if some directors are likely to work with particular cast
WITH cte AS
(
SELECT title, CONCAT(director, '---', movie_cast) AS director_cast
FROM netflix
)
SELECT director_cast, COUNT(*) AS count
FROM cte
GROUP BY director_cast
HAVING COUNT(*) > 1
ORDER BY COUNT(*) DESC;
With this, we can now populate NULL rows in directors
using their record with movie_cast
UPDATE netflix
SET director = 'Alastair Fothergill'
WHERE movie_cast = 'David Attenborough'
AND director IS NULL ;
--Repeat this step to populate the rest of the director nulls
--Populate the rest of the NULL in director as "Not Given"
UPDATE netflix
SET director = 'Not Given'
WHERE director IS NULL;
--When I was doing this, I found a less complex and faster way to populate a column which I will use next
Just like the director column, I will not delete the nulls in country. Since the country column is related to director and movie, we are going to populate the country column with the director column
--Populate the country using the director column
SELECT COALESCE(nt.country,nt2.country)
FROM netflix AS nt
JOIN netflix AS nt2
ON nt.director = nt2.director
AND nt.show_id <> nt2.show_id
WHERE nt.country IS NULL;
UPDATE netflix
SET country = nt2.country
FROM netflix AS nt2
WHERE netflix.director = nt2.director and netflix.show_id <> nt2.show_id
AND netflix.country IS NULL;
--To confirm if there are still directors linked to country that refuse to update
SELECT director, country, date_added
FROM netflix
WHERE country IS NULL;
--Populate the rest of the NULL in director as "Not Given"
UPDATE netflix
SET country = 'Not Given'
WHERE country IS NULL;
The date_added rows nulls is just 10 out of over 8000 rows, deleting them cannot affect our analysis or visualization
--Show date_added nulls
SELECT show_id, date_added
FROM netflix_clean
WHERE date_added IS NULL;
--DELETE nulls
DELETE F...
Facebook
Twitterhttps://www.usa.gov/government-works/https://www.usa.gov/government-works/
Data visualization using Python (Pandas, Plotly).
Data was used to visualization of the infection rate and the death rate from 01/20 to 04/22.
The data was made available on Github: https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Data Visualization 2 (trail) is a dataset for object detection tasks - it contains Food 5Sze annotations for 7,580 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterThe Data Visualization Workshop II: Data Wrangling was a web-based event held on October 18, 2017. This workshop report summarizes the individual perspectives of a group of visualization experts from the public, private, and academic sectors who met online to discuss how to improve the creation and use of high-quality visualizations. The specific focus of this workshop was on the complexities of "data wrangling". Data wrangling includes finding the appropriate data sources that are both accessible and usable and then shaping and combining that data to facilitate the most accurate and meaningful analysis possible. The workshop was organized as a 3-hour web event and moderated by the members of the Human Computer Interaction and Information Management Task Force of the Networking and Information Technology Research and Development Program's Big Data Interagency Working Group. Report prepared by the Human Computer Interaction And Information Management Task Force, Big Data Interagency Working Group, Networking & Information Technology Research & Development Subcommittee, Committee On Technology Of The National Science & Technology Council...
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Discover the explosive growth of the data visualization market, projected at a 15% CAGR to reach $153 billion by 2033. This in-depth analysis reveals key trends, leading companies like Tableau and Sisense, and regional market breakdowns. Learn how data visualization is transforming business intelligence.
Facebook
Twitterhttps://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy
The global data visualization market size reached USD 4.2 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 8.2 Billion by 2033, exhibiting a growth rate (CAGR) of 7.38% during 2025-2033. The increasing volume of data, the growing demand for real-time analytics, the need for better decision-making tools, advancements in AI and machine learning, and rising user-friendly tools and cloud-based solutions are some of the major factors propelling the market growth.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Data Visualization is a dataset for object detection tasks - it contains Food annotations for 7,576 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
Twitterhttps://www.emergenresearch.com/privacy-policyhttps://www.emergenresearch.com/privacy-policy
The Data Visualization market size reached USD 9.48 Billion in 2020 and revenue is forecasted to reach USD 20.16 Billion in 2028 registering a CAGR of 10.2%. Data Visualization industry report classifies global market by share, trend, growth and on the basis of component, deployment, enterprise, end...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Specialized collection of 0 free data visualization SVG illustrations from the technology & electronics category. Data visualization illustrations including bar charts, network graphs, and information graphics Examples include: bar chart, network graph.
Facebook
Twitterhttps://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Data Visualization Market Report is Segmented by Component (Software, and Services), Deployment Mode (On-Premises, and Cloud/On-demand), Organizational Department (Executive Management, Marketing, and More), End-User Industry (Banking, Financial Services and Insurance, IT and Telecommunications, Retail and E-Commerce, Education, Manufacturing, and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A collection of files used for a data visualization project for the Digital Humanities Praxis course at the Graduate Center, CUNY. The files represent raw data (csv), data used for the visualization(s) (gephi), and the visualizations themselves (pdf). A write-up on the project can be located at the GC Academic Commons site: http://dhpraxis14.commons.gc.cuny.edu/2014/11/12/its-big-data-to-me-data-viz-part-2
Facebook
TwitterUsing R to create data visualizations. Visit https://dataone.org/datasets/sha256%3A37ba9f953cc5edf5d6ed58404e5969674aa91987492b79d6e86175bd99572aaf for complete metadata about this dataset.
Facebook
Twitterhttps://www.coherentmarketinsights.com/privacy-policyhttps://www.coherentmarketinsights.com/privacy-policy
Data Visualization Tools Market valued at USD 7,874.5 Mn in 2025, anticipated to reaching USD 20,450.3 Mn by 2032, with steady growth rate of 14.6%.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the Data Visualization Tools market was valued at USD 6644.6 million in 2023 and is projected to reach USD 13114.15 million by 2032, with an expected CAGR of 10.2% during the forecast period.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Data Visualization Tools Market Size 2025-2029
The data visualization tools market size is forecast to increase by USD 7.95 billion at a CAGR of 11.2% between 2024 and 2029.
The market is experiencing significant growth due to the increasing demand for business intelligence and AI-powered insights. Companies are recognizing the value of transforming complex data into easily digestible visual representations to inform strategic decision-making. However, this market faces challenges as data complexity and massive data volumes continue to escalate. Organizations must invest in advanced data visualization tools to effectively manage and analyze their data to gain a competitive edge. The ability to automate data visualization processes and integrate AI capabilities will be crucial for companies to overcome the challenges posed by data complexity and volume. By doing so, they can streamline their business operations, enhance data-driven insights, and ultimately drive growth in their respective industries.
What will be the Size of the Data Visualization Tools Market during the forecast period?
Request Free SampleIn today's data-driven business landscape, the market continues to evolve, integrating advanced capabilities to support various sectors in making informed decisions. Data storytelling and preparation are crucial elements, enabling organizations to effectively communicate complex data insights. Real-time data visualization ensures agility, while data security safeguards sensitive information. Data dashboards facilitate data exploration and discovery, offering data-driven finance, strategy, and customer experience. Big data visualization tackles complex datasets, enabling data-driven decision making and innovation. Data blending and filtering streamline data integration and analysis. Data visualization software supports data transformation, cleaning, and aggregation, enhancing data-driven operations and healthcare. On-premises and cloud-based solutions cater to diverse business needs. Data governance, ethics, and literacy are integral components, ensuring data-driven product development, government, and education adhere to best practices. Natural language processing, machine learning, and visual analytics further enrich data-driven insights, enabling interactive charts and data reporting. Data connectivity and data-driven sales fuel business intelligence and marketing, while data discovery and data wrangling simplify data exploration and preparation. The market's continuous dynamism underscores the importance of data culture, data-driven innovation, and data-driven HR, as organizations strive to leverage data to gain a competitive edge.
How is this Data Visualization Tools Industry segmented?
The data visualization tools industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudCustomer TypeLarge enterprisesSMEsComponentSoftwareServicesApplicationHuman resourcesFinanceOthersEnd-userBFSIIT and telecommunicationHealthcareRetailOthersGeographyNorth AmericaUSMexicoEuropeFranceGermanyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.The market has experienced notable expansion as businesses across diverse sectors acknowledge the significance of data analysis and representation to uncover valuable insights and inform strategic decisions. Data visualization plays a pivotal role in this domain. On-premises deployment, which involves implementing data visualization tools within an organization's physical infrastructure or dedicated data centers, is a popular choice. This approach offers organizations greater control over their data, ensuring data security, privacy, and adherence to data governance policies. It caters to industries dealing with sensitive data, subject to regulatory requirements, or having stringent security protocols that prohibit cloud-based solutions. Data storytelling, data preparation, data-driven product development, data-driven government, real-time data visualization, data security, data dashboards, data-driven finance, data-driven strategy, big data visualization, data-driven decision making, data blending, data filtering, data visualization software, data exploration, data-driven insights, data-driven customer experience, data mapping, data culture, data cleaning, data-driven operations, data aggregation, data transformation, data-driven healthcare, on-premises data visualization, data governance, data ethics, data discovery, natural language processing, data reporting, data visualization platforms, data-driven innovation, data wrangling, data-driven sales, data connectivit
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article discusses how to make statistical graphics a more prominent element of the undergraduate statistics curricula. The focus is on several different types of assignments that exemplify how to incorporate graphics into a course in a pedagogically meaningful way. These assignments include having students deconstruct and reconstruct plots, copy masterful graphs, create one-minute visual revelations, convert tables into “pictures,” and develop interactive visualizations, for example, with the virtual earth as a plotting canvas. In addition to describing the goals and details of each assignment, we also discuss the broader topic of graphics and key concepts that we think warrant inclusion in the statistics curricula. We advocate that more attention needs to be paid to this fundamental field of statistics at all levels, from introductory undergraduate through graduate level courses. With the rapid rise of tools to visualize data, for example, Google trends, GapMinder, ManyEyes, and Tableau, and the increased use of graphics in the media, understanding the principles of good statistical graphics, and having the ability to create informative visualizations is an ever more important aspect of statistics education. Supplementary materials containing code and data for the assignments are available online.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Presentation Date: Tuesday, July 9, 2019. Location: Harvard & Smithsonian Center for Astrophysics. Abstract: These are Alyssa Goodman's presentation slides for the Smithsonian Science Education Academy for Teachers (SSEAT) 2019 workshop, held at the Harvard & Smithsonian Center for Astrophysics in Cambridge, MA on July 9, 2019.
Facebook
TwitterAll 311 Service Requests from 2010 to present. This information is automatically updated daily.
Click here to download data from 2011 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2011/fpz8-jqf4
Click here to download data from 2012 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2012/as38-8eb5
Click here to download data from 2013 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2013/hybb-af8n
Click here to download data from 2014 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2014/vtzg-7562
Click here to download data from 2015 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2015/57g5-etyj