https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer
People data provides complete people information and gives the ability to link individual information to organizations and roles.
The Human Exposure Database System (HEDS) provides public access to data sets, documents, and metadata from EPA on human exposure. It is primarily intended for scientists involved in human exposure studies or work requiring such data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
EOG
The Consolidated Human Activity Database (CHAD) is a resource for learning about human exposure and health studies and predictive models.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Human Presence Database is a dataset for object detection tasks - it contains Person annotations for 285 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.
A database providing detailed mortality and population data to those interested in the history of human longevity. For each country, the database includes calculated death rates and life tables by age, time, and sex, along with all of the raw data (vital statistics, census counts, population estimates) used in computing these quantities. Data are presented in a variety of formats with regard to age groups and time periods. The main goal of the database is to document the longevity revolution of the modern era and to facilitate research into its causes and consequences. New data series is continually added to this collection. However, the database is limited by design to populations where death registration and census data are virtually complete, since this type of information is required for the uniform method used to reconstruct historical data series. As a result, the countries and areas included are relatively wealthy and for the most part highly industrialized. The database replaces an earlier NIA-funded project, known as the Berkeley Mortality Database. * Dates of Study: 1751-present * Study Features: Longitudinal, International * Sample Size: 37 countries or areas
This dataset is a selection of The Therapeutic Target Database (release 4.3.02, 18th Oct 2013) protein IDs for successful targets. The web page states 388 but these reduced to 345 human Swiss-Prot accessions.
This dataset was created by Mariiandrade
A large body of research has demonstrated that land use and urban form can have a significant effect on transportation outcomes. People who live and/or work in compact neighborhoods with a walkable street grid and easy access to public transit, jobs, stores, and services are more likely to have several transportation options to meet their everyday needs. As a result, they can choose to drive less, which reduces their emissions of greenhouse gases and other pollutants compared to people who live and work in places that are not location efficient. Walking, biking, and taking public transit can also save people money and improve their health by encouraging physical activity. The Smart Location Database summarizes several demographic, employment, and built environment variables for every census block group (CBG) in the United States. The database includes indicators of the commonly cited “D” variables shown in the transportation research literature to be related to travel behavior. The Ds include residential and employment density, land use diversity, design of the built environment, access to destinations, and distance to transit. SLD variables can be used as inputs to travel demand models, baseline data for scenario planning studies, and combined into composite indicators characterizing the relative location efficiency of CBG within U.S. metropolitan regions. This update features the most recent geographic boundaries (2019 Census Block Groups) and new and expanded sources of data used to calculate variables. Entirely new variables have been added and the methods used to calculate some of the SLD variables have changed. More information on the National Walkability index: https://www.epa.gov/smartgrowth/smart-location-mapping More information on the Smart Location Calculator: https://www.slc.gsa.gov/slc/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset for this project is characterised by photos of individual human emotion expression and these photos are taken with the help of both digital camera and a mobile phone camera from different angles, posture, background, light exposure, and distances. This task might look and sound very easy but there were some challenges encountered along the process which are reviewed below: 1) People constraint One of the major challenges faced during this project is getting people to participate in the image capturing process as school was on vacation, and other individuals gotten around the environment were not willing to let their images be captured for personal and security reasons even after explaining the notion behind the project which is mainly for academic research purposes. Due to this challenge, we resorted to capturing the images of the researcher and just a few other willing individuals. 2) Time constraint As with all deep learning projects, the more data available the more accuracy and less error the result will produce. At the initial stage of the project, it was agreed to have 10 emotional expression photos each of at least 50 persons and we can increase the number of photos for more accurate results but due to the constraint in time of this project an agreement was later made to just capture the researcher and a few other people that are willing and available. These photos were taken for just two types of human emotion expression that is, “happy” and “sad” faces due to time constraint too. To expand our work further on this project (as future works and recommendations), photos of other facial expression such as anger, contempt, disgust, fright, and surprise can be included if time permits. 3) The approved facial emotions capture. It was agreed to capture as many angles and posture of just two facial emotions for this project with at least 10 images emotional expression per individual, but due to time and people constraints few persons were captured with as many postures as possible for this project which is stated below: Ø Happy faces: 65 images Ø Sad faces: 62 images There are many other types of facial emotions and again to expand our project in the future, we can include all the other types of the facial emotions if time permits, and people are readily available. 4) Expand Further. This project can be improved furthermore with so many abilities, again due to the limitation of time given to this project, these improvements can be implemented later as future works. In simple words, this project is to detect/predict real-time human emotion which involves creating a model that can detect the percentage confidence of any happy or sad facial image. The higher the percentage confidence the more accurate the facial fed into the model. 5) Other Questions Can the model be reproducible? the supposed response to this question should be YES. If and only if the model will be fed with the proper data (images) such as images of other types of emotional expression.
This dataset was created by WinstonSDodson
Database of Bacterial ExoToxins for Human is a database of sequences, structures, interaction networks and analytical results for 229 exotoxins, from 26 different human pathogenic bacterial genus. All toxins are classified into 24 different Toxin classes. The aim of DBETH is to provide a comprehensive database for human pathogenic bacterial exotoxins. DBETH also provides a platform to its users to identify potential exotoxin like sequences through Homology based as well as Non-homology based methods. In homology based approach the users can identify potential exotoxin like sequences either running BLASTp against the toxin sequences or by running HMMER against toxin domains identified by DBETH from human pathogenic bacterial exotoxins. In Non-homology based part DBETH uses a machine learning approach to identify potential exotoxins (Toxin Prediction by Support Vector Machine based approach).
• Audience Data 1P Data Audience ResolveID™ Platform - Audience Identity Cookieless Technology
• Audience Data Identity Global US Graph – 670m + Identity Records
• Access to 14 Billion Identity Consumer Profile Data Identifiers
• Over 500+ Consumer Attributes, Online & Offline Data Behavior & Signals
• IAB™ Seller-Defined Cookieless-Contextual Category – Intent & Behavior Signal Audience Cohorts
• Access to Customer Data Enrichment & Customer Data Ingestion
• First-Party Data Ingestion & Data Appending
The Genetic Association Database is an archive of human genetic association studies of complex diseases and disorders. The goal of this database is to allow the user to rapidly identify medically relevant polymorphism from the large volume of polymorphism and mutational data, in the context of standardized nomenclature. The data is from published scientific papers. Study data is recorded in the context of official human gene nomenclature with additional molecular reference numbers and links. It is gene centered. That is, each record is a record of a gene or marker. If a study investigated 6 genes for a particular disorder, there will be 6 records. Anyone may view this database and anyone may submit records. You do not have to be an author on the original study to submit a record. All submitted records will be reviewed before inclusion in the archive. Both genetic and environmental factors contribute to human diseases. Most common diseases are influenced by a large number of genetic and environmental factors, most of which individually have only a modest effect on the disease. Though genetic contributions are relatively well characterized for some monogenetic diseases, there has been no effort at curating the extensive list of environmental etiological factors. From a comprehensive search of the MeSH annotation of MEDLINE articles, they identified 3,342 environmental etiological factors associated with 3,159 diseases. They also identified 1,100 genes associated with 1,034 complex diseases from the NIH Genetic Association Database (GAD), a database of genetic association studies. 863 diseases have both genetic and environmental etiological factors available. Integrating genetic and environmental factors results in the etiome, which they define as the comprehensive compendium of disease etiology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
“The Global Human Settlement Layer Urban Centres Database (GHS-UCDB) is the most complete database on cities to date, publicly released as an open and free dataset. The database represents the global status on Urban Centres in 2015 by offering cities location, their extent (surface, shape), and describing each city with a set of geographical, socio-economic and environmental attributes, many of them going back 25 or even 40 years in time.”Zusätzliche Informationen The Urban Centres are defined by specific cut-off values on resdient population and built-up surfac share in a 1x1km uniform global grid.See ghs_stat_ucdb2015mt_globe_r2019a_v1_0_web_1.pdf for more information.Views of this layer are used in web maps for the ArcGIS Living Atlas of the World.QuelleGlobal Human Settlement - Urban Centre database R2019A - European Commission | Zuletzt Aufgerufen am 25.04.2025Datenbestand2019
A collection of population life tables covering a multitude of countries and many years. Most of the HLD life tables are life tables for national populations, which have been officially published by national statistical offices. Some of the HLD life tables refer to certain regional or ethnic sub-populations within countries. Parts of the HLD life tables are non-official life tables produced by researchers. Life tables describe the extent to which a generation of people (i.e. life table cohort) dies off with age. Life tables are the most ancient and important tool in demography. They are widely used for descriptive and analytical purposes in demography, public health, epidemiology, population geography, biology and many other branches of science. HLD includes the following types of data: * complete life tables in text format; * abridged life tables in text format; * references to statistical publications and other data sources; * scanned copies of the original life tables as they were published. Three scientific institutions are jointly developing the HLD: the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany, the Department of Demography at the University of California at Berkeley, USA and the Institut national d''��tudes d��mographiques (INED) in Paris, France. The MPIDR is responsible for maintaining the database.
NamUs is the only national repository for missing, unidentified, and unclaimed persons cases. The program provides a singular resource hub for law enforcement, medical examiners, coroners, and investigating professionals. It is the only national database for missing, unidentified, and unclaimed persons that allows limited access to the public, empowering family members to take a more proactive role in the search for their missing loved ones.
HbVar is a relational database of information about hemoglobin variants and mutations that cause thalassemia. The initial data came from Syllabi authored by Prof. Titus H.J. Huisman, Mrs. Marianne F.H. Carver, Dr. Erol Baysal, and Prof. Georgi D. Efremov. This information was converted to a database, and now new entries are added and old entries are corrected by curators. HbVar results from a collaboration among several investigators at Penn State University (USA), INSERM Creteil (France), and Boston University Medical Center (USA). Visit our query page or summary page to see the types of information available.
To accelerate the process of tumor antigen discovery, we generated a publicly available Human Potential Tumor Associated Antigen database (HPtaa) with pTAAs identified by insilico computing. 3518 potential targets have been included in the database, which is freely available to academic users. It successfully screened out 41 of 82 known Cancer-Testis antigens, 6 of 18 differentiation antigen, 2 of 2 oncofetal antigen, and 7 of 12 FDA approved cancer markers that have Gene ID, therefore will provide a good platform for identification of cancer target genes. This database utilizes expression data from various expression platforms, including carefully chosen publicly available microarray expression data, GEO SAGE data, Unigene expression data. In addition, other relevant databases required for TAA discovery such as CGAP, CCDS, gene ontology database etc, were also incorporated. In order to integrate different expression platforms together, various strategies and algorithms have been developed. Known tumor antigens are gathered from literature and serve as training sets. A total tumor specificity penalty was computed from positive clue penalty for differential expression in human cancers, the corresponding differential ratio, and normal tissue restriction penalty for each gene. We hope this database will help with the process of cancer immunome identification, thus help with improving the diagnosis and treatment of human carcinomas.
https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer
People data provides complete people information and gives the ability to link individual information to organizations and roles.