Facebook
TwitterFoster City GIS Services: ArcGIS Server Connection https://services7.arcgis.com/CYn8XGt0yVlPlS5X/ArcGIS/rest/services
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Gardens dataset.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Ash Can dataset.
Facebook
TwitterAn ArcGIS Pro project may contain maps, scenes, layouts, data, tools, and other items. It may contain connections to folders, databases, and servers. Content can be added from online portals such as your ArcGIS organization or the ArcGIS Living Atlas of the World.In this tutorial, you'll create a new, blank ArcGIS Pro project. You'll add a map to the project and convert the map to a 3D scene.Estimated time: 10 minutesSoftware requirements: ArcGIS Pro
Facebook
TwitterSeattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Community Centers dataset.
Facebook
TwitterSeattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Swimming Beaches dataset.
Facebook
TwitterThe establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
Facebook
TwitterThis document explains Virginia Geographic Information Network (VGIN) map and feature services and how to work with them in ArcGIS Desktop and ArcGIS Pro. Instructions cover connecting to the server, adding services to a map, and extracting data from feature services. Particular focus is on the provisioning and PSAP boundary polygons used in NG9-1-1 deployment. The steps listed also apply to other VGIN feature services and publicly-facing or shared feature services from other sources.Feature services are supported in ArcGIS Pro. ArcMap support started in version 10.1. If you are working with a version of ArcGIS Desktop 10.0 or older, please contact us at NG911GIS@vdem.virginia.gov for support.Document updated October 2022 to reflect changes to https://vgin.vdem.virginia.gov/Additional resources and recommendations on GIS related topics are available on the VGIN 9-1-1 & GIS page.
Facebook
TwitterMosaics are published as ArcGIS image serviceswhich circumvent the need to download or order data. GEO-IDS image services are different from standard web services as they provide access to the raw imagery data. This enhances user experiences by allowing for user driven dynamic area of interest image display enhancement, raw data querying through tools such as the ArcPro information tool, full geospatial analysis, and automation through scripting tools such as ArcPy. Image services are best accessed through the ArcGIS REST APIand REST endpoints (URL's). You can copy the OPS ArcGIS REST API link below into a web browser to gain access to a directory containing all OPS image services. Individual services can be added into ArcPro for display and analysis by using Add Data -> Add Data From Path and copying one of the image service ArcGIS REST endpoint below into the resultant text box. They can also be accessed by setting up an ArcGIS server connectionin ESRI software using the ArcGIS Image Server REST endpoint/URL. Services can also be accessed in open-source software. For example, in QGIS you can right click on the type of service you want to add in the browser pane (e.g., ArcGIS REST Server, WCS, WMS/WMTS) and copy and paste the appropriate URL below into the resultant popup window. All services are in Web Mercator projection. For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email Geospatial Ontario (GEO) at geospatial@ontario.ca Available Products: ArcGIS REST APIhttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/ Image Service ArcGIS REST endpoint / URL'shttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/GEO_Imagery_Data_Service_2013to2017/ImageServer https://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/GEO_Imagery_Data_Service_2018to2022/ImageServer https://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/AerialImagery/GEO_Imagery_Data_Service_2023to2027/ImageServerWeb Coverage Services (WCS) URL'shttps://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2013to2017/ImageServer/WCSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2018to2022/ImageServer/WCSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2023to2027/ImageServer/WCSServer/Web Mapping Service (WMS) URL'shttps://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2013to2017/ImageServer/WMSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2018to2022/ImageServer/WMSServer/https://ws.geoservices.lrc.gov.on.ca/arcgis5/services/AerialImagery/GEO_Imagery_Data_Service_2023to2027/ImageServer/WMSServer/ Metadata for all imagery products available in GEO-IDS can be accessed at the links below:South Central Ontario Orthophotography Project (SCOOP) 2023North-Western Ontario Orthophotography Project (NWOOP) 2022 Central Ontario Orthophotography Project (COOP) 2021 South-Western Ontario Orthophotography Project (SWOOP) 2020 Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2019-2020 South Central Ontario Orthophotography Project (SCOOP) 2018 North-Western Ontario Orthophotography Project (NWOOP) 2017 Central Ontario Orthophotography Project (COOP) 2016 South-Western Ontario Orthophotography Project (SWOOP) 2015 Algonquin Orthophotography Project (2015) Additional Documentation: Ontario Web Raster Services User Guide (Word) Status:Completed: Production of the data has been completed Maintenance and Update Frequency:Annually: Data is updated every year Contact:Geospatial Ontario (GEO), geospatial@ontario.ca
Facebook
TwitterThe Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the Italy Geospatial Analytics market was valued at USD XXX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 8.17% during the forecast period. Recent developments include: March 2023: The Italian space agency and NASA have collaborated to build and launch the Multi-Angle Imager for Aerosols mission, an effort to investigate the health impacts of tiny airborne particles polluting the cities through analyzing data by collecting data from the satellite-based observatories, which would fuel the demand for geospatial analytics market in the country., January 2023: EDB, an open-source database service provider in Italy, announced its partnership with Esri to certify EDB Postgres Advanced Server with Esri ArcGIS Pro and Esri ArcGIS Enterprise, which work together to form Esri's Geospatial analytic solutions, operating in many countries, including Italy. After this partnership, users can connect their EDB Postgres Advanced Server to explore, visualize and analyze their geospatial data and share their work with an Esri ArcGIS Enterprise portal. In addition, EDB customers, especially those in the public sector, can use their database with Esri ArcGIS software to transform their data into something that improves workflows and processes and shapes policies and engagement within their communities.. Key drivers for this market are: Increase in the number of Smart Cities in The Country, The Implementation of analytics Software in the Country's Public Transportation. Potential restraints include: High Costs and Operational Concerns, Lack of Standardization for Data Integration. Notable trends are: The Increase in the Number of Smart Cities in The Country Fuels the Market Growth.
Facebook
TwitterSeattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Trails dataset. TRAIL_CLASS 0 = Unverified 1 = Verified ** Created from maintenance data
Facebook
TwitterLearn how defense and intelligence users can leverage ArcGIS GeoEvent Server and ArcGIS GeoAnalytics Server to connect to real-time data feeds and run analytics on the stored data. From tracking units in the field to analyzing intelligence feeds and weather, ArcGIS GeoEvent Server enables users to stay current on what is happening. When you want to analyze massive amounts of stored track and report data, ArcGIS GeoAnalytics Server uses distributed computing to return spatiotemporal insight helping you make better planning decisions.
Facebook
TwitterSeattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Public Restroom dataset.
Facebook
TwitterSeattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Fire Pits dataset.
Facebook
TwitterSeattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Public Artwork Outside Park dataset.
Facebook
TwitterSeattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Misc Court Point dataset.
Facebook
TwitterSeattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Fishing Piers dataset.
Facebook
TwitterSeattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Football Field Outline dataset.
Facebook
TwitterSeattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations BBQ Grills dataset.
Facebook
TwitterFoster City GIS Services: ArcGIS Server Connection https://services7.arcgis.com/CYn8XGt0yVlPlS5X/ArcGIS/rest/services