Facebook
TwitterThis is the sample database from sqlservertutorial.net. This is a great dataset for learning SQL and practicing querying relational databases.
Database Diagram:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4146319%2Fc5838eb006bab3938ad94de02f58c6c1%2FSQL-Server-Sample-Database.png?generation=1692609884383007&alt=media" alt="">
The sample database is copyrighted and cannot be used for commercial purposes. For example, it cannot be used for the following but is not limited to the purposes: - Selling - Including in paid courses
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Publicly accessible databases often impose query limits or require registration. Even when I maintain public and limit-free APIs, I never wanted to host a public database because I tend to think that the connection strings are a problem for the user.
I’ve decided to host different light/medium size by using PostgreSQL, MySQL and SQL Server backends (in strict descending order of preference!).
Why 3 database backends? I think there are a ton of small edge cases when moving between DB back ends and so testing lots with live databases is quite valuable. With this resource you can benchmark speed, compression, and DDL types.
Please send me a tweet if you need the connection strings for your lectures or workshops. My Twitter username is @pachamaltese. See the SQL dumps on each section to have the data locally.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset was created by Mandeeph
Released under Database: Open Database, Contents: Database Contents
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by Andrew Dolcimascolo-Garrett
Released under MIT
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a beginner-friendly SQLite database designed to help users practice SQL and relational database concepts. The dataset represents a basic business model inspired by NVIDIA and includes interconnected tables covering essential aspects like products, customers, sales, suppliers, employees, and projects. It's perfect for anyone new to SQL or data analytics who wants to learn and experiment with structured data.
Includes details of 15 products (e.g., GPUs, AI accelerators). Attributes: product_id, product_name, category, release_date, price.
Lists 20 fictional customers with their industry and contact information. Attributes: customer_id, customer_name, industry, contact_email, contact_phone.
Contains 100 sales records tied to products and customers. Attributes: sale_id, product_id, customer_id, sale_date, region, quantity_sold, revenue.
Features 50 suppliers and the materials they provide. Attributes: supplier_id, supplier_name, material_supplied, contact_email.
Tracks materials supplied to produce products, proportional to sales. Attributes: supply_chain_id, supplier_id, product_id, supply_date, quantity_supplied.
Lists 5 departments within the business. Attributes: department_id, department_name, location.
Contains data on 30 employees and their roles in different departments. Attributes: employee_id, first_name, last_name, department_id, hire_date, salary.
Describes 10 projects handled by different departments. Attributes: project_id, project_name, department_id, start_date, end_date, budget.
Number of Tables: 8 Total Rows: Around 230 across all tables, ensuring quick queries and easy exploration.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This data contains Create database, Use, create table (int, varchar, date), describe, alter table (add, modify, char, varchar, after, rename column, to, drop column, drop), show tables, Rename table (to), Drop table.
Facebook
Twitterhttps://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
Para este dataset se cuenta con 5 tablas. Los productos son 20 en total, cada uno tiene un stock máximo que se elige de forma aleatoria entre 50 y 120 unidades, un precio inicial que se elije entre 1500 y 3000 y un promedio de compras de .2 a .7.
El precio de los productos puede variar con 10% de incremento, decremento o 0% con la misma probabilidad.
Cada día la tienda puede hacer entre 3 y 8 facturas, y por cada factura un cliente puede comprar entre 1 y 5 productos, y por producto una cantidad que sigue a distribución binomial
Limites de las fechas: 2015/01/01 - 2024/12/31
Tenga en cuenta que los datos se generaron con estas simples reglas, por lo cual es normal encontrar datos que se comporten de forma extraña, este dataset está pensado para practicar.
| COLUMNA | DESCRIPCIÓN |
|---|---|
| id | Identificador unico |
| Nombre | |
| Description |
| COLUMNA | DESCRIPCIÓN |
|---|---|
| id | Identificador unico del precio |
| Producto_id | Id del producto al que hace referencia |
| Fecha | Fecha de registro del precio 1 de cada mes |
| Precio | Precio al inicio del mes |
| COLUMNA | DESCRIPCIÓN |
|---|---|
| id | |
| Product_id | |
| Cantidad | Cantidad en inventario |
| Fecha | Fecha de registro de la cantidad en inventario |
| COLUMNA | DESCRIPCIÓN |
|---|---|
| id | |
| Comentario | |
| CC_comprador_hash | Hash de la cedula del cliente no es obligatoria |
| Fecha |
| COLUMNA | DESCRIPCIÓN |
|---|---|
| id | |
| Factura_id | |
| Producto_id | |
| Cantidad | Cantidad comprada del producto relacionado |
Facebook
TwitterAs of June 2024, the most popular database management system (DBMS) worldwide was Oracle, with a ranking score of *******; MySQL and Microsoft SQL server rounded out the top three. Although the database management industry contains some of the largest companies in the tech industry, such as Microsoft, Oracle and IBM, a number of free and open-source DBMSs such as PostgreSQL and MariaDB remain competitive. Database Management Systems As the name implies, DBMSs provide a platform through which developers can organize, update, and control large databases. Given the business world’s growing focus on big data and data analytics, knowledge of SQL programming languages has become an important asset for software developers around the world, and database management skills are seen as highly desirable. In addition to providing developers with the tools needed to operate databases, DBMS are also integral to the way that consumers access information through applications, which further illustrates the importance of the software.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SQL program. Program written in SQL performing the six queries on the MySQL database. (SQL 15.3 kb)
Facebook
TwitterAttribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
This dataset has been uploaded to Kaggle on the occasion of solving questions of the 365 Data Science • Practice Exams: SQL curriculum, a set of free resources designed to help test and elevate data science skills. The dataset consists of a synthetic, relational collection of data structured to simulate common employee and organizational data scenarios, ideal for practicing SQL queries and data analysis skills in a People Analytics context.
The dataset contains the following tables:
departments.csv: List of all company departments.
dept_emp.csv: Historical and current assignments of employees to departments.
dept_manager.csv: Historical and current assignments of employees as department managers.
employees.csv: Core employee demographic information.
employees.db: A SQLite database containing all the relational tables from the CSV files.
salaries.csv: Historical salary records for employees.
titles.csv: Historical job titles held by employees.
The dataset is ideal for practicing SQL queries and data analysis skills in a People Analytics context. It serves applications on both general Data Analytics, and also Time Series Analysis.
A practical application is presented on the 🎓 365DS Practice Exams • SQL notebook, which covers in detail answers to the questions of SQL Practice Exams 1, 2, and 3 on the 365DS platform, especially ilustrating the usage and the value of SQL procedures and functions.
This dataset has a rich lineage, originating from academic research and evolving through various formats to its current relational structure:
The foundational dataset was authored by Prof. Dr. Fusheng Wang 🔗 (then a PhD student at the University of California, Los Angeles - UCLA) and his advisor, Prof. Dr. Carlo Zaniolo 🔗 (UCLA). This work is primarily described in their paper:
It was originally distributed as an .xml file. Giuseppe Maxia (known as @datacharmer on GitHub🔗 and LinkedIn🔗, as well as here on Kaggle) converted it into its relational form and subsequently distributed it as a .sql file, making it accessible for relational database use.
This .sql version was then loaded to Kaggle as the « Employees Dataset » by Mirza Huzaifa🔗 on February 5th, 2023.
Facebook
TwitterThe State Contract and Procurement Registration System (SCPRS) was established in 2003, as a centralized database of information on State contracts and purchases over $5000. eSCPRS represents the data captured in the State's eProcurement (eP) system, Bidsync, as of March 16, 2009. The data provided is an extract from that system for fiscal years 2012-2013, 2013-2014, and 2014-2015
Data Limitations:
Some purchase orders have multiple UNSPSC numbers, however only first was used to identify the purchase order. Multiple UNSPSC numbers were included to provide additional data for a DGS special event however this affects the formatting of the file. The source system Bidsync is being deprecated and these issues will be resolved in the future as state systems transition to Fi$cal.
Data Collection Methodology:
The data collection process starts with a data file from eSCPRS that is scrubbed and standardized prior to being uploaded into a SQL Server database. There are four primary tables. The Supplier, Department and United Nations Standard Products and Services Code (UNSPSC) tables are reference tables. The Supplier and Department tables are updated and mapped to the appropriate numbering schema and naming conventions. The UNSPSC table is used to categorize line item information and requires no further manipulation. The Purchase Order table contains raw data that requires conversion to the correct data format and mapping to the corresponding data fields. A stacking method is applied to the table to eliminate blanks where needed. Extraneous characters are removed from fields. The four tables are joined together and queries are executed to update the final Purchase Order Dataset table. Once the scrubbing and standardization process is complete the data is then uploaded into the SQL Server database.
Secondary/Related Resources:
Facebook
TwitterIn order to practice writing SQL queries in a semi-realistic database, I discovered and imported Microsoft's AdventureWorks sample database into Microsoft SQL Server Express. The Adventure Works [fictious] company represents a bicycle manufacturer that sells bicycles and accessories to global markets. Queries were written for developing and testing a Tableau dashboard.
The dataset presented here represents a fraction of the entire manufacturing relational database. Tables within the dataset include product, purchasing, work order, and transaction data.
The full database sample can be found on Microsoft SQL Docs website: https://learn.microsoft.com/en-us/sql/samples/ and additionally on Github: https://github.com/microsoft/sql-server-samples
Facebook
TwitterThis dataset contains the complete MySQL Employees Database, a widely used sample dataset for learning SQL, data analysis, business intelligence, and database design. It includes employee information, salaries, job titles, departments, managers, and department history, making it ideal for real-world analytical practice.
The dataset is structured into multiple tables that represent a real corporate environment with employee records spanning several decades. Users can practice SQL joins, window functions, aggregation, CTEs, subqueries, business KPIs, HR analytics, trend analysis, and more.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Available functions in rEHR.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Example code list definition in csv format.
Facebook
TwitterRSVP Movies is an Indian film production company which has produced many super-hit movies. They have usually released movies for the Indian audience but for their next project, they are planning to release a movie for the global audience in 2022.
The production company wants to plan their every move analytically based on data. We have taken the last three years IMDB movies data and carried out the analysis using SQL. We have analysed the data set and drew meaningful insights that could help them start their new project.
For our convenience, the entire analytics process has been divided into four segments, where each segment leads to significant insights from different combinations of tables. The questions in each segment with business objectives are written in the script given below. We have written the solution code below every question.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Clinical Practice Research Datalink (CPRD) is a large and widely used resource of electronic health records from the UK, linking primary care data to hospital data, death registration data, cancer registry data, deprivation data and mental health services data. Extraction and management of CPRD data is a computationally demanding process and requires a significant amount of work, in particular when using R. The rcprd package simplifies the process of extracting and processing CPRD data in order to build datasets ready for statistical analysis. Raw CPRD data is provided in thousands of.txt files, making querying this data cumbersome and inefficient. rcprd saves the relevant information into an SQLite database stored on the hard drive which can then be queried efficiently to extract required information about individuals. rcprd follows a four-stage process: 1) Definition of a cohort, 2) Read in medical/prescription data and save into an SQLite database, 3) Query this SQLite database for specific codes and tests to create variables for each individual in the cohort, 4) Combine extracted variables into a dataset ready for statistical analysis. Functions are available to extract common variable types (e.g., history of a condition, or time until an event occurs, relative to an index date), and more general functions for database queries, allowing users to define their own variables for extraction. The entire process can be done from within R, with no knowledge of SQL required. This manuscript showcases the functionality of rcprd by running through an example using simulated CPRD Aurum data. rcprd will reduce the duplication of time and effort among those using CPRD data for research, allowing more time to be focused on other aspects of research projects.
Facebook
TwitterThis dataset is a practical SQL case study designed for learners who are looking to enhance their SQL skills in analyzing sales, products, and marketing data. It contains several SQL queries related to a simulated business database for product sales, marketing expenses, and location data. The database consists of three main tables: Fact, Product, and Location.
Objective of the Case Study: The purpose of this case study is to provide learners with a variety of practical SQL exercises that involve real-world business problems. The queries explore topics such as:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The ATO (Australian Tax Office) made a dataset openly available (see links) showing all the Australian Salary and Wages (2002, 2006, 2010, 2014) by detailed occupation (around 1,000) and over 100 SA4 regions. Sole Trader sales and earnings are also provided. This open data (csv) is now packaged into a database (*.sql) with 45 sample SQL queries (backupSQL[date]_public.txt).See more description at related Figshare #datavis record. Versions:V5: Following #datascience course, I have made main data (individual salary and wages) available as csv and Jupyter Notebook. Checksum matches #dataTotals. In 209,xxx rows.Also provided Jobs, and SA4(Locations) description files as csv. More details at: Where are jobs growing/shrinking? Figshare DOI: 4056282 (linked below). Noted 1% discrepancy ($6B) in 2010 wages total - to follow up.#dataTotals - Salary and WagesYearWorkers (M)Earnings ($B) 20028.528520069.4372201010.2481201410.3584#dataTotal - Sole TradersYearWorkers (M)Sales ($B)Earnings ($B)20020.9611320061.0881920101.11122620141.19630#links See ATO request for data at ideascale link below.See original csv open data set (CC-BY) at data.gov.au link below.This database was used to create maps of change in regional employment - see Figshare link below (m9.figshare.4056282).#packageThis file package contains a database (analysing the open data) in SQL package and sample SQL text, interrogating the DB. DB name: test. There are 20 queries relating to Salary and Wages.#analysisThe database was analysed and outputs provided on Nectar(.org.au) resources at: http://118.138.240.130.(offline)This is only resourced for max 1 year, from July 2016, so will expire in June 2017. Hence the filing here. The sample home page is provided here (and pdf), but not all the supporting files, which may be packaged and added later. Until then all files are available at the Nectar URL. Nectar URL now offline - server files attached as package (html_backup[date].zip), including php scripts, html, csv, jpegs.#installIMPORT: DB SQL dump e.g. test_2016-12-20.sql (14.8Mb)1.Started MAMP on OSX.1.1 Go to PhpMyAdmin2. New Database: 3. Import: Choose file: test_2016-12-20.sql -> Go (about 15-20 seconds on MacBookPro 16Gb, 2.3 Ghz i5)4. four tables appeared: jobTitles 3,208 rows | salaryWages 209,697 rows | soleTrader 97,209 rows | stateNames 9 rowsplus views e.g. deltahair, Industrycodes, states5. Run test query under **#; Sum of Salary by SA4 e.g. 101 $4.7B, 102 $6.9B#sampleSQLselect sa4,(select sum(count) from salaryWageswhere year = '2014' and sa4 = sw.sa4) as thisYr14,(select sum(count) from salaryWageswhere year = '2010' and sa4 = sw.sa4) as thisYr10,(select sum(count) from salaryWageswhere year = '2006' and sa4 = sw.sa4) as thisYr06,(select sum(count) from salaryWageswhere year = '2002' and sa4 = sw.sa4) as thisYr02from salaryWages swgroup by sa4order by sa4
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by Sreelakshmi Sivan
Released under MIT
Facebook
TwitterThis is the sample database from sqlservertutorial.net. This is a great dataset for learning SQL and practicing querying relational databases.
Database Diagram:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4146319%2Fc5838eb006bab3938ad94de02f58c6c1%2FSQL-Server-Sample-Database.png?generation=1692609884383007&alt=media" alt="">
The sample database is copyrighted and cannot be used for commercial purposes. For example, it cannot be used for the following but is not limited to the purposes: - Selling - Including in paid courses