Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Welcome to the Google Places Comprehensive Business Dataset! This dataset has been meticulously scraped from Google Maps and presents extensive information about businesses across several countries. Each entry in the dataset provides detailed insights into business operations, location specifics, customer interactions, and much more, making it an invaluable resource for data analysts and scientists looking to explore business trends, geographic data analysis, or consumer behaviour patterns.
This dataset is ideal for a variety of analytical projects, including: - Market Analysis: Understand business distribution and popularity across different regions. - Customer Sentiment Analysis: Explore relationships between customer ratings and business characteristics. - Temporal Trend Analysis: Analyze patterns of business activity throughout the week. - Geospatial Analysis: Integrate with mapping software to visualise business distribution or cluster businesses based on location.
The dataset contains 46 columns, providing a thorough profile for each listed business. Key columns include:
business_id: A unique Google Places identifier for each business, ensuring distinct entries.phone_number: The contact number associated with the business. It provides a direct means of communication.name: The official name of the business as listed on Google Maps.full_address: The complete postal address of the business, including locality and geographic details.latitude: The geographic latitude coordinate of the business location, useful for mapping and spatial analysis.longitude: The geographic longitude coordinate of the business location.review_count: The total number of reviews the business has received on Google Maps.rating: The average user rating out of 5 for the business, reflecting customer satisfaction.timezone: The world timezone the business is located in, important for temporal analysis.website: The official website URL of the business, providing further information and contact options.category: The category or type of service the business provides, such as restaurant, museum, etc.claim_status: Indicates whether the business listing has been claimed by the owner on Google Maps.plus_code: A sho...
Facebook
TwitterThe National Geologic Map Database (NGMDB) is a Congressionally mandated national archive of geoscience maps, reports, and stratigraphic information. The Geologic Mapping Act of 1992 and its Reauthorizations calls for the U.S. Geological Survey and the Association of American State Geologists (AASG) to cooperatively build this national archive, according to technical and scientific standards whose development is coordinated by the NGMDB. The NGMDB consists of a comprehensive set of publication citations, stratigraphic nomenclature, downloadable content in raster and vector formats, unpublished source information, and guidance on standards development. The NGMDB contains information on more than 110,000 maps and related geoscience reports published from the early 1800s to the present day, by more than 630 agencies, universities, associations, and private companies.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. To produce the digital map, we used a combination of 2001 1:12,000-scale true color aerial photography, 2001 1:40,000-scale true color ortho-rectified imagery reproduced at 1:12,000-scale, and 3 years of ground-truthing to interpret the complex patterns of vegetation and landuse at ROMO. In the end, 46 map units were developed and directly cross-walked or matched to corresponding plant associations and land-use classes. All of the interpreted and remotely sensed data were converted to Geographic Information System (GIS) databases using ArcInfo© software. Draft maps created from the vegetation classification were field-tested and revised before independent ecologists conducted an assessment of the map’s accuracy during 2004.
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
Distributed archive of standardized geoscience information.
Facebook
TwitterThis digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (mageo.txt, mageo.pdf, or mageo.ps), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This geospatial database maps the distribution of landforms along the Umatilla River in northeastern Oregon and covers a corridor 127 kilometers long from the confluence of the Umatilla River with the Columbia River upstream to Meacham Creek. The database encompasses the valley bottom and extends about 1 kilometer up the adjoining hillslopes. Map data are intended to support water quality and fisheries enhancement efforts pursuant to the First Foods, a resource-management approach that focuses on traditionally gathered foods including water, fish, big game, roots, and berries and calls attention to the reciprocity between people and the foods upon which humans depend. The Umatilla River drains about 6,300 square kilometers on the northwest slope of the Blue Mountains in northeast Oregon. Most of the drainage basin is underlain by Miocene basalt flows of the Columbia River Basalt Group. Younger, weakly lithified, late Miocene and early Pliocene gravel deposits of local origin (for ...
Facebook
TwitterThis digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (pamf.ps, pamf.pdf, pamf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The MAPS dataset is one of the most used benchmark dataset for automatic music transcription. We propose here an updated version of the ground truth MIDI files, containing, on top of the original pitch, onset and offsets, additional annotations.
The annotations include:
Tempo curve
Time signature
Durations of notes in fraction of a quarter note (some of them are approximate)
Key signature (always written as the major relative)
Sustain pedal activation
Separate left and right hand staff
Text annotations from the score (tempo indications, coda...).
If you use these annotations in a published research project, please cite:
Adrien Ycart and Emmanouil Benetos. “A-MAPS: Augmented MAPS Dataset with Rhythm and Key Annotations” 19th International Society for Music Information Retrieval Conference Late Breaking and Demo Papers, September 2018, Paris, France.
More information is available at: http://c4dm.eecs.qmul.ac.uk/ycart/a-maps.html
Facebook
TwitterA sub-set of the Gaia Data Release 3 data centered on the Sun for use in mapping the local Galaxy. The data includes three columns for each star: parallax, heliocentric longitude, and heliocentric latitude. Data can be converted to Galactocentric Rectangular Coordinate (X, Y, Z) or Galactocentric Cylindrical Coordinate (R, Phi, Z). PLEASE NOTE: There are many incorrectly measured parallaxes -- all negative parallaxes must be removed.
SELECT gaia_source.parallax, gaia_source.l, gaia_source.b
FROM gaiadr3.gaia_source
WHERE
gaia_source.random_index < 5000000 AND
gaia_source.phot_g_mean_mag BETWEEN 14 AND 18 AND
gaia_source.bp_rp BETWEEN 0.5 AND 2.5 AND
(1.0 / gaia_source.parallax) * COS(RADIANS(gaia_source.b)) < 0.250
Note the final condition in the query limits the selection of stars to those within 250 parsecs (in-plane distance) of the Sun. In other words, we are examining the stars in a cylinder of radius 250 parsecs centered on the Sun, punching perpendicularly through the Milky Way disk.
The Gaia Data is under the following license: Open Source With Attribution to ESA/Gaia/DPAC, reproduced here:
"The Gaia data are open and free to use, provided credit is given to 'ESA/Gaia/DPAC'. In general, access to, and use of, ESA's Gaia Archive (hereafter called 'the website') constitutes acceptance of the following general terms and conditions. Neither ESA nor any other party involved in creating, producing, or delivering the website shall be liable for any direct, incidental, consequential, indirect, or punitive damages arising out of user access to, or use of, the website. The website does not guarantee the accuracy of information provided by external sources and accepts no responsibility or liability for any consequences arising from the use of such data."
All of my course materials are free to use with attribution as well.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Understanding job titles, career trajectories, and promotions provides valuable insight into labor market dynamics and professional mobility. We present Career Map (CMap), a novel dataset spanning 24 industry sectors, systematically structured to study job specialization, sector concentration, and career advancements. Using advanced natural language processing techniques and large language models, we standardize 6.2 million job titles into 109 thousand unique titles and introduce a Specialization Index to quantify how specialized a title is within its sector. The dataset includes both a structured job titles dataset and a set of identified promotions—30 thousand validated promotions from the United States and the United Kingdom, and 72 thousand inferred promotions from a global context. It enables research on job hierarchies, workforce mobility and systemic inequalities in professional advancement. By providing insights into career progression patterns, labor market structures, and the impact of education and experience, this dataset serves as a valuable resource for economists, sociologists, and computational researchers studying employment trends across industries and regions.This repository contains the code necessary to recreate Figure 4 and Table 4 from the original manuscript.
Facebook
TwitterThe geographic data are built from the Technical Information Management System (TIMS). TIMS consists of two separate databases: an attribute database and a spatial database. The attribute information for offshore activities is stored in the TIMS database. The spatial database is a combination of the ARC/INFO and FINDER databases and contains all the coordinates and topology information for geographic features. The attribute and spatial databases are interconnected through the use of common data elements in both databases, thereby creating the spatial datasets. The data in the mapping files are made up of straight-line segments. If an arc existed in the original data, it has been replaced with a series of straight lines that approximate the arc. The Gulf of America OCS Region stores all its mapping data in longitude and latitude format. All coordinates are in NAD 27. Data can be obtained in three types of digital formats: INTERACTIVE MAP: The ArcGIS web maps are an interactive display of geographic information, containing a basemap, a set of data layers (many of which include interactive pop-up windows with information about the data), an extent, navigation tools to pan and zoom, and additional tools for geospatial analysis. SHP: A Shapefile is a digital vector (non-topological) storage format for storing geometric location and associated attribute information. Shapefiles can support point, line, and area features with attributes held in a dBASE format file. GEODATABASE: An ArcGIS geodatabase is a collection of geographic datasets of various types held in a common file system folder, a Microsoft Access database, or a multiuser relational DBMS (such as Oracle, Microsoft SQL Server, PostgreSQL, Informix, or IBM DB2). The geodatabase is the native data structure for ArcGIS and is the primary data format used for editing and data management.
Facebook
TwitterThe California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
For the latest Land Use Legend, 2022-DWR-Standard-Land-Use-Legend-Remote-Sensing-Version.pdf, please see the Data and Resources section below.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
Facebook
TwitterThis digital publication contains the database, base maps, and style files used to build the geologic map of the upper Santa Cruz River basin in southern Arizona published in U.S. Geological Survey Scientific Investigations Map 3490 (Page and others, 2023). Shapefiles are also included for the user’s convenience. In the database, there are polygon features outlining the map units and data sources; line features delineating contacts, faults, and other geologic lines such as dikes, anticlines, and synclines; point features marking where there are age or structural data; and nonspatial tables in which the description of map units, data sources, and glossary information can be found. The database follows the geologic map schema(GeMS) standard format for the digital publication of geologic maps published in U.S. Geological Survey Techniques and Methods 11–B10. The user is directed to the metadata for detailed information on each database component.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset contains geospatial data, code, and documentation relevant to the Maryland Food System Map, a web mapping application maintained by the Johns Hopkins Center for a Livable Future between 2012 and 2023. Approximately 500 geospatial data layers that were featured on the application have been preserved here for use in future analyses of the food system in Maryland. The code behind the application has also been preserved in this dataset and can be used to better understand how the application worked and to develop similar applications in the future. The documentation provides more information about the Maryland Food System Map, including both the history of the application and how it was used. There is also metadata about when and where the data for data layers were obtained.
Facebook
TwitterThe dataset contains metadata records for 50,600 maps from the Sanborn Fire Insurance Maps collection and their corresponding 440,048 JPEG images. The Sanborn collection at Library of Congress includes over fifty thousand editions of fire insurance maps comprising almost seven hundred thousand individual sheets. The Library of Congress holdings represent the largest extant collection of maps produced by the Sanborn Map Company.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Extracting useful and accurate information from scanned geologic and other earth science maps is a time-consuming and laborious process involving manual human effort. To address this limitation, the USGS partnered with the Defense Advanced Research Projects Agency (DARPA) to run the AI for Critical Mineral Assessment Competition, soliciting innovative solutions for automatically georeferencing and extracting features from maps. The competition opened for registration in August 2022 and concluded in December 2022. Training, validation, and evaluation data from the map feature extraction challenge are provided here, as well as competition details and a baseline solution. The data were derived from published sources and are provided to the public to support continued development of automated georeferencing and feature extraction tools. References for all maps are included with the data.
Facebook
TwitterThe Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points).
All of the Digital City Map (DCM) datasets are featured on the Streets App
All previously released versions of this data are available at BYTES of the BIG APPLE- Archive
Updates for this dataset, along with other multilayered maps on NYC Open Data, are temporarily paused while they are moved to a new mapping format. Please visit https://www.nyc.gov/site/planning/data-maps/open-data/dwn-digital-city-map.page to utilize this data in the meantime.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Multi-Agency Ground Plot (MAGPlot) database (DB) is a pan-Canadian forest ground-plot data repository. The database synthesize forest ground plot data from various agencies, including the National Forest Inventory (NFI) and 12 Canadian jurisdictions: Alberta (AB), British Columbia (BC), Manitoba (MB), New Brunswick (NB), Newfoundland and Labrador (NL), Nova Scotia (NS), Northwest Territories (NT), Ontario (ON), Prince Edward Island (PE), Quebec (QC), Saskatchewan (SK), and Yukon Territory (YT), contributed in their original format. These datasets underwent data cleaning and quality assessment using the set of rules and standards set by the contributors and associated documentations, and were standardized, harmonized, and integrated into a single, centralized, and analysis-ready database. The primary objective of the MAGPlot project is to collate and harmonize forest ground plot data and to present the data in a findable, accessible, interoperable, and reusable (FAIR) format for pan-Canadian forest research. The current version includes both historical and contemporary forest ground plot data provided by data contributors. The standardized and harmonized dataset includes eight data tables (five site related and three tree measurement tables) in a relational database schema. Site-related tables contain information on geographical locations, treatments (e.g. stand tending, regeneration, and cutting), and disturbances caused by abiotic factors (e.g., weather, wildfires) or biotic factors (e.g., disease, insects, animals). Tree-related tables, on the other hand, focus on measured tree attributes, including biophysical and growth parameters (e.g., DBH, height, crown class), species, status, stem conditions (e.g., broken or dead tops), and health conditions. While most contributors provided large and small tree plot measurements, only NFI, AB, MB, and SK contributed datasets reported at regeneration plot level (e.g., stem count, regeneration species). Future versions are expected to include updated and/or new measurement records as well as additional tables and measured and compiled (e.g., tree volume and biomass) attributes. MAGPlot is hosted through Canada’s National Forest Information System (https://nfi.nfis.org/en/maps). --------------------------------------------------- LATEST SITE TREATMENTS LAYER: --------------------------------------------------- Shows the most recently applied treatment class for each MAGPlot site. These treatment classes are broad categories, with more specific treatment details available in the full dataset. ----------- NOTES: ----------- The MAGPlot release (v1.0 and v1.1) does not include NL and SK datasets due to pending Data Sharing Agreements, ongoing data processing, or restrictions on third-party sharing. These datasets will be included in future releases. While certain jurisdictions permit open or public data sharing, given that requestor signs and adheres the Data Use agreement, there are some jurisdictions that require a jurisdiction-specific request form to be signed in addition to the Data Use Agreement form. For the MAGPlot Data Dictionary, other metadata, datasets available for open sharing (with approximate locations), data requests (for other datasets or exact coordinates), and available data visualization products, please check all the folders in the “Data and Resources” section below. Coordinates in web services have been randomized within 5km of true location to preserve site integrity Access the WMS (Web Map Service) layers from the “Data and Resources” section below. A data request must be submitted to access historical datasets, datasets restricted by data-use agreements, or exact plot coordinates using the link below. NFI Data Request Form: https://nfi.nfis.org/en/datarequestform --------------------------------- ACKNOWLEDGEMENT: --------------------------------- We acknowledge and recognize the following agencies that have contributed data to the MAGPlot database: Government of Alberta - Ministry of Agriculture, Forestry, and Rural Economic Development - Forest Stewardship and Trade Branch Government of British Columbia - Ministry of Forests - Forest Analysis and Inventory Branch Government of Manitoba - Ministry of Economic, Development, Investment, Trade, and Natural Resources - Forestry and Peatlands Branch Government of New Brunswick - Ministry of Natural Resources and Energy Development - Forestry Division, Forest Planning and Stewardship Branch Government of Newfoundland & Labrador - Department of Fisheries, Forestry and Agriculture - Forestry Branch Government of Nova Scotia - Ministry of Natural Resources and Renewables - Department of Natural Resources and Renewables Government of Northwest Territories - Department of Environment & Climate Change - Forest Management Division Government of Ontario - Ministry of Natural Resources and Forestry - Science and Research Branch, Forest Resources Inventory Unit Government of Prince Edward Island - Department of Environment, Energy, and Climate Action - Forests, Fish, and Wildlife Division Government of Quebec - Ministry of Natural Resources and Forests - Forestry Sector Government of Saskatchewan - Ministry of Environment - Forest Service Branch Government of Yukon - Ministry of Energy, Mines, and Resources - Forest Management Branch Government of Canada - Natural Resources Canada - Canadian Forest Service - National Forest Inventory Projects Office
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Metadata and data derived from Iowa State University Historical Maps. The first building of the Iowa Agricultural College and Model Farm was completed in 1861. Renamed Iowa State College of Agricultural and Mechanic Arts in 1898 and Iowa State University of Science and Technology in 1959, the institution now covers more than 1,800 acres. This collection comprises maps of the campus and surrounding areas in the 19th and 20th centuries.
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.