This version has been superseded by a newer version. It is highly recommended for users to access the current version. Users should only access this superseded version for special cases, such as reproducing studies. If necessary, this version can be accessed by contacting NCEI. The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a blended product from two independent analysis products: the Extended Reconstructed Sea Surface Temperature (ERSST) analysis and the land surface temperature (LST) analysis using the Global Historical Climatology Network (GHCN) temperature database. The data is merged into a monthly global surface temperature dataset dating back from 1880 to the present. The monthly product output is in gridded (5 degree x 5 degree) and time series formats. The product is used in climate monitoring assessments of near-surface temperatures on a global scale. The changes from version 4 to version 5 include an update to the primary input datasets: ERSST version 5 (updated from v4), and GHCN-M version 4 (updated from v3.3.3). Version 5 updates also include a new netCDF file format with CF conventions. This dataset is formerly known as Merged Land-Ocean Surface Temperature (MLOST).
The table Global Temperatures is part of the dataset Climate Change: Earth Surface Temperature Data, available at https://columbia.redivis.com/datasets/1e0a-f4931vvyg. It contains 3192 rows across 9 variables.
The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a monthly global merged land-ocean surface temperature analysis product that is derived from two independent analyses. The first is the Extended Reconstructed Sea Surface Temperature (ERSST) analysis and the second is a land surface air temperature (LSAT) analysis that uses the Global Historical Climatology Network - Monthly (GHCN-M) temperature database. The NOAAGlobalTemp data set contains global surface temperatures in gridded (5° × 5°) and monthly resolution time series (from 1850 to present time) data files. The product is used in climate monitoring assessments of near-surface temperatures on a global scale. This version, v6.0, an updated version to the current operational release v5.1, is implemented by an Artificial Neural Network method to improve the surface temperature reconstruction over the land.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf
This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Q: What was the average temperature for the month? A: Colors show the average monthly temperature across the contiguous United States. White and very light areas had average temperatures near 50°F. Blue areas on the map were cooler than 50°F; the darker the blue, the cooler the average temperature. Orange to red areas were warmer than 50°F; the darker the shade, the warmer the monthly average temperature. Q: Where do these measurements come from? A: Daily temperature readings come from weather stations in the Global Historical Climatology Network (GHCN-D). Volunteer observers or automated instruments collect the highest and lowest temperature of the day at each station over the entire month, and submit them to the National Centers for Environmental Information (NCEI). After scientists check the quality of the data to omit any systematic errors, they calculate each station’s monthly average of daily mean temperatures, then plot it on a 5x5 km gridded map. To fill in the grid at locations without stations, a computer program interpolates (or estimates) values, accounting for the distribution of stations and various physical relationships, such as the way temperature changes with elevation. The resulting product is the NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid). Q: What do the colors mean? A: Shades of blue show areas that had monthly average temperatures below 50°F. The darker the shade of blue, the lower the average temperature. Areas shown in shades of orange and red had average temperatures above 50°F. The darker the shade of orange or red, the higher the average temperature. White or very light colors show areas where the average temperature was near 50°F. Q: Why do these data matter? A: The 5x5km NClimGrid data allow scientists to report on recent temperature conditions and track long-term trends at a variety of spatial scales. The gridded cells are used to create statewide, regional and national snapshots of climate conditions. Energy companies use this information to estimate demand for heating and air conditioning. Agricultural businesses also use these data to optimize timing of planting, harvesting, and putting livestock to pasture. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products; to meet the needs of a broad audience, we present the source data in a simplified visual style. This set of snapshots is based on NClimGrid climate data produced by and available from the National Centers for Environmental Information (NCEI). To produce our images, we invoke a set of scripts that access the source data and represent them according to our selected color ramps on our base maps. Additional information The data used in these snapshots can be downloaded from different places and in different formats. We used these specific data sources: NClimGrid Average Temperature References NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) NOAA Monthly U.S. Climate Divisional Database (NClimDiv) Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions) NCEI Monthly National Analysis) Climate at a Glance - Data Information) NCEI Climate Monitoring - All Products Source: https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-us-monthly-averageThis upload includes two additional files:* Temperature - US Monthly Average _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots.* Cimate_gov_ Data Snapshots.pdf is a screenshot of the data download page for the full-resolution files.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
Various climate variables summary for all 15 subregions based on Bureau of Meteorology Australian Water Availability Project (BAWAP) climate grids. Including
Time series mean annual BAWAP rainfall from 1900 - 2012.
Long term average BAWAP rainfall and Penman Potentail Evapotranspiration (PET) from Jan 1981 - Dec 2012 for each month
Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P (precipitation); (ii) Penman ETp; (iii) Tavg (average temperature); (iv) Tmax (maximum temperature); (v) Tmin (minimum temperature); (vi) VPD (Vapour Pressure Deficit); (vii) Rn (net radiation); and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend.
Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009).
As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).
There are 4 csv files here:
BAWAP_P_annual_BA_SYB_GLO.csv
Desc: Time series mean annual BAWAP rainfall from 1900 - 2012.
Source data: annual BILO rainfall
P_PET_monthly_BA_SYB_GLO.csv
long term average BAWAP rainfall and Penman PET from 198101 - 201212 for each month
Climatology_Trend_BA_SYB_GLO.csv
Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P; (ii) Penman ETp; (iii) Tavg; (iv) Tmax; (v) Tmin; (vi) VPD; (vii) Rn; and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend
Risbey_Remote_Rainfall_Drivers_Corr_Coeffs_BA_NSB_GLO.csv
Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009). As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).
Dataset was created from various BAWAP source data, including Monthly BAWAP rainfall, Tmax, Tmin, VPD, etc, and other source data including monthly Penman PET, Correlation coefficient data. Data were extracted from national datasets for the GLO subregion.
BAWAP_P_annual_BA_SYB_GLO.csv
Desc: Time series mean annual BAWAP rainfall from 1900 - 2012.
Source data: annual BILO rainfall
P_PET_monthly_BA_SYB_GLO.csv
long term average BAWAP rainfall and Penman PET from 198101 - 201212 for each month
Climatology_Trend_BA_SYB_GLO.csv
Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P; (ii) Penman ETp; (iii) Tavg; (iv) Tmax; (v) Tmin; (vi) VPD; (vii) Rn; and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend
Risbey_Remote_Rainfall_Drivers_Corr_Coeffs_BA_NSB_GLO.csv
Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009). As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).
Bioregional Assessment Programme (2014) GLO climate data stats summary. Bioregional Assessment Derived Dataset. Viewed 18 July 2018, http://data.bioregionalassessments.gov.au/dataset/afed85e0-7819-493d-a847-ec00a318e657.
Derived From Natural Resource Management (NRM) Regions 2010
Derived From Bioregional Assessment areas v03
Derived From BILO Gridded Climate Data: Daily Climate Data for each year from 1900 to 2012
Derived From Bioregional Assessment areas v01
Derived From Bioregional Assessment areas v02
Derived From GEODATA TOPO 250K Series 3
Derived From NSW Catchment Management Authority Boundaries 20130917
Derived From Geological Provinces - Full Extent
Derived From GEODATA TOPO 250K Series 3, File Geodatabase format (.gdb)
Climate change has been shown to influence lake temperatures globally. To better understand the diversity of lake responses to climate change and give managers tools to manage individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota and Wisconsin for contemporary (1979-2015) and future (2020-2040 and 2080-2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario. From simulated temperatures, we derived commonly used, ecologically relevant annual metrics of thermal conditions for each lake. We included all available supporting metadata including satellite and in-situ observations of water clarity, maximum observed lake depth, land-cover based estimates of surrounding canopy height and observed water temperature profiles (used here for validation). This unique dataset offers landscape-level insight into the future impact of climate change on lakes. This data set contains the following parameters: time, wtr_{z}, which are defined below.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK daily temperature data contain maximum and minimum temperatures (air, grass and concrete slab) measured over a period of up to 24 hours. The measurements were recorded by observation stations operated by the Met Office across the UK and transmitted within NCM, DLY3208 or AWSDLY messages. The data span from 1853 to 2023. For details on measurement techniques, including calibration information and changes in measurements, see section 5.2 of the MIDAS User Guide linked to from this record. Soil temperature data may be found in the UK soil temperature datasets linked from this record.
This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2023.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. Currently this represents approximately 95% of available daily temperature observations within the full MIDAS collection.
Climate change has been shown to influence lake temperatures globally. To better understand the diversity of lake responses to climate change and give managers tools to manage individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota and Wisconsin for contemporary (1979-2015) and future (2020-2040 and 2080-2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario.
Compilation of Earth Surface temperatures historical. Source: https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data
Data compiled by the Berkeley Earth project, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.
In this dataset, we have include several files:
Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
**Other files include: **
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
The raw data comes from the Berkeley Earth data page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Q: Where was the monthly temperature warmer or cooler than usual? A: Colors show where average monthly temperature was above or below its 1991-2020 average. Blue areas experienced cooler-than-usual temperatures while areas shown in red were warmer than usual. The darker the color, the larger the difference from the long-term average temperature. Q: Where do these measurements come from? A: Weather stations on every continent record temperatures over land, and ocean surface temperatures come from measurements made by ships and buoys. NOAA scientists merge the readings from land and ocean into a single dataset. To calculate difference-from-average temperatures—also called temperature anomalies—scientists calculate the average monthly temperature across hundreds of small regions, and then subtract each region’s 1991-2020 average for the same month. If the result is a positive number, the region was warmer than the long-term average. A negative result from the subtraction means the region was cooler than usual. To generate the source images, visualizers apply a mathematical filter to the results to produce a map that has smooth color transitions and no gaps. Q: What do the colors mean? A: Shades of red show where average monthly temperature was warmer than the 1991-2020 average for the same month. Shades of blue show where the monthly average was cooler than the long-term average. The darker the color, the larger the difference from average temperature. White and very light areas were close to their long-term average temperature. Gray areas near the North and South Poles show where no data are available. Q: Why do these data matter? A: Over time, these data give us a planet-wide picture of how climate varies over months and years and changes over decades. Each month, some areas are cooler than the long-term average and some areas are warmer. Though we don’t see an increase in temperature at every location every month, the long-term trend shows a growing portion of Earth’s surface is warmer than it was during the base period. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. NOAA's Environmental Visualization Laboratory (NNVL) produces the source images for the Difference from Average Temperature – Monthly maps. To produce our images, we run a set of scripts that access the source images, re-project them into desired projections at various sizes, and output them with a custom color bar. Additional information Source images available through NOAA's Environmental Visualization Lab (NNVL) are interpolated from data originally provided by the National Center for Environmental Information (NCEI) - Weather and Climate. NNVL images are based on NOAA Merged Land Ocean Global Surface Temperature Analysis data (NOAAGlobalTemp, formerly known as MLOST). References NCEI Monthly Global Analysis NOAA View Temperature Anomaly Merged Land Ocean Global Surface Temperature Analysis Global Surface Temperature Anomalies Climate at a Glance - Data Information Source: https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-global-monthly-difference-a...This upload includes two additional files:* Temperature - Global Monthly, Difference from Average _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots (https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-global-monthly-difference-a...)* Cimate_gov_ Data Snapshots.pdf is a screenshot of the data download page for the full-resolution files.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
2024.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf
The Nordic Gridded Climate Dataset (NGCD) is a high resolution, observational, gridded dataset of daily minimum, maximum and mean temperatures and daily precipitation totals, covering Finland, Sweden and Norway. The time period covered begins in January 1961 and continues to the present. The dataset is regularly updated every 6 months, in March and in September. In addition, there are daily, provisional updates. Spatial interpolation methods are applied to observational datasets to create gridded datasets. In general, there are three types of such methods: deterministic (type 1), stochastic (type 2) and pure mathematical (type 3). NGCD applies both a deterministic kriging (type 1) interpolation approach and a stochastic Bayesian (type 2) interpolation approach to the same in-situ observational dataset collected by weather stations. For more details on the algorithms, users are advised to read the product user guide. The input data is provided by the National Meteorological and Hydrological Services of Finland, Norway and Sweden. The time-series used for Finland and Sweden are the non-blended time-series from the station network of the European Climate Assessment & Dataset (ECA&D) project. For Norway, time-series are extracted from the climate database of the Norwegian Meteorological Institute.
This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Borehole. The data include parameters of borehole with a geographic location of India, Southcentral Asia. The time period coverage is from 450 to -44 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Q: What's the temperature of water at the ocean's surface? A: Colors on the map show the temperature of water right at the ocean’s surface. The darkest blue shows the coldest water: floating sea ice is usually present in these areas. Lighter shades of blue show temperatures of up to 80°F. White and orange areas show where surface temperatures are higher than 80°F, warm enough to fuel tropical cyclones or hurricanes. Q: Where do these measurements come from? A: Satellite instruments measure sea surface temperature—often abbreviated as SST—by checking how much energy comes off the ocean at different wavelengths. Computer programs merge sea surface temperatures from ships and buoys with the satellite data, and incorporate information from maps of sea ice. To produce the daily maps, programs invoke mathematical filters to combine and smooth data from all three sources. Q: What do the colors mean? A: The darkest blue areas show sea surface temperatures as low as 28°F. Sea ice, which can look like anything from a slushy mix of floating ice crystals to a solid surface of white, is usually present in these areas. Progressively lighter shades of blue show increasingly warmer temperatures, up to 80°F. White and orange areas on the map show where the surface temperature is above 80°F. Tropical storms that cross these areas can strengthen to form cyclones and hurricanes. Q: Why do these data matter? A: While heat energy is stored and mixed throughout the depth of the ocean, the temperature of water right at the sea's surface—where the ocean is in direct contact with the atmosphere—plays a significant role in weather and short-term climate. Where sea surface temperatures are high, relatively large amounts of heat energy and moisture enter the atmosphere, sometimes producing powerful, drenching storms downwind. Conversely, lower sea surface temperatures mean less evaporation. Global patterns of sea surface temperatures are an important factor for weather forecasts and climate outlooks. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. NOAA's Climate Data Records Program produces the Opitimum Interpolated Sea Surface Temperature files. To produce our images, we run a set of scripts that access the source files, re-project them into desired projections at various sizes, and output them with a custom color bar. Additional information Various scientific groups have produced datasets showing Sea Surface Temperature. The images in Data Snapshots represent the AVHRR-only 1/4° daily OISST dataset. Data snapshots presents just one daily OISST image every seven days References Optimum Interpolation Sea Surface Temperature Technical Notes [pdf] Climate Data Record (CDR) Program Climate Algorithm Theoretical Basis Document (C-ATBD) Daily 1/4° Optimum Interpolation Sea Surface Temperature (OISST) Richard W. Reynolds, Thomas M. Smith, Chunying Liu, Dudley B. Chelton, Kenneth S. Casey, and Michael G. Schlax, 2007: Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Climate, 20, 5473–5496. doi: http://dx.doi.org/10.1175/2007JCLI1824.1 Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1 About Optimum Interpolation Sea Surface Temperature (OISST) v2.1 Source: https://www.climate.gov/maps-data/data-snapshots/data-source/sst-sea-surface-temperature This upload includes two additional files:* SST - Sea Surface Temperature _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots (https://www.climate.gov/maps-data/data-snapshots/data-source/sst-sea-surface-temperature)* Cimate_gov_ Data Snapshots.pdf is a screenshot of the data download page for the full-resolution files.
The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in 1895. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities
This dataset provide:
Annual average temperature, total precipitation, and temperature and precipitation extremes calculations for 210 U.S. cities.
Historical rates of changes in annual temperature, precipitation, and the selected temperature and precipitation extreme indices in the 210 U.S. cities.
Estimated thresholds (reference levels) for the calculations of annual extreme indices including warm and cold days, warm and cold nights, and precipitation amount from very wet days in the 210 cities.
Annual average of daily mean temperature, Tmax, and Tmin are included for annual average temperature calculations. Calculations were based on the compiled daily temperature and precipitation records at individual cities.
Temperature and precipitation extreme indices include: warmest daily Tmax and Tmin, coldest daily Tmax and Tmin , warm days and nights, cold days and nights, maximum 1-day precipitation, maximum consecutive 5-day precipitation, precipitation amounts from very wet days.
Number of missing daily Tmax, Tmin, and precipitation values are included for each city.
Rates of change were calculated using linear regression, with some climate indices applied with the Box-Cox transformation prior to the linear regression.
The historical observations from ACIS belong to Global Historical Climatological Network - daily (GHCN-D) datasets. The included stations were based on NRCC’s “ThreadEx” project, which combined daily temperature and precipitation extremes at 255 NOAA Local Climatological Locations, representing all large and medium size cities in U.S. (See Owen et al. (2006) Accessing NOAA Daily Temperature and Precipitation Extremes Based on Combined/Threaded Station Records).
Resources:
See included README file for more information.
Additional technical details and analyses can be found in: Lai, Y., & Dzombak, D. A. (2019). Use of historical data to assess regional climate change. Journal of climate, 32(14), 4299-4320. https://doi.org/10.1175/JCLI-D-18-0630.1
Other datasets from the same project can be accessed at: https://kilthub.cmu.edu/projects/Use_of_historical_data_to_assess_regional_climate_change/61538
ACIS database for historical observations: http://scacis.rcc-acis.org/
GHCN-D datasets can also be accessed at: https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/
Station information for each city can be accessed at: http://threadex.rcc-acis.org/
2024 August updated -
Annual calculations for 2022 and 2023 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2022 and 2023 data.
Note that future updates may be infrequent.
2022 January updated -
Annual calculations for 2021 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2021 data.
2021 January updated -
Annual calculations for 2020 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2020 data.
2020 January updated -
Annual calculations for 2019 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2019 data.
Thresholds for all 210 cities were combined into one single file – Thresholds.csv.
2019 June updated -
Baltimore was updated with the 2018 data (previously version shows NA for 2018) and new ID to reflect the GCHN ID of Baltimore-Washington International AP. city_info file was updated accordingly.
README file was updated to reflect the use of "wet days" index in this study. The 95% thresholds for calculation of wet days utilized all daily precipitation data from the reference period and can be different from the same index from some other studies, where only days with at least 1 mm of precipitation were utilized to calculate the thresholds. Thus the thresholds in this study can be lower than the ones that would've be calculated from the 95% percentiles from wet days (i.e., with at least 1 mm of precipitation).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Q: What are the chances for various temperature conditions next month? A: Shaded areas show where average temperature has an increased chance of being warmer or cooler than usual. The darker the shading, the greater the chance for the indicated condition. White areas have equal chances for average temperatures that are below, near, or above the long-term average for the month. Q: What data do experts use to develop these forecasts? A: Climate scientists base future climate outlooks on current patterns in the ocean and atmosphere. They examine projections from climate and weather models and consider recent trends. They also check historical records to see what temperature conditions resulted from similar patterns in the past. Q: What do the colors mean? A: Colors on the map show experts’ level of confidence in their forecasts for above- or below-average temperatures. Each location on the map has some chance to experience average temperatures that rank in the bottom, middle, or top of records from the previous three decades. White areas have equal chances for all three conditions. Colors show where the odds for one of the conditions are higher than for the other two. A common mistake is to interpret these maps as predicted temperatures. However, dark orange or red areas are not predicted to be warmer than light orange areas. The darker orange areas simply have a higher likelihood for above-average temperatures than the lighter orange areas do. Similarly, dark blue areas are not predicted to be cooler than light blue areas. Keep in mind that outlooks show the most likely condition for each region, not the only possible outcome. You can visit the Data Snapshots interface to view previous temperature outlooks and compare them to monthly temperature observations. Q: Why do these data matter? A: Energy companies want to know how much energy people will need in the next month. Temperature outlooks can inform them when they should prepare to meet high demand for energy. Outlooks can also help them choose the best time to schedule maintenance procedures. Forestry managers also check temperature outlooks. When they see increased chances for warmer-than-usual weather, they prepare for more wildfires. Managers in agricultural industries also want to know if temperatures are likely to be warmer or cooler than usual. This information can help them optimize food production. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. NOAA's Climate Prediction Center (CPC) produces the source images for monthly temperature outlooks. To produce our images, we run a set of scripts that access mapping layers from CPC, re-project them into desired projections at various sizes, and output them with a custom color bar. Additional information CPC issues monthly outlooks one-half month before the beginning of the month of interest. On the day before the new month begins, experts update the outlook for the upcoming month. Each monthly outlook in Data Snapshots shows the date the outlook was issued. Outlooks that include Alaska are available: while displaying an outlook of interest, click the Download button, select Full Resolution Assets, and then click OK References One-Month to Three-Month Climate Outlooks. http://www.cpc.ncep.noaa.gov/products/forecasts/ Current Outlook Discussion http://www.cpc.ncep.noaa.gov/products/predictions/long_range/fxus07.html Source: https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-monthly-outlook This upload includes two additional files:* Temperature - Monthly Outlook _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots (https://www.climate.gov/maps-data/data-snapshots/data-so
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Database containing the borehole temperature profiles used in the publication "Cuesta-Valero F.J., García-García A., Beltrami H., González-Rouco J.F., and García-Bustamante E. (2020). Long-Term Global Ground Heat Flux and Continental Heat Storage from Geothermal Data. Clim. Past Discuss. [preprint], doi:10.5194/cp-2020-65"
This dataset contains the World Average Degree Days Database for the period 1964-2013. Follow datasource.kapsarc.org for timely data to advance energy economics research.*
Summary_64-13_freq=1D Average Degree Days of various indices for respective countries for the period 1964-2013, converted to a 1 day frequency
Summary_64-13_freq=6hrs Average Degree Days of various indices for respective countries for the period 1964-2013, calculated at 6 hrs frequency
T2m.hdd.18C Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=18°C and frequency of 6 hrs
T2m.cdd.18C Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=18°C and frequency of 6 hrs
t2m.hdd.15.6C Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=15.6°C and frequency of 6 hrs
t2m.hdd.18.3C Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=18.3°C and frequency of 6 hrs
t2m.hdd.21.1C Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=21.1°C and frequency of 6 hrs
t2m.cdd.15.6C Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=15.6°C and frequency of 6 hrs
t2m.cdd.18.3C Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=18.3°C and frequency of 6 hrs
t2m.cdd.21.1C Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=21.1°C and frequency of 6 hrs
t2m.hdd.60F Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=60°F and frequency of 6 hrs
t2m.hdd.65F Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=65°F and frequency of 6 hrs
t2m.hdd.70F Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=70°F and frequency of 6 hrs
t2m.cdd.60F Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=60°F and frequency of 6 hrs
t2m.cdd.65F Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=65°F and frequency of 6 hrs
t2m.cdd.70F Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=70°F and frequency of 6 hrs
HI.hdd.57.56F Calculation of Heating Degree Days using the Heat Index at Tref=57.56°F and frequency of 6 hrs
HI.hdd.63.08F Calculation of Heating Degree Days using the Heat Index at Tref=63.08°F and frequency of 6 hrs
HI.hdd.68.58F Calculation of Heating Degree Days using the Heat Index at Tref=68.58°F and frequency of 6 hrs
HI.cdd.57.56F Calculation of Cooling Degree Days using the Heat Index at Tref=57.56°F and frequency of 6 hrs
HI.cdd.63.08F Calculation of Cooling Degree Days using the Heat Index at Tref=63.08°F and frequency of 6 hrs
HI.cdd.68.58F Calculation of Cooling Degree Days using the Heat Index at Tref=68.58°F and frequency of 6 hrs
HUM.hdd.13.98C Calculation of Heating Degree Days using the Humidex at Tref=13.98°C and frequency of 6 hrs
HUM.hdd.17.4C Calculation of Heating Degree Days using the Humidex at Tref=17.40°C and frequency of 6 hrs
HUM.hdd.21.09C Calculation of Heating Degree Days using the Humidex at Tref=21.09°C and frequency of 6 hrs
HUM.cdd.13.98C Calculation of Cooling Degree Days using the Humidex at Tref=13.98°C and frequency of 6 hrs
HUM.cdd.17.4C Calculation of Cooling Degree Days using the Humidex at Tref=17.40°C and frequency of 6 hrs
HUM.cdd.21.09C Calculation of Cooling Degree Days using the Humidex at Tref=21.09°C and frequency of 6 hrs
ESI.hdd.12.6C Calculation of Heating Degree Days using the Environmental Stress Index at Tref=12.6°C and frequency of 6 hrs
ESI.hdd.14.9C Calculation of Heating Degree Days using the Environmental Stress Index at Tref=14.9°C and frequency of 6 hrs
ESI.hdd.17.2C Calculation of Heating Degree Days using the Environmental Stress Index at Tref=17.2°C and frequency of 6 hrs
ESI.cdd.12.6C Calculation of Cooling Degree Days using the Environmental Stress Index at Tref=12.6°C and frequency of 6 hrs
ESI.cdd.14.9C Calculation of Cooling Degree Days using the Environmental Stress Index at Tref=14.9°C and frequency of 6 hrs
ESI.cdd.17.2C Calculation of Cooling Degree Days using the Environmental Stress Index at Tref=17.2°C and frequency of 6 hrs
Note:
Divide Degree Days by 4 to convert from 6 hrs to daily frequency
This version has been superseded by a newer version. It is highly recommended for users to access the current version. Users should only access this superseded version for special cases, such as reproducing studies. If necessary, this version can be accessed by contacting NCEI. The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a blended product from two independent analysis products: the Extended Reconstructed Sea Surface Temperature (ERSST) analysis and the land surface temperature (LST) analysis using the Global Historical Climatology Network (GHCN) temperature database. The data is merged into a monthly global surface temperature dataset dating back from 1880 to the present. The monthly product output is in gridded (5 degree x 5 degree) and time series formats. The product is used in climate monitoring assessments of near-surface temperatures on a global scale. The changes from version 4 to version 5 include an update to the primary input datasets: ERSST version 5 (updated from v4), and GHCN-M version 4 (updated from v3.3.3). Version 5 updates also include a new netCDF file format with CF conventions. This dataset is formerly known as Merged Land-Ocean Surface Temperature (MLOST).