https://brightdata.com/licensehttps://brightdata.com/license
Use our Stock prices dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.
Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.
End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv
contains some additional metadata for each ticker such as full name.
End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Historical daily stock market data for 4500+ Nasdaq listed companies. Dataset to be updated quarterly.
Date: dates vary depending on stock, all in DD/MM/YYYY format Open: open price (in USD) High: high price (in USD) Low: low price (in USD) Close: close price (in USD) Adj close: adjusted close price (in USD) Volume: traded volume (in USD)
Banner photo: https://www.pexels.com/photo/numbers-on-monitor-534216/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indonesia's main stock market index, the JCI, fell to 6865 points on July 4, 2025, losing 0.19% from the previous session. Over the past month, the index has declined 3.49% and is down 5.35% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Indonesia. Indonesia Stock Market (JCI) - values, historical data, forecasts and news - updated on July of 2025.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study examines how news is distributed across stocks. A model is developed that categorizes a stock's latent news into normal and nonnormal news, and allows both types of news to be filtered through to other stocks. This is achieved by formulating a model that jointly incorporates a multivariate lognormal-Poisson jump process (for nonnormal news) and a multivariate GARCH process (for normal news), in addition to a news (or shock) transmission mechanism that allows the shocks from both processes to impact intertemporally on all stocks in the system. The relationship between news and the expected volatility surface is explored and a unique news impact surface is derived that depends on time, news magnitude, and news type. We find that the effect of nonnormal news on volatility expectations typically builds up before dissipating, with the news transmission mechanism effectively crowding-out normal news and crowding-in nonnormal news. Moreover, in contrast to the standard approach for measuring leverage effects using asymmetric generalized autoregressive conditional heteroskedasticity models, we find that leverage effects stem predominantly from nonnormal news. Finally, we find that the capacity to identify positively or negatively correlated stock returns is ambiguous in the short term, and depends heavily on the behavior of the nonnormal news component.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains a comprehensive collection of historical data for the Nifty 50 stocks, a diversified stock market index in India. The data covers the period from January 2018 to August 2023, providing valuable insights into the performance of the Indian stock market over the years.
Features: - Stock Symbol: The unique stock symbol of the company listed in the Nifty 50 index - Date: The date of the stock market data. - Open: The opening price of the stock on the given date. - High: The highest price reached by the stock during the trading session. - Low: The lowest price reached by the stock during the trading session. - Close: The closing price of the stock on the given date. - Volume: The trading volume of the stock on the given date.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the essential files for conducting a dynamic stock market analysis using Power BI. The data is sourced from Yahoo Finance and includes historical stock prices, which can be dynamically updated by adding new stock codes to the provided Excel sheet.
Files Included: Power BI Report (.pbix): The interactive Power BI report that includes various visualizations such as Candle Charts, Line Charts for Support and Resistance, and Technical Indicators like SMA, EMA, Bollinger Bands, and RSI. The report is designed to provide a comprehensive analysis of stock performance over time.
Stock Data Excel Sheet (.xlsx): This Excel sheet is connected to the Power BI report and allows for dynamic data loading. By adding new stock codes to this sheet, the Power BI report automatically refreshes to include the new data, enabling continuous updates without manual intervention.
Overview and Chart Pages Snapshots for better understanding about the Report.
Key Features: Dynamic Data Loading: Easily update the dataset by adding new stock codes to the Excel sheet. The Power BI report will automatically pull the corresponding data from Yahoo Finance. Comprehensive Visualizations: Analyze stock trends using Candle Charts, identify key price levels with Support and Resistance lines, and explore market behavior through various technical indicators. Interactive Analysis: The Power BI report includes slicers and navigation buttons to switch between different time periods and visualizations, providing a tailored analysis experience. Use Cases: Ideal for financial analysts, traders, or anyone interested in conducting a detailed stock market analysis. Can be used to monitor the performance of individual stocks or compare trends across multiple stocks over time. Tags: Stock Market Power BI Financial Analysis Yahoo Finance Data Visualization
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China's main stock market index, the SHANGHAI, rose to 3472 points on July 4, 2025, gaining 0.32% from the previous session. Over the past month, the index has climbed 2.61% and is up 17.71% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.
https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer
With LSEG's Tokyo Stock Exchange (TSE) Data, gain full access to benchmarks, indices, reference data, market depth data, and more.
We offer historical price data for equity indexes, ETFs and individual stocks in a Open/High/Low/Close (OHLC) format and can add almost any other required metric. We cover all major markets and many minor markets. Available for one-time purchase or with regular updates. Real-time/near-time (usually anything quicker than a 15min delay) requires an additional licence from the respective exchange, anything slower does not.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New York Stock Exchange: Index: Dow Jones US Beverages Index data was reported at 959.180 NA in Apr 2025. This records a decrease from the previous number of 981.520 NA for Mar 2025. New York Stock Exchange: Index: Dow Jones US Beverages Index data is updated monthly, averaging 980.645 NA from Mar 2024 (Median) to Apr 2025, with 14 observations. The data reached an all-time high of 1,046.450 NA in Sep 2024 and a record low of 913.890 NA in Jan 2025. New York Stock Exchange: Index: Dow Jones US Beverages Index data remains active status in CEIC and is reported by Exchange Data International Limited. The data is categorized under Global Database’s United States – Table US.EDI.SE: New York Stock Exchange: Dow Jones: Monthly.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Turkey's main stock market index, the BIST 100, rose to 10276 points on July 4, 2025, gaining 0.46% from the previous session. Over the past month, the index has climbed 8.32%, though it remains 5.31% lower than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Turkey. Turkey Stock Market - values, historical data, forecasts and news - updated on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive chart of the S&P 500 stock market index since 1927. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.
End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
https://brightdata.com/licensehttps://brightdata.com/license
Use our Stock prices dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.
Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.