Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
When I started exploring how to create interactive maps (using the leaflet() package in R) I come across this free data set (shapefile format) that contains the geographical coordinates (polygons) for all the countries in the world. I thought it would be nice to share this with the Kaggle community.
The .zip folder contains all the necessary files needed for the shapefile data to work properly on your computer. If you are new to using the shapefile format, please see the information provided below:
https://en.wikipedia.org/wiki/Shapefile "The shapefile format stores the data as primitive geometric shapes like points, lines, and polygons. These shapes, together with data attributes that are linked to each shape, create the representation of the geographic data. The term "shapefile" is quite common, but the format consists of a collection of files with a common filename prefix, stored in the same directory. The three mandatory files have filename extensions .shp, .shx, and .dbf. The actual shapefile relates specifically to the .shp file, but alone is incomplete for distribution as the other supporting files are required. "
Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.
Facebook
TwitterLearn Geographic Mapping with Altair, Vega-Lite and Vega using Curated Datasets
Complete geographic and geophysical data collection for mapping and visualization. This consolidation includes 18 complementary datasets used by 31+ Vega, Vega-Lite, and Altair examples 📊. Perfect for learning geographic visualization techniques including projections, choropleths, point maps, vector fields, and interactive displays.
Source data lives on GitHub and can also be accessed via CDN. The vega-datasets project serves as a common repository for example datasets used across these visualization libraries and related projects.
airports.csv), lines (like londonTubeLines.json), and polygons (like us-10m.json).windvectors.csv, annual-precip.json).This pack includes 18 datasets covering base maps, reference points, statistical data for choropleths, and geophysical data.
| Dataset | File | Size | Format | License | Description | Key Fields / Join Info |
|---|---|---|---|---|---|---|
| US Map (1:10m) | us-10m.json | 627 KB | TopoJSON | CC-BY-4.0 | US state and county boundaries. Contains states and counties objects. Ideal for choropleths. | id (FIPS code) property on geometries |
| World Map (1:110m) | world-110m.json | 117 KB | TopoJSON | CC-BY-4.0 | World country boundaries. Contains countries object. Suitable for world-scale viz. | id property on geometries |
| London Boroughs | londonBoroughs.json | 14 KB | TopoJSON | CC-BY-4.0 | London borough boundaries. | properties.BOROUGHN (name) |
| London Centroids | londonCentroids.json | 2 KB | GeoJSON | CC-BY-4.0 | Center points for London boroughs. | properties.id, properties.name |
| London Tube Lines | londonTubeLines.json | 78 KB | GeoJSON | CC-BY-4.0 | London Underground network lines. | properties.name, properties.color |
| Dataset | File | Size | Format | License | Description | Key Fields / Join Info |
|---|---|---|---|---|---|---|
| US Airports | airports.csv | 205 KB | CSV | Public Domain | US airports with codes and coordinates. | iata, state, `l... |
Facebook
TwitterGLOBE provides the ability to view and interact with data measured across the world. Select the visualization tool to map, graph, filter and export data that have been measured across GLOBE protocols since 1995. Currently the GLOBE Data Visualization Tool supports a subset of protocols. Additional Features and capabilities are continually being added.
Facebook
TwitterMBI is one of the first distributors of HERE Technologies and provides detailed street maps from HERE for most of the countries or territories worldwide.
HERE Maps are available as Essential or Advanced Map. Essential Map is a basic 2D canvas of the world that enables use cases such as basic map display, data visualization, search, localization tracking and tracing.
Building on Essential Map, Advanced Map is the most complete and detailed map available. It includes detailed features for modeling road networks, such as navigable attributes, speed limits, sign text and the full set of Places (Point of Interest), and enables use cases such as point-to-point routing, turn-by-turn navigation, advanced navigation for cars and trucks, business intelligence, planning and optimization, and much more.
The HERE Map product line can be further enriched with additional curated and specialized location content products that enable you to build differentiating location-enabled services and applications. Over 50 premium location content products seamlessly integrate with the HERE Map Data product line, such as Places, Point Addressing, Trucks, Road Infrastructure, and many more. Available in the following formats: GDF, RDF, NavStreets, FGDB,
Facebook
TwitterOverview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.
The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the map data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset was created by David Maillie
Released under CC BY-SA 4.0
Facebook
TwitterOverview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted geospatial data cover postal divisions for the whole world. The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Boundaries Database (Geospatial data, Map data, Polygon daa)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the map data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 2.55(USD Billion) |
| MARKET SIZE 2025 | 2.73(USD Billion) |
| MARKET SIZE 2035 | 5.5(USD Billion) |
| SEGMENTS COVERED | Application, User Type, Deployment Model, Features, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Technological advancement, Increasing demand for visualization, Growing focus on data-driven decision-making, Rising need for course customization, Emergence of remote learning tools |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Sisense, IBM, Domo, Oracle, Zoho, Infor, SAP, Microsoft, Tableau Software, Microsoft Power BI, Board International, TIBCO Software, Adobe, SAS Institute, Alteryx, Qlik |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Increased demand for educational technology, Integration with AI-driven analytics, Customization for diverse industries, Expansion in remote learning solutions, Rising focus on skills-based training |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 7.2% (2025 - 2035) |
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Digital Map Market Size 2025-2029
The digital map market size is forecast to increase by USD 31.95 billion at a CAGR of 31.3% between 2024 and 2029.
The market is driven by the increasing adoption of intelligent Personal Digital Assistants (PDAs) and the availability of location-based services. PDAs, such as smartphones and smartwatches, are becoming increasingly integrated with digital map technologies, enabling users to navigate and access real-time information on-the-go. The integration of Internet of Things (IoT) enables remote monitoring of cars and theft recovery. Location-based services, including mapping and navigation apps, are a crucial component of this trend, offering users personalized and convenient solutions for travel and exploration. However, the market also faces significant challenges.
Ensuring the protection of sensitive user information is essential for companies operating in this market, as trust and data security are key factors in driving user adoption and retention. Additionally, the competition in the market is intense, with numerous players vying for market share. Companies must differentiate themselves through innovative features, user experience, and strong branding to stand out in this competitive landscape. Security and privacy concerns continue to be a major obstacle, as the collection and use of location data raises valid concerns among consumers.
What will be the Size of the Digital Map Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the market, cartographic generalization and thematic mapping techniques are utilized to convey complex spatial information, transforming raw data into insightful visualizations. Choropleth maps and dot density maps illustrate distribution patterns of environmental data, economic data, and demographic data, while spatial interpolation and predictive modeling enable the estimation of hydrographic data and terrain data in areas with limited information. Urban planning and land use planning benefit from these tools, facilitating network modeling and location intelligence for public safety and emergency management.
Spatial regression and spatial autocorrelation analyses provide valuable insights into urban development trends and patterns. Network analysis and shortest path algorithms optimize transportation planning and logistics management, enhancing marketing analytics and sales territory optimization. Decision support systems and fleet management incorporate 3D building models and real-time data from street view imagery, enabling effective resource management and disaster response. The market in the US is experiencing robust growth, driven by the integration of Geographic Information Systems (GIS), Global Positioning Systems (GPS), and advanced computer technology into various industries.
How is this Digital Map Industry segmented?
The digital map industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Application
Navigation
Geocoders
Others
Type
Outdoor
Indoor
Solution
Software
Services
Deployment
On-premises
Cloud
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Indonesia
Japan
South Korea
Rest of World (ROW)
By Application Insights
The navigation segment is estimated to witness significant growth during the forecast period. Digital maps play a pivotal role in various industries, particularly in automotive applications for driver assistance systems. These maps encompass raster data, aerial photography, government data, and commercial data, among others. Open-source data and proprietary data are integrated to ensure map accuracy and up-to-date information. Map production involves the use of GPS technology, map projections, and GIS software, while map maintenance and quality control ensure map accuracy. Location-based services (LBS) and route optimization are integral parts of digital maps, enabling real-time navigation and traffic data.
Data validation and map tiles ensure data security. Cloud computing facilitates map distribution and map customization, allowing users to access maps on various devices, including mobile mapping and indoor mapping. Map design, map printing, and reverse geocoding further enhance the user experience. Spatial analysis and data modeling are essential for data warehousing and real-time navigation. The automotive industry's increasing adoption of connected cars and long-term evolution (LTE) technologies have fueled the demand for digital maps. These maps enable driver assistance applications,
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2024 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2024. Key Properties Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryAnalysis: Optimized for analysisClass Definitions: ValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Usage Information and Best PracticesProcessing TemplatesThis layer includes a number of preconfigured processing templates (raster function templates) to provide on-the-fly data rendering and class isolation for visualization and analysis. Each processing template includes labels and descriptions to characterize the intended usage. This may include for visualization, for analysis, or for both visualization and analysis. VisualizationThe default rendering on this layer displays all classes.There are a number of on-the-fly renderings/processing templates designed specifically for data visualization.By default, the most recent year is displayed. To discover and isolate specific years for visualization in Map Viewer, try using the Image Collection Explorer. AnalysisIn order to leverage the optimization for analysis, the capability must be enabled by your ArcGIS organization administrator. More information on enabling this feature can be found in the ‘Regional data hosting’ section of this help doc.Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See this group for a complete list of imagery layers optimized for analysis.Prior to running analysis, users should always provide some form of data selection with either a layer filter (e.g. for a specific date range, cloud cover percent, mission, etc.) or by selecting specific images. To discover and isolate specific images for analysis in Map Viewer, try using the Image Collection Explorer.Zonal Statistics is a common tool used for understanding the composition of a specified area by reporting the total estimates for each of the classes. GeneralIf you are new to Sentinel-2 LULC, the Sentinel-2 Land Cover Explorer provides a good introductory user experience for working with this imagery layer. For more information, see this Quick Start Guide.Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.
Facebook
TwitterThis map provides a colorized representation of aspect, generated dynamically using the server-side aspect function on the Terrain layer. The orientation of the downward sloping terrain (0° – 360°) is indicated by different colors, rotating from green (North) to blue (East), to magenta (South) to orange (West). Flat areas having no down slope direction are given a value of 361° and rendered as gray. This service can be used for visualization or analysis. Note: If you require access to numeric (float) aspect values, use the Terrain - Aspect layer, which returns orientation values from 0 to 360 degrees. Units: DegreesUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: Yes. This colorized aspect map is appropriate for visualizing the downslope direction of the terrain. This layer can be added to applications or maps to enhance contextual understanding.Use for Analysis: Yes. 8 bit color values returned by this service represent integer aspect values. For float values, use the Terrain - Aspect layer.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.
This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 2397.5(USD Million) |
| MARKET SIZE 2025 | 2538.9(USD Million) |
| MARKET SIZE 2035 | 4500.0(USD Million) |
| SEGMENTS COVERED | Application, Deployment Type, Features, End User, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Rising demand for data visualization, Increasing adoption in education, Growth in location-based services, Advancements in GIS technology, Expansion of mobile mapping applications |
| MARKET FORECAST UNITS | USD Million |
| KEY COMPANIES PROFILED | IBM, Spatialite, Hexagon AB, Autodesk, Oracle, FME, QGIS, Safe Software, Carto, Pitney Bowes, HERE Technologies, Esri, Trimble, Mapbox, Microsoft, Alteryx |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Growing demand for visualization tools, Increased adoption in education sectors, Integration with real-time data, Expansion in remote work applications, Rising interest in tourism and travel |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 5.9% (2025 - 2035) |
Facebook
TwitterVisual map at kumu.io/access2perspectives/covid19-resources
Data set doi: 10.5281/zenodo.3732377 // available in different formats (pdf, xls, ods, csv,)
Correspondence: (JH) info@access2perspectives.com
Objectives
Provide citizens with crucial and reliable information
Encourage and facilitate South South collaboration
Bridging language barriers
Provide local governments and cities with lessons learned about COVID-19 crisis response
Facilitate global cooperation and immediate response on all societal levels
Enable LMICs to collaborate and innovate across distances and leverage locally available and context-relevant resources
Methodology
The data feeding the map at kumu.io was compiled from online resources and information shared in various community communication channels.
Kumu.io is a visualization platform for mapping complex systems and to provide a deeper understanding of their intrinsic relationships. It provides blended systems thinking, stakeholder mapping, and social network analysis.
Explore the map // https://kumu.io/access2perspectives/covid19-resources#global
Click on individual nodes and view the information by country
info hotlines
governmental informational websites, Twitter feeds & Facebook pages
fact checking online resources
language indicator
DIY resources
clinical staff capacity building
etc.
With the navigation buttons to the right, you can zoom in and out, select and focus on specific elements.
If you have comments, questions or suggestions for improvements on this map email us at info@access2perspectives.com
Contribute
Please add data to the spreadsheet at https://tinyurl.com/COVID19-global-response
you can add additional information on country, city or neighbourhood level (see e.g. the Cape Town entry)
Related documents
Google Doc: tinyurl.com/COVID19-Africa-Response
Facebook
TwitterAttribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
Catholic Carbon Footprint Story Map Map:DataBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.Map Development: Molly BurhansMethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/
Facebook
TwitterOur World Administrative Boundaries Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Interactive data map of COVID-19 cases around the world. Shows number of total cases and deaths by country over time, starting from December 31, 2019 to present time.
Facebook
TwitterOverview
The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control.
National Geospatial Data Asset
This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee.
Dataset Source Details
Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.
Cartographic Visualization
The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below.
Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html
Contact
Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip
Attribute Structure
The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension
These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE
The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB.
Core Attributes
The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields.
County Code and Country Name Fields
“CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard.
The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user.
Descriptive Fields
The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes
Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line.
ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line
A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively.
The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps.
The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line.
Use of Core Attributes in Cartographic Visualization
Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between:
Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction.
The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling.
Use of
Facebook
TwitterNote: This layer has been superseded by the World Ecological Land Units Map 2015 layer. The new map contains updates to landforms and land cover data, which have a greater variety of classes and better spatial coherence (less arbitrary fragmentation). The updated World Ecological Land Units Map 2015 layer contains 3,639 different combinations, which is 284 fewer than the 2014 result. Ecological Land Units (ELUs) are areas of distinct bioclimate, landform, lithology, and land cover that form the basic components of terrestrial ecosystem structure. The ELU map was produced by combining the values in four 250m cell-sized rasters using the ArcGIS Combine tool (Spatial Analyst). These four components resulted in 3,923 different combinations or ELUs.These four component datasets represent the most accurate, current, globally comprehensive, and finest spatial and thematic resolution data available for each of the four inputs. Each combination was assigned a color using an algorithm that blended traditional color schemes for each of the four components. Values for each of the four input layers are listed in the table below. Every point in this map is symbolized by a combination of values for each of these fields.BioclimateLandformsLithologyLand CoverArcticPlainsUndefinedBare AreaCold DryHillsUnconsolidated SedimentSparse VegetationCold Semi-DryMountainsCarbonate Sedimentary RockGrassland, Shrub, or ScrubCold Moist Mixed Sedimentary RockMostly CroplandCold Wet Non-Carbonate Sedimentary RockMostly Needleleaf/Evergreen ForestCool Dry EvaporiteMostly Deciduous ForestCool Semi-Dry PyroclasticsSwampy or Often FloodedCool Moist Metamorphic RockArtificial or Urban AreaCool Wet Acidic VolcanicsSurface WaterHot Dry Acidic PlutonicsUndefinedHot Semi-Dry Non-Acidic Volcanics Hot Moist Non-Acidic Plutonics Hot Wet Warm Dry Warm Semi-Dry Warm Moist Warm Wet Dataset SummaryThis layer provides access to a cached map service created by Esri in partnership with U.S. Geological Survey's Climate and Land Use Change Program. The work from this collaboration is documented in the publication:Sayre and others. 2014. A New Map of Global Ecological Land Units — An Ecophysiographic Stratification Approach. Washington, DC: Association of American Geographers. 46 pages. Available online What can you do with this layer?This map is intended to work as an ecological background map in conjunction with the reference layers of various ArcGIS Online base maps, and supports visualization tasks in ArcGIS Online and Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.An image service is available on ArcGIS Online that provides access to a 250-m cell-sized raster of the World Ecophysiographic Land Units. The image service provides access to the data underlying this map. The image service can be used as an input to geoprocessing and to support pop-ups that can be used with this map online.A service is available of the data tables associated with this map as well as other global layers. These data table services can be used by developers to create custom applications. For more information see the World Ecophysiographic Tables.The following are four input layers used to create this map::World BioclimatesWorld LandformsWorld LithologyWorld Land CoverThe Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Landscape Layers - A ReintroductionLiving Atlas Discussion Group
Facebook
TwitterThis map provides a colorized representation of slope, generated dynamically using server-side slope function on the Terrain layer. The degree of slope steepness is depicted by light to dark colors - flat surfaces as gray, shallow slopes as light yellow, moderate slopes as light orange and steep slopes as red-brown. A scaling is applied to slope values to generate appropriate visualization at each map scale. This service should only be used for visualization, such as a base layer in applications or maps. Note: If access to non-scaled slope values is required, use the Slope Degrees or Slope Percent functions, which return values from 0 to 90 degrees, or 0 to 1000%, respectively.Units: DegreesUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: Yes. This colorized slope is appropriate for visualizing the steepness of the terrain at all map scales. This layer can be added to applications or maps to enhance contextual understanding. Use for Analysis: No. 8 bit color values returned by this service represent scaled slope values. For analysis with non-scaled values, use the Slope Degrees or Slope Percent functions.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.
This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
When I started exploring how to create interactive maps (using the leaflet() package in R) I come across this free data set (shapefile format) that contains the geographical coordinates (polygons) for all the countries in the world. I thought it would be nice to share this with the Kaggle community.
The .zip folder contains all the necessary files needed for the shapefile data to work properly on your computer. If you are new to using the shapefile format, please see the information provided below:
https://en.wikipedia.org/wiki/Shapefile "The shapefile format stores the data as primitive geometric shapes like points, lines, and polygons. These shapes, together with data attributes that are linked to each shape, create the representation of the geographic data. The term "shapefile" is quite common, but the format consists of a collection of files with a common filename prefix, stored in the same directory. The three mandatory files have filename extensions .shp, .shx, and .dbf. The actual shapefile relates specifically to the .shp file, but alone is incomplete for distribution as the other supporting files are required. "
Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.