100+ datasets found
  1. Data generation volume worldwide 2010-2029

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Data generation volume worldwide 2010-2029 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly. While it was estimated at ***** zettabytes in 2025, the forecast for 2029 stands at ***** zettabytes. Thus, global data generation will triple between 2025 and 2029. Data creation has been expanding continuously over the past decade. In 2020, the growth was higher than previously expected, caused by the increased demand due to the coronavirus (COVID-19) pandemic, as more people worked and learned from home and used home entertainment options more often.

  2. G

    Usage Analytics Platform Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Usage Analytics Platform Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/usage-analytics-platform-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Aug 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Usage Analytics Platform Market Outlook



    According to our latest research, the global Usage Analytics Platform market size reached USD 8.2 billion in 2024, and is expected to grow at a robust CAGR of 14.7% from 2025 to 2033, reaching a forecasted market size of USD 27.1 billion by 2033. This significant growth is primarily driven by the increasing demand for actionable insights from digital platforms, the proliferation of data-driven decision-making across industries, and the rising adoption of cloud-based analytics solutions. The marketÂ’s expansion is further fueled by the need for businesses to optimize user engagement, enhance customer experience, and maintain a competitive edge in a rapidly evolving digital landscape.




    A key growth factor for the Usage Analytics Platform market is the surging volume of digital interactions and the resulting explosion of data generated by users across various channels. Organizations are increasingly recognizing the value of harnessing this data to gain a granular understanding of user behavior, preferences, and pain points. The integration of advanced analytics, artificial intelligence, and machine learning into usage analytics platforms enables companies to extract deeper insights, predict trends, and personalize user experiences at scale. This shift towards data-driven strategies is particularly pronounced in sectors such as retail and e-commerce, BFSI, and IT & telecommunications, where understanding user journeys directly correlates with revenue growth and customer retention.




    Another major driver is the growing necessity for businesses to comply with regulatory requirements and manage risks effectively. Usage analytics platforms are being leveraged to monitor and analyze user activities, ensuring compliance with data privacy laws and industry standards. The ability to track, audit, and report on user actions in real time not only helps in mitigating risks but also supports transparency and accountability within organizations. As regulatory landscapes become more complex, especially in sectors like healthcare and finance, the adoption of sophisticated analytics tools that offer robust risk and compliance management functionalities is expected to accelerate.




    The rapid digital transformation initiatives undertaken by enterprises of all sizes are also contributing to the marketÂ’s expansion. Small and medium enterprises (SMEs), in particular, are increasingly adopting cloud-based usage analytics platforms due to their scalability, cost-effectiveness, and ease of deployment. The democratization of analytics technologies has enabled SMEs to compete with larger counterparts by leveraging actionable insights to drive innovation and operational efficiency. Furthermore, the shift towards hybrid and remote work environments has heightened the need for real-time analytics to monitor application usage, user productivity, and system performance, propelling the demand for advanced usage analytics solutions.



    The concept of Analytics as a Service is gaining traction as businesses seek to leverage advanced analytics without the need for extensive in-house infrastructure. This model allows organizations to access sophisticated analytics capabilities through cloud-based platforms, enabling them to process large volumes of data and derive actionable insights with minimal upfront investment. By adopting Analytics as a Service, companies can focus on their core competencies while benefiting from the expertise and technological advancements of specialized analytics providers. This approach not only reduces operational costs but also enhances agility, allowing businesses to quickly adapt to changing market conditions and customer demands. As more organizations embrace digital transformation, the demand for flexible, scalable analytics solutions is expected to rise, further driving the adoption of Analytics as a Service across various industries.




    From a regional perspective, North America continues to dominate the Usage Analytics Platform market, accounting for the largest share in 2024, followed by Europe and Asia Pacific. The regionÂ’s leadership can be attributed to the high concentration of technology-driven enterprises, early adoption of analytics solutions, and significant investments in digital infrastructure. However, Asia Pacific is projected to witness the fas

  3. d

    Dataplex: All CMS Data Feeds | Access 1519 Reports & 26B+ Rows of Data |...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataplex (2024). Dataplex: All CMS Data Feeds | Access 1519 Reports & 26B+ Rows of Data | Perfect for Historical Analysis & Easy Ingestion [Dataset]. https://datarade.ai/data-products/dataplex-all-cms-data-feeds-access-1519-reports-26b-row-dataplex
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    Dataplex
    Area covered
    United States of America
    Description

    The All CMS Data Feeds dataset is an expansive resource offering access to 118 unique report feeds, providing in-depth insights into various aspects of the U.S. healthcare system. With over 25.8 billion rows of data meticulously collected since 2007, this dataset is invaluable for healthcare professionals, analysts, researchers, and businesses seeking to understand and analyze healthcare trends, performance metrics, and demographic shifts over time. The dataset is updated monthly, ensuring that users always have access to the most current and relevant data available.

    Dataset Overview:

    118 Report Feeds: - The dataset includes a wide array of report feeds, each providing unique insights into different dimensions of healthcare. These topics range from Medicare and Medicaid service metrics, patient demographics, provider information, financial data, and much more. The breadth of information ensures that users can find relevant data for nearly any healthcare-related analysis. - As CMS releases new report feeds, they are automatically added to this dataset, keeping it current and expanding its utility for users.

    25.8 Billion Rows of Data:

    • With over 25.8 billion rows of data, this dataset provides a comprehensive view of the U.S. healthcare system. This extensive volume of data allows for granular analysis, enabling users to uncover insights that might be missed in smaller datasets. The data is also meticulously cleaned and aligned, ensuring accuracy and ease of use.

    Historical Data Since 2007: - The dataset spans from 2007 to the present, offering a rich historical perspective that is essential for tracking long-term trends and changes in healthcare delivery, policy impacts, and patient outcomes. This historical data is particularly valuable for conducting longitudinal studies and evaluating the effects of various healthcare interventions over time.

    Monthly Updates:

    • To ensure that users have access to the most current information, the dataset is updated monthly. These updates include new reports as well as revisions to existing data, making the dataset a continuously evolving resource that stays relevant and accurate.

    Data Sourced from CMS:

    • The data in this dataset is sourced directly from the Centers for Medicare & Medicaid Services (CMS). After collection, the data is meticulously cleaned and its attributes are aligned, ensuring consistency, accuracy, and ease of use for any application. Furthermore, any new updates or releases from CMS are automatically integrated into the dataset, keeping it comprehensive and current.

    Use Cases:

    Market Analysis:

    • The dataset is ideal for market analysts who need to understand the dynamics of the healthcare industry. The extensive historical data allows for detailed segmentation and analysis, helping users identify trends, market shifts, and growth opportunities. The comprehensive nature of the data enables users to perform in-depth analyses of specific market segments, making it a valuable tool for strategic decision-making.

    Healthcare Research:

    • Researchers will find the All CMS Data Feeds dataset to be a robust foundation for academic and commercial research. The historical data, combined with the breadth of coverage across various healthcare metrics, supports rigorous, in-depth analysis. Researchers can explore the effects of healthcare policies, study patient outcomes, analyze provider performance, and more, all within a single, comprehensive dataset.

    Performance Tracking:

    • Healthcare providers and organizations can use the dataset to track performance metrics over time. By comparing data across different periods, organizations can identify areas for improvement, monitor the effectiveness of initiatives, and ensure compliance with regulatory standards. The dataset provides the detailed, reliable data needed to track and analyze key performance indicators.

    Compliance and Regulatory Reporting:

    • The dataset is also an essential tool for compliance officers and those involved in regulatory reporting. With detailed data on provider performance, patient outcomes, and healthcare utilization, the dataset helps organizations meet regulatory requirements, prepare for audits, and ensure adherence to best practices. The accuracy and comprehensiveness of the data make it a trusted resource for regulatory compliance.

    Data Quality and Reliability:

    The All CMS Data Feeds dataset is designed with a strong emphasis on data quality and reliability. Each row of data is meticulously cleaned and aligned, ensuring that it is both accurate and consistent. This attention to detail makes the dataset a trusted resource for high-stakes applications, where data quality is critical.

    Integration and Usability:

    Ease of Integration:

    • The dataset is provided in a CSV format, which is widely compatible with most data analysis tools and platforms. This ensures that users can easily integrate the data into their existing wo...
  4. US Mail Statistics

    • kaggle.com
    zip
    Updated Dec 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). US Mail Statistics [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-mail-statistics
    Explore at:
    zip(13500 bytes)Available download formats
    Dataset updated
    Dec 19, 2023
    Authors
    The Devastator
    Description

    US Mail Statistics

    US Mail History: Mail Volume, Post Offices, Income, Expenses (1790-2017)

    By Throwback Thursday [source]

    About this dataset

    The dataset contains multiple columns that provide specific information for each year recorded. The column labeled Year indicates the specific year in which the data was recorded. The Pieces of Mail Handled column shows the total number of mail items that were processed or handled in a given year.

    Another important metric is represented in the Number of Post Offices column, revealing the total count of post offices that were operational during a specific year. This information helps understand how postal services and infrastructure have evolved over time.

    Examining financial aspects, there are two columns: Income and Expenses. The former represents the total revenue generated by the US Mail service in a particular year, while the latter showcases the expenses incurred by this service during that same period.

    The dataset titled Week 22 - US Mail - 1790 to 2017.csv serves as an invaluable resource for researchers, historians, and analysts interested in studying trends and patterns within the US Mail system throughout its extensive history. By utilizing this dataset's wide range of valuable metrics, users can gain insights into how mail volume has changed over time alongside fluctuations in post office numbers and financial performance

    How to use the dataset

    • Familiarize yourself with the columns:

      • Year: This column represents the specific year in which data was recorded. It is represented by numeric values.
      • Pieces of Mail Handled: This column indicates the number of mail items processed or handled in a given year. It is also represented by numeric values.
      • Number of Post Offices: Here, you will find information on the total count of post offices in operation during a specific year. Like other columns, it consists of numeric values.
      • Income: The Income column displays the total revenue generated by the US Mail service in a particular year. Numeric values are used to represent this data.
      • Expenses: This column shows the total expenses incurred by the US Mail service for a particular year. Similar to other columns, it uses numeric values.
    • Understand data relationships: By exploring and analyzing different combinations of columns, you can uncover interesting patterns and relationships within mail statistics over time. For example:

      • Relationship between Year and Pieces of Mail Handled/Number of Post Offices/Income/Expenses: Analyzing these variables over years will allow you to observe trends such as increasing mail volume alongside changes in post office numbers or income and expenses patterns.

      • Relationship between Pieces of Mail Handled and Number Postal Office: By comparing these two variables across different years, you can assess if there is any correlation between mail volume growth and changes in post office counts.

    • Visualization:

      To gain better insights into this vast amount of data visually, consider making use graphs or plots beyond just numerical analysis. You can use tools like Matplotlib, Seaborn, or Plotly to create various types of visualizations:

      • Time-series line plots: Visualize the change in Pieces of Mail Handled, Number of Post Offices, Income, and Expenses over time.
      • Scatter plots: Identify potential correlations between different variables such as Year and Pieces of Mail Handled/Number of Post Offices/Income/Expenses.
    • Drawing conclusions:

      This dataset presents an extraordinary opportunity to learn about the history and evolution of the US Mail service. By examining various factors together or individually throughout time, you can draw conclusions about

    Research Ideas

    • Trend Analysis: The dataset can be used to analyze the trends and patterns in mail volume, post office numbers, income, and expenses over time. This can help identify any significant changes or fluctuations in these variables and understand the factors that may have influenced them.
    • Benchmarking: By comparing the performance of different years or periods, this dataset can be used for benchmarking purposes. For example, it can help assess how efficiently post offices have been handling mail items by comparing the number of pieces of mail handled with the corresponding expenses incurred.
    • Forecasting: Based on historical data on mail volume and revenue generation, this dataset can be used for forecasting future trends. This could be valuable for planning purposes, such as determining resource allocation or projecting financial o...
  5. Amount of data created, consumed, and stored 2010-2023, with forecasts to...

    • statista.com
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Petroc Taylor (2025). Amount of data created, consumed, and stored 2010-2023, with forecasts to 2028 [Dataset]. https://www.statista.com/topics/1464/big-data/
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Petroc Taylor
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching 149 zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than 394 zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just 2 percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of 19.2 percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached 6.7 zettabytes.

  6. d

    Data from: Data Tables Associated with an Analysis of the U.S. Geological...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Data Tables Associated with an Analysis of the U.S. Geological Survey's Historical Water-use Data, 1985–2015 [Dataset]. https://catalog.data.gov/dataset/data-tables-associated-with-an-analysis-of-the-u-s-geological-surveys-historical-water-use
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The datasets in this data release contain the results of an analysis of the U.S. Geological Survey's historical water-use data from 1985 to 2015. Data were assessed to determine the top category of water use by volume. Data from groundwater, surface water, and total water (groundwater plus surface water) use were parsed by water type, and the top category of use by county or the geographic region or local government equivalent to a county (for example, parishes in Louisiana) was determined. There are two sets of results provided, one for the "Priority" categories of water use and the second for all categories of water use. "Priority" categories are irrigation, public supply, and thermoelectric power and comprise 90 percent of all water use nationwide. In addition to the priority categories, the remaining categories of water use are as follows: aquaculture, domestic, industrial, livestock, and mining. Water-use data historically have been compiled at the county level every 5 years as part of the U.S. Geological Survey's National Water Use Science Project. In 2020 the U.S. Geological Survey began transitioning the collection of water-use data from every 5 years to an annual collection, from county level to hydrologic unit code (HUC) 12, and to a model-based approach. To assist in the transition, an assessment of the current (2022) historical water-use data was done by the Water-Use Gap Analysis Project.

  7. d

    Traffic Data | Traffic volume, speed and congestion data for cars and trucks...

    • datarade.ai
    .json, .csv
    Updated Oct 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban SDK (2021). Traffic Data | Traffic volume, speed and congestion data for cars and trucks in USA and Canada [Dataset]. https://datarade.ai/data-products/traffic-data-traffic-volume-speed-and-congestion-data-for-urban-sdk
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Oct 1, 2021
    Dataset authored and provided by
    Urban SDK
    Area covered
    Canada, United States
    Description

    Urban SDK is a GIS data management platform and global provider of mobility, urban characteristics, and alt datasets. Urban SDK Traffic data provides traffic volume, average speed, average travel time and congestion for logistics, transportation planning, traffic monitoring, routing and urban planning. Traffic data is generated from cars, trucks and mobile devices for major road networks in US and Canada.

    "With the old data I used, it took me 3-4 weeks to create a presentation. I will be able to do 3-4x the work with your Urban SDK traffic data."

    Traffic Volume, Speed and Congestion Data Type Profile:

    • Traffic volume in annual average daily and daily traffic volumes per roadway
    • Average travel speed in 15 minute and hourly intervals per roadway
    • Travel time in seconds in 15 minute intervals per roadway
    • Commute travel time in minutes in annual interval estimates in geohash boundaries
    • Congested roadway segments based on travel time reliability in monthly intervals per roadway
    • Traffic data attributed spatially to state, county, road functional class, road name, road segment, segment length in km or miles as geojson

    Industry Solutions include:

    • Transportation Planning
    • Traffic Monitoring
    • Congestion Management and Trend Analysis
    • Travel Demand Modeling
    • Traffic Impact Analysis
    • Parking Analysis
    • Transit System Planning
    • Route Planning
    • Civil Engineering
    • Site Selection

    Use cases:

    • Traffic monitoring, data analysis, and forecasting for transportation, transit, and urban planning.
    • Improve dynamic routing with accurate travel time and congestion data
    • Environmental and emissions analysis
    • Travel demand and transportation modeling
    • Location analysis and assessment for commercial site selection for retail or logistics related locations
  8. SAP DATASET | BigQuery Dataset

    • kaggle.com
    zip
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mustafa Keser (2024). SAP DATASET | BigQuery Dataset [Dataset]. https://www.kaggle.com/datasets/mustafakeser4/sap-dataset-bigquery-dataset/discussion
    Explore at:
    zip(365940125 bytes)Available download formats
    Dataset updated
    Aug 20, 2024
    Authors
    Mustafa Keser
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Certainly! Here's a description for the Kaggle dataset related to the cloud-training-demos.SAP_REPLICATED_DATA BigQuery public dataset:

    Dataset Description: SAP Replicated Data

    Dataset ID: cloud-training-demos.SAP_REPLICATED_DATA

    Overview: The SAP_REPLICATED_DATA dataset in BigQuery provides a comprehensive replication of SAP (Systems, Applications, and Products in Data Processing) business data. This dataset is designed to support data analytics and machine learning tasks by offering a rich set of structured data that mimics real-world enterprise scenarios. It includes data from various SAP modules and processes, enabling users to perform in-depth analysis, build predictive models, and explore business insights.

    Content: - Tables and Schemas: The dataset consists of multiple tables representing different aspects of SAP business operations, including but not limited to sales, inventory, finance, and procurement data. - Data Types: It contains structured data with fields such as transaction IDs, timestamps, customer details, product information, sales figures, and financial metrics. - Data Volume: The dataset is designed to simulate large-scale enterprise data, making it suitable for performance testing, data processing, and analysis.

    Usage: - Business Analytics: Users can analyze business trends, sales performance, and financial metrics. - Machine Learning: Ideal for developing and testing machine learning models related to business forecasting, anomaly detection, and customer segmentation. - Data Processing: Suitable for practicing SQL queries, data transformation, and integration tasks.

    Example Use Cases: - Sales Analysis: Track and analyze sales performance across different regions and time periods. - Inventory Management: Monitor inventory levels and identify trends in stock movements. - Financial Reporting: Generate financial reports and analyze expense patterns.

    For more information and to access the dataset, visit the BigQuery public datasets page or refer to the dataset documentation in the BigQuery console.

    Tables:

    Here's a Markdown table with the information you provided:

    File NameDescription
    adr6.csvAddresses with organizational units. Contains address details related to organizational units like departments or branches.
    adrc.csvGeneral Address Data. Provides information about addresses, including details such as street, city, and postal codes.
    adrct.csvAddress Contact Information. Contains contact information linked to addresses, including phone numbers and email addresses.
    adrt.csvAddress Details. Includes detailed address data such as street addresses, city, and country codes.
    ankt.csvAccounting Document Segment. Provides details on segments within accounting documents, including account numbers and amounts.
    anla.csvAsset Master Data. Contains information about fixed assets, including asset identification and classification.
    bkpf.csvAccounting Document Header. Contains headers of accounting documents, such as document numbers and fiscal year.
    bseg.csvAccounting Document Segment. Details line items within accounting documents, including account details and amounts.
    but000.csvBusiness Partners. Contains basic information about business partners, including IDs and names.
    but020.csvBusiness Partner Addresses. Provides address details associated with business partners.
    cepc.csvCustomer Master Data - Central. Contains centralized data for customer master records.
    cepct.csvCustomer Master Data - Contact. Provides contact details associated with customer records.
    csks.csvCost Center Master Data. Contains data about cost centers within the organization.
    cskt.csvCost Center Texts. Provides text descriptions and labels for cost centers.
    dd03l.csvData Element Field Labels. Contains labels and descriptions for data fields in the SAP system.
    ekbe.csvPurchase Order History. Details history of purchase orders, including quantities and values.
    ekes.csvPurchasing Document History. Contains history of purchasing documents including changes and statuses.
    eket.csvPurchase Order Item History. Details changes and statuses for individual purchase order items.
    ekkn.csvPurchase Order Account Assignment. Provides account assignment details for purchas...
  9. F

    France Volume of Usage: Short Message Service (SMS)

    • ceicdata.com
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). France Volume of Usage: Short Message Service (SMS) [Dataset]. https://www.ceicdata.com/en/france/telecommunication-statistics/volume-of-usage-short-message-service-sms
    Explore at:
    Dataset updated
    Sep 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    France
    Variables measured
    Internet Statistics
    Description

    France Volume of Usage: Short Message Service (SMS) data was reported at 184,409.221 Unit mn in 2017. This records a decrease from the previous number of 200,950.743 Unit mn for 2016. France Volume of Usage: Short Message Service (SMS) data is updated yearly, averaging 48,834.241 Unit mn from Dec 2000 (Median) to 2017, with 18 observations. The data reached an all-time high of 202,553.743 Unit mn in 2015 and a record low of 1,471.000 Unit mn in 2000. France Volume of Usage: Short Message Service (SMS) data remains active status in CEIC and is reported by Authority of Regulation of the Electronic Communications and the Stations. The data is categorized under Global Database’s France – Table FR.TB001: Telecommunication Statistics.

  10. m

    THVD (Talking Head Video Dataset)

    • data.mendeley.com
    Updated Apr 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mario Peedor (2025). THVD (Talking Head Video Dataset) [Dataset]. http://doi.org/10.17632/ykhw8r7bfx.2
    Explore at:
    Dataset updated
    Apr 29, 2025
    Authors
    Mario Peedor
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    About

    We provide a comprehensive talking-head video dataset with over 50,000 videos, totaling more than 500 hours of footage and featuring 20,841 unique identities from around the world.

    Distribution

    Detailing the format, size, and structure of the dataset: Data Volume: -Total Size: 2.7TB

    -Total Videos: 47,547

    -Identities Covered: 20,841

    -Resolution: 60% 4k(1980), 33% fullHD(1080)

    -Formats: MP4

    -Full-length videos with visible mouth movements in every frame.

    -Minimum face size of 400 pixels.

    -Video durations range from 20 seconds to 5 minutes.

    -Faces have not been cut out, full screen videos including backgrounds.

    Usage

    This dataset is ideal for a variety of applications:

    Face Recognition & Verification: Training and benchmarking facial recognition models.

    Action Recognition: Identifying human activities and behaviors.

    Re-Identification (Re-ID): Tracking identities across different videos and environments.

    Deepfake Detection: Developing methods to detect manipulated videos.

    Generative AI: Training high-resolution video generation models.

    Lip Syncing Applications: Enhancing AI-driven lip-syncing models for dubbing and virtual avatars.

    Background AI Applications: Developing AI models for automated background replacement, segmentation, and enhancement.

    Coverage

    Explaining the scope and coverage of the dataset:

    Geographic Coverage: Worldwide

    Time Range: Time range and size of the videos have been noted in the CSV file.

    Demographics: Includes information about age, gender, ethnicity, format, resolution, and file size.

    Languages Covered (Videos):

    English: 23,038 videos

    Portuguese: 1,346 videos

    Spanish: 677 videos

    Norwegian: 1,266 videos

    Swedish: 1,056 videos

    Korean: 848 videos

    Polish: 1,807 videos

    Indonesian: 1,163 videos

    French: 1,102 videos

    German: 1,276 videos

    Japanese: 1,433 videos

    Dutch: 1,666 videos

    Indian: 1,163 videos

    Czech: 590 videos

    Chinese: 685 videos

    Italian: 975 videos

    Philipeans: 920 videos

    Bulgaria: 340 videos

    Romanian: 1144 videos

    Arabic: 1691 videos

    Who Can Use It

    List examples of intended users and their use cases:

    Data Scientists: Training machine learning models for video-based AI applications.

    Researchers: Studying human behavior, facial analysis, or video AI advancements.

    Businesses: Developing facial recognition systems, video analytics, or AI-driven media applications.

    Additional Notes

    Ensure ethical usage and compliance with privacy regulations. The dataset’s quality and scale make it valuable for high-performance AI training. Potential preprocessing (cropping, down sampling) may be needed for different use cases. Dataset has not been completed yet and expands daily, please contact for most up to date CSV file. The dataset has been divided into 100GB zipped files and is hosted on a private server (with the option to upload to the cloud if needed). To verify the dataset's quality, please contact me for the full CSV file.

  11. F

    France Volume of Usage: Fixed Telephony

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). France Volume of Usage: Fixed Telephony [Dataset]. https://www.ceicdata.com/en/france/telecommunication-statistics/volume-of-usage-fixed-telephony
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    France
    Variables measured
    Internet Statistics
    Description

    France Volume of Usage: Fixed Telephony data was reported at 66,835.913 min mn in 2017. This records a decrease from the previous number of 75,159.913 min mn for 2016. France Volume of Usage: Fixed Telephony data is updated yearly, averaging 108,452.221 min mn from Dec 1998 (Median) to 2017, with 20 observations. The data reached an all-time high of 124,899.000 min mn in 1998 and a record low of 66,835.913 min mn in 2017. France Volume of Usage: Fixed Telephony data remains active status in CEIC and is reported by Authority of Regulation of the Electronic Communications and the Stations. The data is categorized under Global Database’s France – Table FR.TB001: Telecommunication Statistics.

  12. D

    Dataset Versioning For Analytics Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Dataset Versioning For Analytics Market Research Report 2033 [Dataset]. https://dataintelo.com/report/dataset-versioning-for-analytics-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Dataset Versioning for Analytics Market Outlook



    According to our latest research, the global dataset versioning for analytics market size reached USD 527.4 million in 2024. The market is experiencing robust expansion with a remarkable CAGR of 18.2% during the forecast period. By 2033, the market is projected to achieve a value of USD 2,330.6 million. This growth is primarily driven by the escalating demand for efficient data management, regulatory compliance, and the proliferation of AI and machine learning applications across diverse industries.




    The primary growth driver in the dataset versioning for analytics market is the exponential increase in data volume and complexity across organizations of all sizes. As enterprises continue to generate and utilize vast amounts of structured and unstructured data, the need for robust dataset versioning solutions has become imperative. These solutions enable organizations to track, manage, and analyze different versions of datasets, ensuring data integrity, reproducibility, and transparency throughout the analytics lifecycle. The surge in adoption of advanced analytics, machine learning, and artificial intelligence further amplifies the necessity for dataset versioning, as it facilitates the training, validation, and deployment of models with consistent and reliable data sources. In addition, the integration of dataset versioning tools with popular analytics platforms and cloud services has made these solutions more accessible and scalable, catering to the evolving needs of modern data-driven enterprises.




    Another significant factor fueling market growth is the rising emphasis on data governance and regulatory compliance across industries such as BFSI, healthcare, and government. Stringent regulations like GDPR, HIPAA, and CCPA mandate organizations to maintain accurate records of data usage, lineage, and modifications. Dataset versioning solutions play a pivotal role in helping organizations meet these compliance requirements by providing comprehensive audit trails, access controls, and data lineage tracking. This not only mitigates the risk of non-compliance penalties but also enhances organizational trust and credibility. Furthermore, the growing awareness about the strategic importance of data governance in driving business value and mitigating operational risks has prompted enterprises to invest in sophisticated dataset versioning tools, thereby propelling market expansion.




    The proliferation of cloud computing and the increasing adoption of hybrid and multi-cloud architectures are also contributing to the growth of the dataset versioning for analytics market. Cloud-based dataset versioning solutions offer unparalleled scalability, flexibility, and cost-efficiency, enabling organizations to manage and version datasets seamlessly across distributed environments. The shift towards cloud-native analytics and the integration of dataset versioning with cloud data lakes, warehouses, and analytics platforms have further accelerated market adoption. Additionally, advancements in automation, AI-driven data cataloging, and self-service analytics are enhancing the capabilities of dataset versioning tools, making them indispensable for organizations seeking to maximize the value of their data assets while minimizing operational complexities.




    From a regional perspective, North America continues to dominate the dataset versioning for analytics market, accounting for the largest revenue share in 2024. This leadership is attributed to the presence of major technology vendors, high adoption rates of advanced analytics, and a mature regulatory landscape. However, the Asia Pacific region is witnessing the fastest growth, driven by rapid digital transformation, increasing investments in AI and analytics, and the emergence of data-centric industries. Europe also holds a significant market share, supported by stringent data protection regulations and growing awareness about data governance. The Middle East & Africa and Latin America are gradually catching up, with increasing adoption of cloud-based analytics and regulatory initiatives promoting data management best practices.



    Component Analysis



    The dataset versioning for analytics market is segmented by component into software and services. The software segment holds the dominant share, driven by the widespread adoption of standalone and integrated dataset versioning platforms that cater to various data management and analytics requirements. These s

  13. w

    Global Real-Time Index Database Market Research Report: By End Use...

    • wiseguyreports.com
    Updated Sep 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Real-Time Index Database Market Research Report: By End Use (Financial Services, Healthcare, Telecommunications, Retail, Government), By Deployment Type (On-Premises, Cloud-Based, Hybrid), By Database Type (Relational Database, NoSQL Database, Time-Series Database), By Application (Data Analytics, Real-Time Monitoring, Predictive Analysis, Reporting) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/real-time-index-database-market
    Explore at:
    Dataset updated
    Sep 15, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Sep 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20242.29(USD Billion)
    MARKET SIZE 20252.49(USD Billion)
    MARKET SIZE 20355.8(USD Billion)
    SEGMENTS COVEREDEnd Use, Deployment Type, Database Type, Application, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSgrowing demand for real-time analytics, increasing data volume and variety, rising cloud adoption trends, need for enhanced decision-making, regulatory compliance and data governance
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDNasdaq, Fitch Ratings, Tickdata, Thomson Reuters, MSCI, St. Louis Federal Reserve, FTSE Russell, Bloomberg, Morningstar, IHS Markit, S&P Dow Jones Indices, FactSet, S&P Global, Refinitiv
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESCloud-based solutions integration, Enhanced data analytics capabilities, Adoption in fintech applications, Real-time data accessibility demands, Rising importance of accurate indexing.
    COMPOUND ANNUAL GROWTH RATE (CAGR) 8.8% (2025 - 2035)
  14. S1 Data -

    • plos.figshare.com
    xlsx
    Updated Jun 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiaowen Ma (2024). S1 Data - [Dataset]. http://doi.org/10.1371/journal.pone.0306291.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 28, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Xiaowen Ma
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To explore the application effect of the deep learning (DL) network model in the Internet of Things (IoT) database query and optimization. This study first analyzes the architecture of IoT database queries, then explores the DL network model, and finally optimizes the DL network model through optimization strategies. The advantages of the optimized model in this study are verified through experiments. Experimental results show that the optimized model has higher efficiency than other models in the model training and parameter optimization stages. Especially when the data volume is 2000, the model training time and parameter optimization time of the optimized model are remarkably lower than that of the traditional model. In terms of resource consumption, the Central Processing Unit and Graphics Processing Unit usage and memory usage of all models have increased as the data volume rises. However, the optimized model exhibits better performance on energy consumption. In throughput analysis, the optimized model can maintain high transaction numbers and data volumes per second when handling large data requests, especially at 4000 data volumes, and its peak time processing capacity exceeds that of other models. Regarding latency, although the latency of all models increases with data volume, the optimized model performs better in database query response time and data processing latency. The results of this study not only reveal the optimized model’s superior performance in processing IoT database queries and their optimization but also provide a valuable reference for IoT data processing and DL model optimization. These findings help to promote the application of DL technology in the IoT field, especially in the need to deal with large-scale data and require efficient processing scenarios, and offer a vital reference for the research and practice in related fields.

  15. G

    Data Lakehouse Storage for DC Analytics Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Data Lakehouse Storage for DC Analytics Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/data-lakehouse-storage-for-dc-analytics-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Oct 7, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Lakehouse Storage for DC Analytics Market Outlook



    According to our latest research, the global Data Lakehouse Storage for DC Analytics market size in 2024 stands at USD 4.12 billion, reflecting robust adoption across diverse industries. The market is projected to grow at a CAGR of 19.6% from 2025 to 2033, reaching an estimated USD 19.93 billion by 2033. This remarkable expansion is driven by the rising demand for unified analytics platforms, the exponential growth in data volumes, and the need for seamless integration of structured and unstructured data for real-time and advanced analytics.




    One of the primary growth factors for the Data Lakehouse Storage for DC Analytics market is the convergence of data lakes and data warehouses into a single, unified architecture. Organizations are increasingly seeking solutions that allow them to store vast amounts of raw data while simultaneously supporting advanced analytics and business intelligence workloads. This convergence addresses the limitations of traditional data warehouses, such as scalability and flexibility, while overcoming the lack of data management and governance in data lakes. As a result, businesses can now process, analyze, and visualize large datasets with greater efficiency, leading to more informed decision-making and improved operational agility.




    Another significant driver is the growing adoption of cloud-based solutions for data analytics. Enterprises are moving away from legacy on-premises systems in favor of cloud-native data lakehouse platforms, which offer scalability, cost-effectiveness, and simplified management. The proliferation of IoT devices, digital transformation initiatives, and the increasing importance of real-time analytics are generating unprecedented volumes of data that require robust storage and processing capabilities. Cloud-based data lakehouse solutions empower organizations to ingest, store, and analyze data from multiple sources, supporting use cases ranging from predictive analytics to machine learning and artificial intelligence.




    The increasing emphasis on data governance, security, and compliance is also fueling the growth of this market. As regulatory requirements such as GDPR, HIPAA, and CCPA become more stringent, organizations are prioritizing solutions that ensure data integrity, privacy, and traceability. Data lakehouse storage platforms for DC analytics are evolving to incorporate advanced security features, role-based access controls, and automated data lineage capabilities. This focus on governance not only helps organizations mitigate risks but also enhances the trustworthiness of data-driven insights, further accelerating the adoption of these solutions across sectors such as BFSI, healthcare, government, and retail.




    Regionally, North America continues to dominate the Data Lakehouse Storage for DC Analytics market due to the high adoption of digital technologies, a mature cloud ecosystem, and significant investments in big data analytics. However, Asia Pacific is emerging as a high-growth region, propelled by rapid digitalization, expanding enterprise IT infrastructure, and increasing focus on data-driven business strategies. Europe, Latin America, and the Middle East & Africa are also witnessing steady growth, supported by government initiatives, regulatory compliance, and the rising demand for innovative analytics solutions. The global landscape is marked by diverse adoption trends, with each region contributing uniquely to the overall market momentum.





    Component Analysis



    The Component segment of the Data Lakehouse Storage for DC Analytics market is divided into Software, Hardware, and Services. Software forms the backbone of the market, accounting for the largest share due to the critical role of advanced analytics, data integration, and business intelligence tools in enabling seamless data processing and analysis. The demand for sophisticated software solutions is driven by the need for real-time analytics, AI-powered insights, an

  16. m

    Power Tools Research Data

    • mmrstatistics.com
    Updated Sep 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MMR Statistics (2025). Power Tools Research Data [Dataset]. https://www.mmrstatistics.com/topics/016/power-tools
    Explore at:
    Dataset updated
    Sep 29, 2025
    Dataset authored and provided by
    MMR Statistics
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Growth Rate, Market Size, Power Tools, Market Trends, Industry Analysis
    Measurement technique
    Market Research and Data Analysis
    Description

    Research dataset and analysis for Power Tools including statistics, forecasts, and market insights

  17. Big Data Services Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Big Data Services Market Analysis, Size, and Forecast 2025-2029: North America (Mexico), Europe (France, Germany, Italy, and UK), Middle East and Africa (UAE), APAC (Australia, China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-services-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 12, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Big Data Services Market Size 2025-2029

    The big data services market size is forecast to increase by USD 604.2 billion, at a CAGR of 54.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of big data in various industries, particularly in blockchain technology. The ability to process and analyze vast amounts of data in real-time is revolutionizing business operations and decision-making processes. However, this market is not without challenges. One of the most pressing issues is the need to cater to diverse client requirements, each with unique data needs and expectations. This necessitates customized solutions and a deep understanding of various industries and their data requirements. Additionally, ensuring data security and privacy in an increasingly interconnected world poses a significant challenge. Companies must navigate these obstacles while maintaining compliance with regulations and adhering to ethical data handling practices. To capitalize on the opportunities presented by the market, organizations must focus on developing innovative solutions that address these challenges while delivering value to their clients. By staying abreast of industry trends and investing in advanced technologies, they can effectively meet client demands and differentiate themselves in a competitive landscape.

    What will be the Size of the Big Data Services Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the ever-increasing volume, velocity, and variety of data being generated across various sectors. Data extraction is a crucial component of this dynamic landscape, enabling entities to derive valuable insights from their data. Human resource management, for instance, benefits from data-driven decision making, operational efficiency, and data enrichment. Batch processing and data integration are essential for data warehousing and data pipeline management. Data governance and data federation ensure data accessibility, quality, and security. Data lineage and data monetization facilitate data sharing and collaboration, while data discovery and data mining uncover hidden patterns and trends. Real-time analytics and risk management provide operational agility and help mitigate potential threats. Machine learning and deep learning algorithms enable predictive analytics, enhancing business intelligence and customer insights. Data visualization and data transformation facilitate data usability and data loading into NoSQL databases. Government analytics, financial services analytics, supply chain optimization, and manufacturing analytics are just a few applications of big data services. Cloud computing and data streaming further expand the market's reach and capabilities. Data literacy and data collaboration are essential for effective data usage and collaboration. Data security and data cleansing are ongoing concerns, with the market continuously evolving to address these challenges. The integration of natural language processing, computer vision, and fraud detection further enhances the value proposition of big data services. The market's continuous dynamism underscores the importance of data cataloging, metadata management, and data modeling for effective data management and optimization.

    How is this Big Data Services Industry segmented?

    The big data services industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ComponentSolutionServicesEnd-userBFSITelecomRetailOthersTypeData storage and managementData analytics and visualizationConsulting servicesImplementation and integration servicesSupport and maintenance servicesSectorLarge enterprisesSmall and medium enterprises (SMEs)GeographyNorth AmericaUSMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW).

    By Component Insights

    The solution segment is estimated to witness significant growth during the forecast period.Big data services have become indispensable for businesses seeking operational efficiency and customer insight. The vast expanse of structured and unstructured data presents an opportunity for organizations to analyze consumer behaviors across multiple channels. Big data solutions facilitate the integration and processing of data from various sources, enabling businesses to gain a deeper understanding of customer sentiment towards their products or services. Data governance ensures data quality and security, while data federation and data lineage provide transparency and traceability. Artificial intelligence and machine learning algo

  18. Global Data Quality Tools Market Size By Deployment Mode (On-Premises,...

    • verifiedmarketresearch.com
    Updated Oct 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2025). Global Data Quality Tools Market Size By Deployment Mode (On-Premises, Cloud-Based), By Organization Size (Small and Medium sized Enterprises (SMEs), Large Enterprises), By End User Industry (Banking, Financial Services, and Insurance (BFSI)), By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/global-data-quality-tools-market-size-and-forecast/
    Explore at:
    Dataset updated
    Oct 13, 2025
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Data Quality Tools Market size was valued at USD 2.71 Billion in 2024 and is projected to reach USD 4.15 Billion by 2032, growing at a CAGR of 5.46% from 2026 to 2032.Global Data Quality Tools Market DriversGrowing Data Volume and Complexity: Sturdy data quality technologies are necessary to guarantee accurate, consistent, and trustworthy information because of the exponential increase in the volume and complexity of data supplied by companies.Growing Knowledge of Data Governance: Businesses are realizing how critical it is to uphold strict standards for data integrity and data governance. Tools for improving data quality are essential for advancing data governance programs.Needs for Regulatory Compliance: Adoption of data quality technologies is prompted by strict regulatory requirements, like GDPR, HIPAA, and other data protection rules, which aim to ensure compliance and reduce the risk of negative legal and financial outcomes.Growing Emphasis on Analytics and Business Intelligence (BI): The requirement for accurate and trustworthy data is highlighted by the increasing reliance on corporate intelligence and analytics for well-informed decision-making. Tools for improving data quality contribute to increased data accuracy for analytics and reporting.Initiatives for Data Integration and Migration: Companies engaged in data integration or migration initiatives understand how critical it is to preserve data quality throughout these procedures. The use of data quality technologies is essential for guaranteeing seamless transitions and avoiding inconsistent data.Real-time data quality management is in demand: Organizations looking to make prompt decisions based on precise and current information are driving an increased need for real-time data quality management systems.The emergence of cloud computing and big data: Strong data quality tools are required to manage many data sources, formats, and environments while upholding high data quality standards as big data and cloud computing solutions become more widely used.Pay attention to customer satisfaction and experience: Businesses are aware of how data quality affects customer happiness and experience. Establishing and maintaining consistent and accurate customer data is essential to fostering trust and providing individualized services.Preventing Fraud and Data-Related Errors: By detecting and fixing mistakes in real time, data quality technologies assist firms in preventing errors, discrepancies, and fraudulent activities while lowering the risk of monetary losses and reputational harm.Linking Master Data Management (MDM) Programs: Integrating with MDM solutions improves master data management overall and guarantees high-quality, accurate, and consistent maintenance of vital corporate information.Offerings for Data Quality as a Service (DQaaS): Data quality tools are now more widely available and scalable for companies of all sizes thanks to the development of Data Quality as a Service (DQaaS), which offers cloud-based solutions to firms.

  19. d

    Ministry of Land, Infrastructure and Transport_Stop-by-Route Trip Volume

    • data.go.kr
    json+xml
    Updated Sep 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Ministry of Land, Infrastructure and Transport_Stop-by-Route Trip Volume [Dataset]. https://www.data.go.kr/en/data/15142065/openapi.do
    Explore at:
    json+xmlAvailable download formats
    Dataset updated
    Sep 2, 2025
    License

    https://data.go.kr/ugs/selectPortalPolicyView.dohttps://data.go.kr/ugs/selectPortalPolicyView.do

    Description

    Daily bus stop-by-stop route usage data is data that records the number of passengers on each bus route that passes through a specific bus stop on a daily basis, and is essential for analyzing public transportation service quality and improving operation. This data can be used to identify passenger flow and congestion at each stop, and to establish policies such as adjusting dispatch intervals, optimizing routes, and improving station facilities according to demand by time period. In particular, dispatch can be strengthened during peak demand times (morning and afternoon peak hours), and public transportation resources can be used efficiently during off-peak hours.

  20. f

    Data from: METHODOLOGY FOR GREEN AND BUILT VOLUME ANALYSIS

    • datasetcatalog.nlm.nih.gov
    • scielo.figshare.com
    • +1more
    Updated Oct 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FONSECA, Bráulio Magalhães; CASAGRANDE, Pedro Benedito; ROCHA, Nicole Andrade; MOURA, Ana Clara Mourão; de SENA, Italo Sousa (2018). METHODOLOGY FOR GREEN AND BUILT VOLUME ANALYSIS [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000629003
    Explore at:
    Dataset updated
    Oct 17, 2018
    Authors
    FONSECA, Bráulio Magalhães; CASAGRANDE, Pedro Benedito; ROCHA, Nicole Andrade; MOURA, Ana Clara Mourão; de SENA, Italo Sousa
    Description

    ABSTRACT Today, in some Brazilian cities, there is the possibility of using high-resolution data and automated classification based on spectral bands. Thus, this article aims to evaluate the association of the NDVI(normalized difference vegetation index) to the use of LiDAR, in order to analyze urban vegetation cover and the changes of the local landscapes. It was observed that the association of the high spatial resolution of an aerophotogrammetric image to the spectral response in the near infrared range allowed the vegetation to be identified. This enabled the documentation, visualization and analysis of a location’s phenomenon, facilitating the investigation of spatial relationships through representation by maps, charts, especially for simulating possible spatial scenarios and thus permitting the evaluation of interventions and predictions to be made, assisting projects or proposed laws and urban parameters.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Data generation volume worldwide 2010-2029 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
Organization logo

Data generation volume worldwide 2010-2029

Explore at:
Dataset updated
Nov 19, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly. While it was estimated at ***** zettabytes in 2025, the forecast for 2029 stands at ***** zettabytes. Thus, global data generation will triple between 2025 and 2029. Data creation has been expanding continuously over the past decade. In 2020, the growth was higher than previously expected, caused by the increased demand due to the coronavirus (COVID-19) pandemic, as more people worked and learned from home and used home entertainment options more often.

Search
Clear search
Close search
Google apps
Main menu