15 datasets found
  1. Online Retail-xlsx

    • kaggle.com
    zip
    Updated Sep 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    samira Qasemi (2023). Online Retail-xlsx [Dataset]. https://www.kaggle.com/datasets/samantas2020/online-retail-xlsx/code
    Explore at:
    zip(22875837 bytes)Available download formats
    Dataset updated
    Sep 10, 2023
    Authors
    samira Qasemi
    Description

    Context

    This Online Retail II data set contains all the transactions occurring for a UK-based and registered, non-store online retail between 01/12/2009 and 09/12/2011.The company mainly sells unique all-occasion gift-ware. Many customers of the company are wholesalers.

    Content

    Attribute Information:

    InvoiceNo:

    Invoice number. Nominal. A 6-digit integral number uniquely assigned to each transaction. If this code starts with the letter 'c', it indicates a cancellation.

    StockCode:

    Product (item) code. Nominal. A 5-digit integral number uniquely assigned to each distinct product.

    Description:

    Product (item) name. Nominal.

    Quantity:

    The quantities of each product (item) per transaction. Numeric.

    InvoiceDate:

    Invice date and time. Numeric. The day and time when a transaction was generated.

    UnitPrice:

    Unit price. Numeric. Product price per unit in sterling .

    CustomerID:

    Customer number. Nominal. A 5-digit integral number uniquely assigned to each customer.

    Country:

    Country name. Nominal. The name of the country where a customer resides.

    Acknowledgements

    Chen, D. Sain, S.L., and Guo, K. (2012), Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining, Journal of Database Marketing and Customer Strategy Management, Vol. 19, No. 3, pp. 197-208. doi: [Web Link]. Chen, D., Guo, K. and Ubakanma, G. (2015), Predicting customer profitability over time based on RFM time series, International Journal of Business Forecasting and Marketing Intelligence, Vol. 2, No. 1, pp.1-18. doi: [Web Link]. Chen, D., Guo, K., and Li, Bo (2019), Predicting Customer Profitability Dynamically over Time: An Experimental Comparative Study, 24th Iberoamerican Congress on Pattern Recognition (CIARP 2019), Havana, Cuba, 28-31 Oct, 2019. Laha Ale, Ning Zhang, Huici Wu, Dajiang Chen, and Tao Han, Online Proactive Caching in Mobile Edge Computing Using Bidirectional Deep Recurrent Neural Network, IEEE Internet of Things Journal, Vol. 6, Issue 3, pp. 5520-5530, 2019. Rina Singh, Jeffrey A. Graves, Douglas A. Talbert, William Eberle, Prefix and Suffix Sequential Pattern Mining, Industrial Conference on Data Mining 2018: Advances in Data Mining. Applications and Theoretical Aspects, pp. 309-324. 2018.

  2. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 48% growth during the forecast period.
    By Deployment - On-premises segment was valued at USD 38.70 million in 2023
    By Component - Platform segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 1.00 million
    Market Future Opportunities: USD 763.90 million
    CAGR : 40.2%
    North America: Largest market in 2023
    

    Market Summary

    The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
    According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
    

    What will be the Size of the Data Science Platform Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      On-premises
      Cloud
    
    
    Component
    
      Platform
      Services
    
    
    End-user
    
      BFSI
      Retail and e-commerce
      Manufacturing
      Media and entertainment
      Others
    
    
    Sector
    
      Large enterprises
      SMEs
    
    
    Application
    
      Data Preparation
      Data Visualization
      Machine Learning
      Predictive Analytics
      Data Governance
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        India
        Japan
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.

    In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.

    Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.

    API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.

    Request Free Sample

    The On-premises segment was valued at USD 38.70 million in 2019 and showed

  3. Data from: Online Retail

    • kaggle.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    dekomori_sanae09 (2023). Online Retail [Dataset]. https://www.kaggle.com/datasets/dekomorisanae09/online-retail/data
    Explore at:
    zip(7571638 bytes)Available download formats
    Dataset updated
    May 30, 2023
    Authors
    dekomori_sanae09
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers.

    To be noted that this dataset was taken from UCI.

    CITATION Daqing Chen, Sai Liang Sain, and Kun Guo, Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining, Journal of Database Marketing and Customer Strategy Management, Vol. 19, No. 3, pp. 197–208, 2012 (Published online before print: 27 August 2012. doi: 10.1057/dbm.2012.17).

  4. Online Retail II

    • kaggle.com
    zip
    Updated Apr 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bojan Tunguz (2021). Online Retail II [Dataset]. https://www.kaggle.com/tunguz/online-retail-ii
    Explore at:
    zip(7471823 bytes)Available download formats
    Dataset updated
    Apr 12, 2021
    Authors
    Bojan Tunguz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Source:

    Dr. Daqing Chen, Course Director: MSc Data Science. chend '@' lsbu.ac.uk, School of Engineering, London South Bank University, London SE1 0AA, UK.

    Data Set Information:

    This Online Retail II data set contains all the transactions occurring for a UK-based and registered, non-store online retail between 01/12/2009 and 09/12/2011.The company mainly sells unique all-occasion gift-ware. Many customers of the company are wholesalers.

    Attribute Information:

    InvoiceNo: Invoice number. Nominal. A 6-digit integral number uniquely assigned to each transaction. If this code starts with the letter 'c', it indicates a cancellation. StockCode: Product (item) code. Nominal. A 5-digit integral number uniquely assigned to each distinct product. Description: Product (item) name. Nominal. Quantity: The quantities of each product (item) per transaction. Numeric. InvoiceDate: Invice date and time. Numeric. The day and time when a transaction was generated. UnitPrice: Unit price. Numeric. Product price per unit in sterling (£). CustomerID: Customer number. Nominal. A 5-digit integral number uniquely assigned to each customer. Country: Country name. Nominal. The name of the country where a customer resides.

    Relevant Papers:

    Chen, D. Sain, S.L., and Guo, K. (2012), Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining, Journal of Database Marketing and Customer Strategy Management, Vol. 19, No. 3, pp. 197-208. doi: [Web Link]. Chen, D., Guo, K. and Ubakanma, G. (2015), Predicting customer profitability over time based on RFM time series, International Journal of Business Forecasting and Marketing Intelligence, Vol. 2, No. 1, pp.1-18. doi: [Web Link]. Chen, D., Guo, K., and Li, Bo (2019), Predicting Customer Profitability Dynamically over Time: An Experimental Comparative Study, 24th Iberoamerican Congress on Pattern Recognition (CIARP 2019), Havana, Cuba, 28-31 Oct, 2019. Laha Ale, Ning Zhang, Huici Wu, Dajiang Chen, and Tao Han, Online Proactive Caching in Mobile Edge Computing Using Bidirectional Deep Recurrent Neural Network, IEEE Internet of Things Journal, Vol. 6, Issue 3, pp. 5520-5530, 2019. Rina Singh, Jeffrey A. Graves, Douglas A. Talbert, William Eberle, Prefix and Suffix Sequential Pattern Mining, Industrial Conference on Data Mining 2018: Advances in Data Mining. Applications and Theoretical Aspects, pp. 309-324. 2018.

    Citation Request:

    If you have no special citation requests, please leave this field blank.

  5. Data from: Online Retail

    • kaggle.com
    zip
    Updated Apr 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bojan Tunguz (2021). Online Retail [Dataset]. https://www.kaggle.com/tunguz/online-retail
    Explore at:
    zip(7471504 bytes)Available download formats
    Dataset updated
    Apr 12, 2021
    Authors
    Bojan Tunguz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Source:

    Dr Daqing Chen, Director: Public Analytics group. chend '@' lsbu.ac.uk, School of Engineering, London South Bank University, London SE1 0AA, UK.

    Data Set Information:

    This is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers.

    Attribute Information:

    InvoiceNo: Invoice number. Nominal, a 6-digit integral number uniquely assigned to each transaction. If this code starts with letter 'c', it indicates a cancellation. StockCode: Product (item) code. Nominal, a 5-digit integral number uniquely assigned to each distinct product. Description: Product (item) name. Nominal. Quantity: The quantities of each product (item) per transaction. Numeric. InvoiceDate: Invice Date and time. Numeric, the day and time when each transaction was generated. UnitPrice: Unit price. Numeric, Product price per unit in sterling. CustomerID: Customer number. Nominal, a 5-digit integral number uniquely assigned to each customer. Country: Country name. Nominal, the name of the country where each customer resides.

    Relevant Papers:

    The evolution of direct, data and digital marketing, Richard Webber, Journal of Direct, Data and Digital Marketing Practice (2013) 14, 291–309. Clustering Experiments on Big Transaction Data for Market Segmentation, Ashishkumar Singh, Grace Rumantir, Annie South, Blair Bethwaite, Proceedings of the 2014 International Conference on Big Data Science and Computing. A decision-making framework for precision marketing, Zhen You, Yain-Whar Si, Defu Zhang, XiangXiang Zeng, Stephen C.H. Leung c, Tao Li, Expert Systems with Applications, 42 (2015) 3357–3367.

    Citation Request:

    Daqing Chen, Sai Liang Sain, and Kun Guo, Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining, Journal of Database Marketing and Customer Strategy Management, Vol. 19, No. 3, pp. 197–208, 2012 (Published online before print: 27 August 2012. doi: 10.1057/dbm.2012.17).

  6. D

    Data Processing and Hosting Services Industry Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Data Processing and Hosting Services Industry Report [Dataset]. https://www.marketreportanalytics.com/reports/data-processing-and-hosting-services-industry-89228
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Apr 26, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Processing and Hosting Services market, exhibiting a Compound Annual Growth Rate (CAGR) of 4.20%, presents a significant opportunity for growth. While the exact market size in millions is not specified, considering the substantial involvement of major players like Amazon Web Services, IBM, and Salesforce, coupled with the pervasive adoption of cloud computing and big data analytics across diverse sectors, a 2025 market size exceeding $500 billion is a reasonable estimate. This robust growth is driven by several key factors. The increasing reliance on cloud-based solutions by both large enterprises and SMEs reflects a shift towards greater scalability, flexibility, and cost-effectiveness. Furthermore, the exponential growth of data necessitates advanced data processing capabilities, fueling demand for data mining, cleansing, and management services. The burgeoning adoption of AI and machine learning further enhances this need, as these technologies require robust data infrastructure and sophisticated processing techniques. Specific industry segments like IT & Telecommunications, BFSI (Banking, Financial Services, and Insurance), and Retail are major consumers, demanding reliable and secure hosting solutions and data processing capabilities to manage their critical operations and customer data. However, challenges remain, including the ongoing threat of cyberattacks and data breaches, necessitating robust security measures and compliance with evolving data privacy regulations. Competition among existing players is intense, driving innovation and price wars, which can impact profitability for some market participants. The forecast period of 2025-2033 indicates a continued upward trajectory for the market, largely fueled by expanding digitalization efforts globally. The Asia Pacific region is projected to be a significant contributor to this growth, driven by increasing internet penetration and a burgeoning technological landscape. While North America and Europe maintain substantial market share, the faster growth rate anticipated in Asia Pacific and other emerging markets signifies an evolving global market dynamic. Continued advancements in technologies such as edge computing, serverless architecture, and improved data analytics techniques will further drive market expansion and shape the competitive landscape. The segmentation within the market (by organization size, service offering, and end-user industry) presents diverse investment opportunities for businesses catering to specific needs and technological advancements within these niches. Recent developments include: December 2022 - TetraScience, the Scientific Data Cloud company, announced that Gubbs, a lab optimization, and validation software leader, joined the Tetra Partner Network to increase and enhance data processing throughput with the Tetra Scientific Data Cloud., November 2022 - Kinsta, a hosting provider that provides managed WordPress hosting powered by Google Cloud Platform, announced the launch of Application Hosting and Database Hosting. It is adding these two hosting services to its Managed WordPress product ushers in a new era for Kinsta as a Cloud Platform, enabling developers and businesses to run powerful applications, databases, websites, and services more flexibly than ever.. Key drivers for this market are: Growing Adoption of Cloud Computing to Accomplish Economies of Scale, Rising Demand for Outsourcing Data Processing Services. Potential restraints include: Growing Adoption of Cloud Computing to Accomplish Economies of Scale, Rising Demand for Outsourcing Data Processing Services. Notable trends are: Web Hosting is Gaining Traction Due to Emergence of Cloud-based Platform.

  7. Online Retail II UCI Two Peroid

    • kaggle.com
    zip
    Updated Jun 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cemal Cici (2021). Online Retail II UCI Two Peroid [Dataset]. https://www.kaggle.com/datasets/cemalcici/online-retail-ii-uci-two-peroid
    Explore at:
    zip(14912983 bytes)Available download formats
    Dataset updated
    Jun 11, 2021
    Authors
    Cemal Cici
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This Online Retail II data set contains all the transactions occurring for a UK-based and registered, non-store online retail between 01/12/2009 and 09/12/2011.The company mainly sells unique all-occasion gift-ware. Many customers of the company are wholesalers.

    Content

    Attribute Information:

    InvoiceNo: Invoice number. Nominal. A 6-digit integral number uniquely assigned to each transaction. If this code starts with the letter 'c', it indicates a cancellation. StockCode: Product (item) code. Nominal. A 5-digit integral number uniquely assigned to each distinct product. Description: Product (item) name. Nominal. Quantity: The quantities of each product (item) per transaction. Numeric. InvoiceDate: Invice date and time. Numeric. The day and time when a transaction was generated. UnitPrice: Unit price. Numeric. Product price per unit in sterling (£). CustomerID: Customer number. Nominal. A 5-digit integral number uniquely assigned to each customer. Country: Country name. Nominal. The name of the country where a customer resides.

    Acknowledgements

    Chen, D. Sain, S.L., and Guo, K. (2012), Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining, Journal of Database Marketing and Customer Strategy Management, Vol. 19, No. 3, pp. 197-208. doi: [Web Link]. Chen, D., Guo, K. and Ubakanma, G. (2015), Predicting customer profitability over time based on RFM time series, International Journal of Business Forecasting and Marketing Intelligence, Vol. 2, No. 1, pp.1-18. doi: [Web Link]. Chen, D., Guo, K., and Li, Bo (2019), Predicting Customer Profitability Dynamically over Time: An Experimental Comparative Study, 24th Iberoamerican Congress on Pattern Recognition (CIARP 2019), Havana, Cuba, 28-31 Oct, 2019. Laha Ale, Ning Zhang, Huici Wu, Dajiang Chen, and Tao Han, Online Proactive Caching in Mobile Edge Computing Using Bidirectional Deep Recurrent Neural Network, IEEE Internet of Things Journal, Vol. 6, Issue 3, pp. 5520-5530, 2019. Rina Singh, Jeffrey A. Graves, Douglas A. Talbert, William Eberle, Prefix and Suffix Sequential Pattern Mining, Industrial Conference on Data Mining 2018: Advances in Data Mining. Applications and Theoretical Aspects, pp. 309-324. 2018.

  8. Big Data Services Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Big Data Services Market Analysis, Size, and Forecast 2025-2029: North America (Mexico), Europe (France, Germany, Italy, and UK), Middle East and Africa (UAE), APAC (Australia, China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-services-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 12, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Big Data Services Market Size 2025-2029

    The big data services market size is forecast to increase by USD 604.2 billion, at a CAGR of 54.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of big data in various industries, particularly in blockchain technology. The ability to process and analyze vast amounts of data in real-time is revolutionizing business operations and decision-making processes. However, this market is not without challenges. One of the most pressing issues is the need to cater to diverse client requirements, each with unique data needs and expectations. This necessitates customized solutions and a deep understanding of various industries and their data requirements. Additionally, ensuring data security and privacy in an increasingly interconnected world poses a significant challenge. Companies must navigate these obstacles while maintaining compliance with regulations and adhering to ethical data handling practices. To capitalize on the opportunities presented by the market, organizations must focus on developing innovative solutions that address these challenges while delivering value to their clients. By staying abreast of industry trends and investing in advanced technologies, they can effectively meet client demands and differentiate themselves in a competitive landscape.

    What will be the Size of the Big Data Services Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the ever-increasing volume, velocity, and variety of data being generated across various sectors. Data extraction is a crucial component of this dynamic landscape, enabling entities to derive valuable insights from their data. Human resource management, for instance, benefits from data-driven decision making, operational efficiency, and data enrichment. Batch processing and data integration are essential for data warehousing and data pipeline management. Data governance and data federation ensure data accessibility, quality, and security. Data lineage and data monetization facilitate data sharing and collaboration, while data discovery and data mining uncover hidden patterns and trends. Real-time analytics and risk management provide operational agility and help mitigate potential threats. Machine learning and deep learning algorithms enable predictive analytics, enhancing business intelligence and customer insights. Data visualization and data transformation facilitate data usability and data loading into NoSQL databases. Government analytics, financial services analytics, supply chain optimization, and manufacturing analytics are just a few applications of big data services. Cloud computing and data streaming further expand the market's reach and capabilities. Data literacy and data collaboration are essential for effective data usage and collaboration. Data security and data cleansing are ongoing concerns, with the market continuously evolving to address these challenges. The integration of natural language processing, computer vision, and fraud detection further enhances the value proposition of big data services. The market's continuous dynamism underscores the importance of data cataloging, metadata management, and data modeling for effective data management and optimization.

    How is this Big Data Services Industry segmented?

    The big data services industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ComponentSolutionServicesEnd-userBFSITelecomRetailOthersTypeData storage and managementData analytics and visualizationConsulting servicesImplementation and integration servicesSupport and maintenance servicesSectorLarge enterprisesSmall and medium enterprises (SMEs)GeographyNorth AmericaUSMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW).

    By Component Insights

    The solution segment is estimated to witness significant growth during the forecast period.Big data services have become indispensable for businesses seeking operational efficiency and customer insight. The vast expanse of structured and unstructured data presents an opportunity for organizations to analyze consumer behaviors across multiple channels. Big data solutions facilitate the integration and processing of data from various sources, enabling businesses to gain a deeper understanding of customer sentiment towards their products or services. Data governance ensures data quality and security, while data federation and data lineage provide transparency and traceability. Artificial intelligence and machine learning algo

  9. Internet Of Things (Iot) Data Management Market Analysis North America,...

    • technavio.com
    pdf
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Internet Of Things (Iot) Data Management Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, China, UK, Canada, Germany - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/iot-data-management-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2024 - 2028
    Area covered
    United States
    Description

    Snapshot img

    Internet Of Things (Iot) Data Management Market Size 2024-2028

    The internet of things (iot) data management market size is valued to increase USD 90.3 billion, at a CAGR of 15.72% from 2023 to 2028. Growth in industrial automation will drive the internet of things (iot) data management market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 35% growth during the forecast period.
    By Component - Solutions segment was valued at USD 34.60 billion in 2022
    By Deployment - Private/hybrid segment accounted for the largest market revenue share in 2022
    

    Market Size & Forecast

    Market Opportunities: USD 301.61 billion
    Market Future Opportunities: USD 90.30 billion
    CAGR from 2023 to 2028 : 15.72%
    

    Market Summary

    The market is a dynamic and evolving landscape, driven by the increasing adoption of IoT technologies in various industries. Core technologies, such as edge computing and machine learning, are enabling the collection, processing, and analysis of vast amounts of data generated by interconnected devices. This data is fueling innovative applications, from predictive maintenance in manufacturing to real-time supply chain optimization. However, managing IoT data effectively remains a challenge for many organizations. A recent survey revealed that over 50% of companies struggle with efficiently managing their IoT initiatives and investments. Despite this, the market continues to grow, with industrial automation being a significant driver. In fact, it's estimated that by 2025, over 50% of industrial companies will have implemented IoT solutions for predictive maintenance. Regulations, such as GDPR and HIPAA, also play a crucial role in shaping the market. Regional differences in regulatory frameworks and data privacy laws add complexity to the market landscape. As the IoT Data Management Market continues to unfold, stakeholders must stay informed about the latest trends, technologies, and regulations to remain competitive.

    What will be the Size of the Internet Of Things (Iot) Data Management Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Internet Of Things (Iot) Data Management Market Segmented ?

    The internet of things (iot) data management industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments. ComponentSolutionsServicesDeploymentPrivate/hybridPublicGeographyNorth AmericaUSCanadaEuropeGermanyUKAPACChinaRest of World (ROW)

    By Component Insights

    The solutions segment is estimated to witness significant growth during the forecast period.

    In the dynamic and expanding IoT data management market, software solutions, encompassing both software and hardware offerings, hold a significant market share. This dominance is driven by the increasing globalization and IT expansion of industries, particularly in emerging economies like China, India, Brazil, Indonesia, and Mexico. The surge in SMEs in these regions necessitates business-centric insights, leading to a rising demand for software-based IoT data management solutions. companies catering to the global IoT data management market offer software tools to various end-user industries. These solutions facilitate data collection and analysis, enabling organizations to derive valuable insights from their operations. Metadata management systems, data modeling techniques, and IoT device integration are integral components of these software solutions. Edge computing deployments, data versioning strategies, and data visualization dashboards further enhance their functionality. Compliance regulations adherence, time series databases, data streaming technologies, data mining procedures, data cleansing techniques, data aggregation platforms, machine learning algorithms, remote data acquisition, data transformation pipelines, data quality monitoring, data lifecycle management, data encryption methods, predictive maintenance models, and IoT sensor networks are essential features of advanced software solutions. Data warehousing techniques, real-time data processing, access control mechanisms, data schema design, deep learning applications, scalable data infrastructure, NoSQL database systems, security protocols implementation, anomaly detection algorithms, data governance frameworks, API integration methods, and network bandwidth optimization are additional capabilities that add value to these offerings. Statistical modeling techniques play a crucial role in deriving actionable insights from the vast amounts of data generated by IoT devices. By 2026, it is projected that the market for public IoT data management solutions will grow by approximately 25%, as organizations increasingly recognize the

  10. Online Retail II Data Set from ML Repository

    • kaggle.com
    zip
    Updated Jun 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mehmet Akturk (2021). Online Retail II Data Set from ML Repository [Dataset]. https://www.kaggle.com/mathchi/online-retail-ii-data-set-from-ml-repository
    Explore at:
    zip(60312580 bytes)Available download formats
    Dataset updated
    Jun 14, 2021
    Authors
    Mehmet Akturk
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Context

    A real online retail transaction data set of two years.

    Content

    This Online Retail II data set contains all the transactions occurring for a UK-based and registered, non-store online retail between 01/12/2009 and 09/12/2011.The company mainly sells unique all-occasion gift-ware. Many customers of the company are wholesalers.

    Column Descriptors

    InvoiceNo: Invoice number. Nominal. A 6-digit integral number uniquely assigned to each transaction. If this code starts with the letter 'c', it indicates a cancellation. StockCode: Product (item) code. Nominal. A 5-digit integral number uniquely assigned to each distinct product. Description: Product (item) name. Nominal. Quantity: The quantities of each product (item) per transaction. Numeric. InvoiceDate: Invice date and time. Numeric. The day and time when a transaction was generated. UnitPrice: Unit price. Numeric. Product price per unit in sterling (£). CustomerID: Customer number. Nominal. A 5-digit integral number uniquely assigned to each customer. Country: Country name. Nominal. The name of the country where a customer resides.

    Acknowledgements

    Here you can find references about data set: https://archive.ics.uci.edu/ml/datasets/Online+Retail+II and

    Relevant Papers:

    Chen, D. Sain, S.L., and Guo, K. (2012), Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining, Journal of Database Marketing and Customer Strategy Management, Vol. 19, No. 3, pp. 197-208. doi: [Web Link]. Chen, D., Guo, K. and Ubakanma, G. (2015), Predicting customer profitability over time based on RFM time series, International Journal of Business Forecasting and Marketing Intelligence, Vol. 2, No. 1, pp.1-18. doi: [Web Link]. Chen, D., Guo, K., and Li, Bo (2019), Predicting Customer Profitability Dynamically over Time: An Experimental Comparative Study, 24th Iberoamerican Congress on Pattern Recognition (CIARP 2019), Havana, Cuba, 28-31 Oct, 2019. Laha Ale, Ning Zhang, Huici Wu, Dajiang Chen, and Tao Han, Online Proactive Caching in Mobile Edge Computing Using Bidirectional Deep Recurrent Neural Network, IEEE Internet of Things Journal, Vol. 6, Issue 3, pp. 5520-5530, 2019. Rina Singh, Jeffrey A. Graves, Douglas A. Talbert, William Eberle, Prefix and Suffix Sequential Pattern Mining, Industrial Conference on Data Mining 2018: Advances in Data Mining. Applications and Theoretical Aspects, pp. 309-324. 2018.

    Inspiration

    This is Data Set Characteristics: Multivariate, Sequential, Time-Series, Text

  11. r

    Subcellular Location Image Finder

    • rrid.site
    • neuinfo.org
    • +2more
    Updated Jan 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Subcellular Location Image Finder [Dataset]. http://identifiers.org/RRID:SCR_006723/resolver?q=&i=rrid
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    SLIF finds fluorescence microscope images in on-line journal articles, and indexes them according to cell line, proteins visualized, and resolution. Images can be accessed via the SLIF Web database. SLIF takes on-line papers and scans them for figures that contain fluorescence microscope images (FMIs). Figures typically contain multiple FMIs, to SLIF must segment these images into individual FMIs. When the FMI images are extracted, annotations for the images (for instance, names of proteins and cell-lines) are also extracted from the accompanying caption text. Protein annotation are also used to link to external databases, such as the Gene Ontology DB. The more detailed process includes: segmentation of images into panels; panel classification, to find FMIs; segmentation of the caption, to find which portions of the caption apply to which panels; text-based entity extraction; matching of extracted entities to database entries; extraction of panel labels from text and figures; and alignment of the text segments to the panels. Extracted FMIs are processed to find subcellular location features (SLFs), and the resulting analyzed, annotated figures are stored in a database, which is accessible via SQL queries.

  12. Online Retail II UCI

    • kaggle.com
    zip
    Updated Dec 2, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Miyabon (2019). Online Retail II UCI [Dataset]. https://www.kaggle.com/mashlyn/online-retail-ii-uci
    Explore at:
    zip(15217139 bytes)Available download formats
    Dataset updated
    Dec 2, 2019
    Authors
    Miyabon
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This Online Retail II data set contains all the transactions occurring for a UK-based and registered, non-store online retail between 01/12/2009 and 09/12/2011.The company mainly sells unique all-occasion gift-ware. Many customers of the company are wholesalers.

    Content

    Attribute Information:

    InvoiceNo: Invoice number. Nominal. A 6-digit integral number uniquely assigned to each transaction. If this code starts with the letter 'c', it indicates a cancellation. StockCode: Product (item) code. Nominal. A 5-digit integral number uniquely assigned to each distinct product. Description: Product (item) name. Nominal. Quantity: The quantities of each product (item) per transaction. Numeric. InvoiceDate: Invice date and time. Numeric. The day and time when a transaction was generated. UnitPrice: Unit price. Numeric. Product price per unit in sterling (£). CustomerID: Customer number. Nominal. A 5-digit integral number uniquely assigned to each customer. Country: Country name. Nominal. The name of the country where a customer resides.

    Acknowledgements

    Chen, D. Sain, S.L., and Guo, K. (2012), Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining, Journal of Database Marketing and Customer Strategy Management, Vol. 19, No. 3, pp. 197-208. doi: [Web Link]. Chen, D., Guo, K. and Ubakanma, G. (2015), Predicting customer profitability over time based on RFM time series, International Journal of Business Forecasting and Marketing Intelligence, Vol. 2, No. 1, pp.1-18. doi: [Web Link]. Chen, D., Guo, K., and Li, Bo (2019), Predicting Customer Profitability Dynamically over Time: An Experimental Comparative Study, 24th Iberoamerican Congress on Pattern Recognition (CIARP 2019), Havana, Cuba, 28-31 Oct, 2019. Laha Ale, Ning Zhang, Huici Wu, Dajiang Chen, and Tao Han, Online Proactive Caching in Mobile Edge Computing Using Bidirectional Deep Recurrent Neural Network, IEEE Internet of Things Journal, Vol. 6, Issue 3, pp. 5520-5530, 2019. Rina Singh, Jeffrey A. Graves, Douglas A. Talbert, William Eberle, Prefix and Suffix Sequential Pattern Mining, Industrial Conference on Data Mining 2018: Advances in Data Mining. Applications and Theoretical Aspects, pp. 309-324. 2018.

  13. Online Retail Data Set from UCI ML repo

    • kaggle.com
    zip
    Updated Jan 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jihye Sofia Seo (2018). Online Retail Data Set from UCI ML repo [Dataset]. https://www.kaggle.com/jihyeseo/online-retail-data-set-from-uci-ml-repo
    Explore at:
    zip(22875837 bytes)Available download formats
    Dataset updated
    Jan 22, 2018
    Authors
    Jihye Sofia Seo
    Description

    a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.

    Content

    • Data Set Characteristics: Multivariate, Sequential, Time-Series

    • Number of Instances: 541909

    • Area: Business

    • Attribute Characteristics: Integer, Real

    • Number of Attributes: 8

    • Date Donated: 2015-11-06

    • Associated Tasks: Classification, Clustering

    • Missing Values? N/A

    • Number of Web Hits: 159409

    Source

    Dr Daqing Chen, Director: Public Analytics group. chend '@' lsbu.ac.uk, School of Engineering, London South Bank University, London SE1 0AA, UK.

    Data Set Information:

    This is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers.

    Attribute Information:

    InvoiceNo: Invoice number. Nominal, a 6-digit integral number uniquely assigned to each transaction. If this code starts with letter 'c', it indicates a cancellation. StockCode: Product (item) code. Nominal, a 5-digit integral number uniquely assigned to each distinct product. Description: Product (item) name. Nominal. Quantity: The quantities of each product (item) per transaction. Numeric.
    InvoiceDate: Invice Date and time. Numeric, the day and time when each transaction was generated. UnitPrice: Unit price. Numeric, Product price per unit in sterling. CustomerID: Customer number. Nominal, a 5-digit integral number uniquely assigned to each customer. Country: Country name. Nominal, the name of the country where each customer resides.

    Relevant Papers:

    The evolution of direct, data and digital marketing, Richard Webber, Journal of Direct, Data and Digital Marketing Practice (2013) 14, 291–309. Clustering Experiments on Big Transaction Data for Market Segmentation, Ashishkumar Singh, Grace Rumantir, Annie South, Blair Bethwaite, Proceedings of the 2014 International Conference on Big Data Science and Computing. A decision-making framework for precision marketing, Zhen You, Yain-Whar Si, Defu Zhang, XiangXiang Zeng, Stephen C.H. Leung c, Tao Li, Expert Systems with Applications, 42 (2015) 3357–3367.

    Citation Request:

    Daqing Chen, Sai Liang Sain, and Kun Guo, Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining, Journal of Database Marketing and Customer Strategy Management, Vol. 19, No. 3, pp. 197–208, 2012 (Published online before print: 27 August 2012. doi: 10.1057/dbm.2012.17).

    Image credit:

    Photo by Valentino Funghi on Unsplash

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  14. Software Market Analysis, Size, and Forecast 2025-2029: North America (US,...

    • technavio.com
    pdf
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Software Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), Middle East and Africa (UAE), APAC (China, India, and Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/software-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Canada, Germany, United States
    Description

    Snapshot img

    Software Market Size 2025-2029

    The software market size is forecast to increase by USD 30.7 billion, at a CAGR of 8.2% between 2024 and 2029.

    The market is experiencing significant growth, driven primarily by the increasing volume of enterprise data and the shift towards cloud computing. Businesses are recognizing the value of leveraging data to gain insights and make informed decisions, leading to a surge in demand for software solutions that can manage and analyze large data sets. Additionally, cloud computing is becoming the preferred deployment model for software, as it offers cost savings, flexibility, and scalability. However, the market also faces challenges that require careful navigation. High costs of licensing and support continue to be a significant obstacle for many organizations, particularly smaller businesses and startups. These costs can limit their ability to implement and maintain the software solutions they need to remain competitive. Furthermore, ensuring data security and privacy in a cloud environment is a major concern, as sensitive information is increasingly being stored and processed digitally. Companies must address these challenges effectively to capitalize on the opportunities presented by the market's growth and remain competitive in the evolving software landscape.

    What will be the Size of the Software Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, with dynamic market activities unfolding across various sectors. Entities such as version control systems, software quality assurance, software licensing, API integration, software maintenance, data warehousing, unit testing, project management, database management, cost optimization, and others, are seamlessly integrated into the software development lifecycle. Cloud computing is transforming the way software is deployed and accessed, while user experience remains a key focus for developers. Agile methodologies and the waterfall methodology coexist, with the former gaining popularity for its flexibility and the latter for its structured approach. Data mining and data analytics are increasingly being used to gain insights from vast amounts of data, while software security and bug tracking are essential components of any development process. Machine learning and artificial intelligence are also making their mark, enhancing software functionality and improving user experience. Proprietary software and open source software each have their unique advantages, with CI/CD and DevOps streamlining the development process. Requirements gathering and user acceptance testing are crucial steps in ensuring software meets user needs, while code review and integration testing help maintain software quality. Technical support and software updates are ongoing requirements, with risk management and cost optimization essential for businesses to effectively manage their software investments. Business intelligence and software architecture are critical for making informed decisions and building scalable systems.

    How is this Software Industry segmented?

    The software industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TypeSubscriptionsIdentity and access managementEndpoint/network/messaging/web securityRisk managementDeploymentCloud-basedOn-premisesSectorLarge enterprisesSmall and medium enterprisesApplicationCRMERPCybersecurityCollaboration ToolsGeographyNorth AmericaUSCanadaMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Type Insights

    The subscriptions segment is estimated to witness significant growth during the forecast period.In the ever-evolving the market, subscription-based models are gaining significant traction as a key growth driver. This shift is driven by the increasing recognition of the benefits offered by these models, enabling businesses to adapt to their evolving needs. Subscription models provide flexibility, allowing companies to scale their software usage efficiently, adapting to expanding operations or streamlined processes. Additionally, these models promote cost optimization, enabling businesses to spread their software expenses over time, making it a more viable option for organizations of all sizes. The software development lifecycle is undergoing a transformation, with both waterfall and agile methodologies being adopted. Waterfall methodology, with its linear approach, is ideal for projects with well-defined requirements. In contrast, agile methodologies, with their iterative and collaborative nature, are more suitable for projects with evolving requirements. C

  15. Online Retail Data Set from ML Repository

    • kaggle.com
    zip
    Updated Jul 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mehmet Akturk (2020). Online Retail Data Set from ML Repository [Dataset]. https://www.kaggle.com/mathchi/online-retail-data-set-from-ml-repository
    Explore at:
    zip(1239 bytes)Available download formats
    Dataset updated
    Jul 5, 2020
    Authors
    Mehmet Akturk
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Context

    A real online retail transaction data set of two years.

    Content

    This is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers.

    Column Descriptors

    InvoiceNo: Invoice number. Nominal, a 6-digit integral number uniquely assigned to each transaction. If this code starts with letter 'c', it indicates a cancellation. StockCode: Product (item) code. Nominal, a 5-digit integral number uniquely assigned to each distinct product. Description: Product (item) name. Nominal. Quantity: The quantities of each product (item) per transaction. Numeric. InvoiceDate: Invice Date and time. Numeric, the day and time when each transaction was generated. UnitPrice: Unit price. Numeric, Product price per unit in sterling. CustomerID: Customer number. Nominal, a 5-digit integral number uniquely assigned to each customer. Country: Country name. Nominal, the name of the country where each customer resides.

    Acknowledgements

    Here you can find references about data set: http://archive.ics.uci.edu/ml/datasets/Online+Retail and

    Relevant Papers:

    The evolution of direct, data and digital marketing, Richard Webber, Journal of Direct, Data and Digital Marketing Practice (2013) 14, 291–309. Clustering Experiments on Big Transaction Data for Market Segmentation, Ashishkumar Singh, Grace Rumantir, Annie South, Blair Bethwaite, Proceedings of the 2014 International Conference on Big Data Science and Computing. A decision-making framework for precision marketing, Zhen You, Yain-Whar Si, Defu Zhang, XiangXiang Zeng, Stephen C.H. Leung c, Tao Li, Expert Systems with Applications, 42 (2015) 3357–3367.

    Citation Request:

    Daqing Chen, Sai Liang Sain, and Kun Guo, Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining, Journal of Database Marketing and Customer Strategy Management, Vol. 19, No. 3, pp. 197–208, 2012 (Published online before print: 27 August 2012. doi: 10.1057/dbm.2012.17).

    Inspiration

    This is Data Set Characteristics: Multivariate, Sequential, Time-Series, Text

  16. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
samira Qasemi (2023). Online Retail-xlsx [Dataset]. https://www.kaggle.com/datasets/samantas2020/online-retail-xlsx/code
Organization logo

Online Retail-xlsx

Online Retail Data Set

Explore at:
9 scholarly articles cite this dataset (View in Google Scholar)
zip(22875837 bytes)Available download formats
Dataset updated
Sep 10, 2023
Authors
samira Qasemi
Description

Context

This Online Retail II data set contains all the transactions occurring for a UK-based and registered, non-store online retail between 01/12/2009 and 09/12/2011.The company mainly sells unique all-occasion gift-ware. Many customers of the company are wholesalers.

Content

Attribute Information:

InvoiceNo:

Invoice number. Nominal. A 6-digit integral number uniquely assigned to each transaction. If this code starts with the letter 'c', it indicates a cancellation.

StockCode:

Product (item) code. Nominal. A 5-digit integral number uniquely assigned to each distinct product.

Description:

Product (item) name. Nominal.

Quantity:

The quantities of each product (item) per transaction. Numeric.

InvoiceDate:

Invice date and time. Numeric. The day and time when a transaction was generated.

UnitPrice:

Unit price. Numeric. Product price per unit in sterling .

CustomerID:

Customer number. Nominal. A 5-digit integral number uniquely assigned to each customer.

Country:

Country name. Nominal. The name of the country where a customer resides.

Acknowledgements

Chen, D. Sain, S.L., and Guo, K. (2012), Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining, Journal of Database Marketing and Customer Strategy Management, Vol. 19, No. 3, pp. 197-208. doi: [Web Link]. Chen, D., Guo, K. and Ubakanma, G. (2015), Predicting customer profitability over time based on RFM time series, International Journal of Business Forecasting and Marketing Intelligence, Vol. 2, No. 1, pp.1-18. doi: [Web Link]. Chen, D., Guo, K., and Li, Bo (2019), Predicting Customer Profitability Dynamically over Time: An Experimental Comparative Study, 24th Iberoamerican Congress on Pattern Recognition (CIARP 2019), Havana, Cuba, 28-31 Oct, 2019. Laha Ale, Ning Zhang, Huici Wu, Dajiang Chen, and Tao Han, Online Proactive Caching in Mobile Edge Computing Using Bidirectional Deep Recurrent Neural Network, IEEE Internet of Things Journal, Vol. 6, Issue 3, pp. 5520-5530, 2019. Rina Singh, Jeffrey A. Graves, Douglas A. Talbert, William Eberle, Prefix and Suffix Sequential Pattern Mining, Industrial Conference on Data Mining 2018: Advances in Data Mining. Applications and Theoretical Aspects, pp. 309-324. 2018.

Search
Clear search
Close search
Google apps
Main menu