100+ datasets found
  1. Top Hat Database

    • catalog.data.gov
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Employee Benefits Security Administration (2025). Top Hat Database [Dataset]. https://catalog.data.gov/dataset/top-hat-database-dacbc
    Explore at:
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    Employee Benefits Security Administrationhttps://www.dol.gov/agencies/ebsa
    Description

    Database consists of filing data for Top Hat plan notices for management and HCE's, who defer income until termination of employment, and are therefore exempt from ERISA.

  2. Top SQL databases in software development globally 2015

    • ai-chatbox.pro
    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Top SQL databases in software development globally 2015 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F627698%2Fworldwide-software-developer-survey-databases-used%2F%23XgboD02vawLKoDs%2BT%2BQLIV8B6B4Q9itA
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2015
    Area covered
    Worldwide
    Description

    The statistic displays the most popular SQL databases used by software developers worldwide, as of April 2015. According to the survey, 64 percent of software developers were using MySQL, an open-source relational database management system (RDBMS).

  3. d

    B2B Data | Company Data | TOP#1 Database: 360 Million Businesses Worldwide

    • datarade.ai
    Updated Mar 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). B2B Data | Company Data | TOP#1 Database: 360 Million Businesses Worldwide [Dataset]. https://datarade.ai/data-products/b2b-data-company-data-top-1-database-360-million-busi-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Mar 5, 2025
    Dataset authored and provided by
    InfobelPRO
    Area covered
    Philippines, Congo, Croatia, Poland, Cambodia, Netherlands, Tunisia, Panama, Hong Kong, Timor-Leste
    Description

    Leverage high-quality B2B data with 468 enriched attributes, covering firmographics, financial stability, and industry classifications. Our AI-optimized dataset ensures accuracy through advanced deduplication and continuous updates. With 30+ years of expertise and 1,100+ trusted sources, we provide fully compliant, structured business data to power lead generation, risk assessment, CRM enrichment, market research, and more.

    Key use cases of B2B Data have helped our customers in several areas :

    1. Boost Lead Generation & Sales Outreach : Target the right businesses with precise, segmented contact lists for cold calling, email marketing, and industry-specific campaigns.
    2. Enhance CRM & Web Data for Smarter Engagement : Enrich CRM records with instant access to detailed company profiles, visitor identification, and continuous data updates.
    3. Strengthen Risk Assessment & Fraud Prevention : Evaluate supplier reliability, assess credit risk, and prevent fraud with deep firmographic and financial insights.
    4. Gain a Competitive Edge with Market Research : Analyse industry trends, benchmark competitors, and identify automation-ready sectors for strategic positioning.
    5. Optimize B2B Strategies with AI-Powered Insights : Leverage structured, compliant data to drive smarter business decisions across sales, marketing, and operations.
  4. m

    World’s Top 2% of Scientists list by Stanford University: An Analysis of its...

    • data.mendeley.com
    Updated Nov 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JOHN Philip (2023). World’s Top 2% of Scientists list by Stanford University: An Analysis of its Robustness [Dataset]. http://doi.org/10.17632/td6tdp4m6t.1
    Explore at:
    Dataset updated
    Nov 17, 2023
    Authors
    JOHN Philip
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    John Ioannidis and co-authors [1] created a publicly available database of top-cited scientists in the world. This database, intended to address the misuse of citation metrics, has generated a lot of interest among the scientific community, institutions, and media. Many institutions used this as a yardstick to assess the quality of researchers. At the same time, some people look at this list with skepticism citing problems with the methodology used. Two separate databases are created based on career-long and, single recent year impact. This database is created using Scopus data from Elsevier[1-3]. The Scientists included in this database are classified into 22 scientific fields and 174 sub-fields. The parameters considered for this analysis are total citations from 1996 to 2022 (nc9622), h index in 2022 (h22), c-score, and world rank based on c-score (Rank ns). Citations without self-cites are considered in all cases (indicated as ns). In the case of a single-year case, citations during 2022 (nc2222) instead of Nc9622 are considered.

    To evaluate the robustness of c-score-based ranking, I have done a detailed analysis of the matrix parameters of the last 25 years (1998-2022) of Nobel laureates of Physics, chemistry, and medicine, and compared them with the top 100 rank holders in the list. The latest career-long and single-year-based databases (2022) were used for this analysis. The details of the analysis are presented below: Though the article says the selection is based on the top 100,000 scientists by c-score (with and without self-citations) or a percentile rank of 2% or above in the sub-field, the actual career-based ranking list has 204644 names[1]. The single-year database contains 210199 names. So, the list published contains ~ the top 4% of scientists. In the career-based rank list, for the person with the lowest rank of 4809825, the nc9622, h22, and c-score were 41, 3, and 1.3632, respectively. Whereas for the person with the No.1 rank in the list, the nc9622, h22, and c-score were 345061, 264, and 5.5927, respectively. Three people on the list had less than 100 citations during 96-2022, 1155 people had an h22 less than 10, and 6 people had a C-score less than 2.
    In the single year-based rank list, for the person with the lowest rank (6547764), the nc2222, h22, and c-score were 1, 1, and 0. 6, respectively. Whereas for the person with the No.1 rank, the nc9622, h22, and c-score were 34582, 68, and 5.3368, respectively. 4463 people on the list had less than 100 citations in 2022, 71512 people had an h22 less than 10, and 313 people had a C-score less than 2. The entry of many authors having single digit H index and a very meager total number of citations indicates serious shortcomings of the c-score-based ranking methodology. These results indicate shortcomings in the ranking methodology.

  5. TMDb Top 10,000 Popular Movies Dataset

    • kaggle.com
    Updated Apr 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Balaka Biswas (2020). TMDb Top 10,000 Popular Movies Dataset [Dataset]. https://www.kaggle.com/balaka18/tmdb-top-10000-popular-movies-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 7, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Balaka Biswas
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Introduction

    This is dataset of the 10,000 most popular movies across the world, irrespective of language and recency. These have been extracted using TMDb API.

    About the Dataset

    What is TMDB's API? The closed-source API service is for those people interested in using their movies, TV shows or actor images and/or data in their application. TMDb's API is a system that they provide for developers and their team to programmatically fetch and use TMDb's data and/or images. Their API is free to use as long as you attribute TMDb as the source of the data and/or images. Also, they update their API from time to time.

    This dataset lists 10,000 most popular movies across the globe. Information held inside the dataset - A. Dataset 1 : Movies dataset - 1. title - Title of the Movie in English. 2. overview - A small summary of the plot. 3. original_lang - Original language it was shot in. 4. rel_date - Date of release. 5. popularity - Popularity. 6. vote_count - Votes received. 7. vote_average - Average of all votes received.

    B. Dataset 2 : Genres dataset 1. id 2. Movie ID 3. Genre

  6. Big data and analytics software leading vendors 2015-2017, by market share

    • statista.com
    Updated May 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Big data and analytics software leading vendors 2015-2017, by market share [Dataset]. https://www.statista.com/statistics/491542/big-data-software-by-leading-vendor-share/
    Explore at:
    Dataset updated
    May 23, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    This statistic shows the leading vendors of big data and analytics software from 2015 to 2017. In 2017, Splunk was the largest big data and analytics software provider with 11 percent of the market.

  7. Top 25 MS-DRGs – Individual Hospital (Pivot Profile)

    • catalog.data.gov
    • data.ca.gov
    • +3more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2024). Top 25 MS-DRGs – Individual Hospital (Pivot Profile) [Dataset]. https://catalog.data.gov/dataset/top-25-ms-drgs-individual-hospital-pivot-profile-12af5
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    Department of Health Care Access and Information
    Description

    Annual Excel pivot tables display the top 25 MS-DRGs (Medicare Severity-Diagnosis Related Groups) per hospital. The ranking can be sorted by the number of discharges, average charge per stay, or average length of stay.

  8. d

    Top Data Tables Per Day per Key

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    API Management (2023). Top Data Tables Per Day per Key [Dataset]. https://catalog.data.gov/dataset/top-data-tables-per-day-per-key-786ef
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    API Management
    Description

    Developers using the DOL-wide API have access to a variety of queries providing usage metrics for their app's key.

  9. d

    Data from: Efficient Keyword-Based Search for Top-K Cells in Text Cube

    • catalog.data.gov
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Efficient Keyword-Based Search for Top-K Cells in Text Cube [Dataset]. https://catalog.data.gov/dataset/efficient-keyword-based-search-for-top-k-cells-in-text-cube
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    Previous studies on supporting free-form keyword queries over RDBMSs provide users with linked-structures (e.g.,a set of joined tuples) that are relevant to a given keyword query. Most of them focus on ranking individual tuples from one table or joins of multiple tables containing a set of keywords. In this paper, we study the problem of keyword search in a data cube with text-rich dimension(s) (so-called text cube). The text cube is built on a multidimensional text database, where each row is associated with some text data (a document) and other structural dimensions (attributes). A cell in the text cube aggregates a set of documents with matching attribute values in a subset of dimensions. We define a keyword-based query language and an IR-style relevance model for coring/ranking cells in the text cube. Given a keyword query, our goal is to find the top-k most relevant cells. We propose four approaches, inverted-index one-scan, document sorted-scan, bottom-up dynamic programming, and search-space ordering. The search-space ordering algorithm explores only a small portion of the text cube for finding the top-k answers, and enables early termination. Extensive experimental studies are conducted to verify the effectiveness and efficiency of the proposed approaches. Citation: B. Ding, B. Zhao, C. X. Lin, J. Han, C. Zhai, A. N. Srivastava, and N. C. Oza, “Efficient Keyword-Based Search for Top-K Cells in Text Cube,” IEEE Transactions on Knowledge and Data Engineering, 2011.

  10. Top data science skills in U.S. 2019

    • statista.com
    Updated May 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Top data science skills in U.S. 2019 [Dataset]. https://www.statista.com/statistics/1016247/united-states-wanted-data-science-skills/
    Explore at:
    Dataset updated
    May 23, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2019
    Area covered
    United States
    Description

    The statistic displays the most wanted data science skills in the United States as of April 2019. As of the measured period, 76.13 percent of data scientist job openings on LinkedIn required a knowledge of the programming language Python.

  11. b

    Genomics of Drug Sensitivity in Cancer (GDSC)

    • bigomics.ch
    Updated Nov 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wellcome Sanger Institute (2024). Genomics of Drug Sensitivity in Cancer (GDSC) [Dataset]. https://bigomics.ch/blog/top-databases-for-drug-discovery/
    Explore at:
    Dataset updated
    Nov 8, 2024
    Dataset authored and provided by
    Wellcome Sanger Institute
    Description

    A dataset containing drug response profiles for over 600 compounds across multiple cancer cell lines.

  12. f

    SQL code.

    • plos.figshare.com
    7z
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dengao Li; Jian Fu; Jumin Zhao; Junnan Qin; Lihui Zhang (2023). SQL code. [Dataset]. http://doi.org/10.1371/journal.pone.0276835.s001
    Explore at:
    7zAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Dengao Li; Jian Fu; Jumin Zhao; Junnan Qin; Lihui Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The code is about how to extract data from the MIMIC-III. (7Z)

  13. .top TLD Whois Database | Whois Data Center

    • whoisdatacenter.com
    csv
    Updated Jul 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AllHeart Web Inc (2025). .top TLD Whois Database | Whois Data Center [Dataset]. https://whoisdatacenter.com/tld/.top/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 20, 2025
    Dataset provided by
    AllHeart Web
    Authors
    AllHeart Web Inc
    License

    https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/

    Time period covered
    Jul 23, 2025 - Dec 31, 2025
    Description

    .TOP Whois Database, discover comprehensive ownership details, registration dates, and more for .TOP TLD with Whois Data Center.

  14. e

    Global top soil texture data compatible with the WRF model based on the...

    • data.europa.eu
    Updated Oct 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Global top soil texture data compatible with the WRF model based on the Harmonized World Soil Database (HWSD) at 30 arc-second hor. resolution Version 1.21 [Dataset]. https://data.europa.eu/data/datasets/de-dkrz-wdcc-iso3590104
    Explore at:
    Dataset updated
    Oct 12, 2021
    Description

    Data contain dominating soil type in a grid cell for the whole world at 30 arc-second (~1km) horizontal resolution. The data are based on Harmonized World Soil Database (HWSD), but reclassified according to the State Soil Geographic (STATSGO) classification table of the Weather Research and Forecasting (WRF) Model for NOAH and NOAH-MP Land Surface Models (LSMs). The source of the data is HWSD version 1.21, provided by the Food and Agriculture Organization of the United Nations (FAO), the International Institute for Applied Systems Analysis (IIASA), International Soil Reference and Information Centre (ISRIC), Institute of Soil Science - Chinese Academy of Sciences (ISSCAS) and Joint Research Centre of the European Commission (JRC) in 2012 (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). Harmonized World Soil Database (version 1.21). FAO, Rome, Italy and IIASA, Laxenburg, Austria). Horizontal resolution: 0.00833333333333° Type/units: categorical/1-16 categories Missing_value: -9999(ascii file), 241.0 (WRF-bin) Projection: regular latitude longitude

  15. U

    Species of Greatest Conservation Need National Database

    • data.usgs.gov
    • catalog.data.gov
    Updated Oct 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tristan Wellman; Elizabeth Martin; Abigail Benson (2024). Species of Greatest Conservation Need National Database [Dataset]. http://doi.org/10.5066/P9OLCQR1
    Explore at:
    Dataset updated
    Oct 22, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Tristan Wellman; Elizabeth Martin; Abigail Benson
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2005 - 2022
    Description

    The Species of Greatest Conservation Need National Database is an aggregation of lists from State Wildlife Action Plans. Species of Greatest Conservation Need (SGCN) are wildlife species that need conservation attention as listed in action plans. In this database, we have validated scientific names from original documents against taxonomic authorities to increase consistency among names enabling aggregation and summary. This database does not replace the information contained in the original State Wildlife Action Plans. The database includes SGCN lists from 56 states, territories, and districts, encompassing action plans spanning from 2005 to 2022. State Wildlife Action Plans undergo updates at least once every 10 years by respective wildlife agencies. The SGCN list data from these action plans have been compiled in partnership with individual wildlife management agencies, the United States Fish and Wildlife Service, and the Association of Fish and Wildlife Agencies. The SGCN ...

  16. World Athletics Top All-Time Performances Dataset

    • kaggle.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kanana Muchiri (2025). World Athletics Top All-Time Performances Dataset [Dataset]. https://www.kaggle.com/datasets/kgmuchiri/world-athletics-all-time-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 24, 2025
    Dataset provided by
    Kaggle
    Authors
    Kanana Muchiri
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains structured and cleaned records of athletic performances from international track and field events. It includes metadata about the athletes, event types, wind conditions, venues, mark and score.

    Contains over 620k rows.

    Latest data: 24-06-2025

    If you want the latest data, go to this GitHub page, fork and run the code: Github .

  17. Top 10 Crypto-Coin Historical Data (2014-2024)

    • kaggle.com
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Farhan Ali (2024). Top 10 Crypto-Coin Historical Data (2014-2024) [Dataset]. https://www.kaggle.com/datasets/farhanali097/top-10-crypto-coin-historical-data-2014-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 2, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Farhan Ali
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset contains historical price data for the top global cryptocurrencies, sourced from Yahoo Finance. The data spans the following time frames for each cryptocurrency:

    BTC-USD (Bitcoin): From 2014 to December 2024 ETH-USD (Ethereum): From 2017 to December 2024 XRP-USD (Ripple): From 2017 to December 2024 USDT-USD (Tether): From 2017 to December 2024 SOL-USD (Solana): From 2020 to December 2024 BNB-USD (Binance Coin): From 2017 to December 2024 DOGE-USD (Dogecoin): From 2017 to December 2024 USDC-USD (USD Coin): From 2018 to December 2024 ADA-USD (Cardano): From 2017 to December 2024 STETH-USD (Staked Ethereum): From 2020 to December 2024

    Key Features:

    Date: The date of the record. Open: The opening price of the cryptocurrency on that day. High: The highest price during the day. Low: The lowest price during the day. Close: The closing price of the cryptocurrency on that day. Adj Close: The adjusted closing price, factoring in stock splits or dividends (for stablecoins like USDT and USDC, this value should be the same as the closing price). Volume: The trading volume for that day.

    Data Source:

    The dataset is sourced from Yahoo Finance and spans daily data from 2014 to December 2024, offering a rich set of data points for cryptocurrency analysis.

    Use Cases:

    Market Analysis: Analyze price trends and historical market behavior of leading cryptocurrencies. Price Prediction: Use the data to build predictive models, such as time-series forecasting for future price movements. Backtesting: Test trading strategies and financial models on historical data. Volatility Analysis: Assess the volatility of top cryptocurrencies to gauge market risk. Overview of the Cryptocurrencies in the Dataset: Bitcoin (BTC): The pioneer cryptocurrency, often referred to as digital gold and used as a store of value. Ethereum (ETH): A decentralized platform for building smart contracts and decentralized applications (DApps). Ripple (XRP): A payment protocol focused on enabling fast and low-cost international transfers. Tether (USDT): A popular stablecoin pegged to the US Dollar, providing price stability for trading and transactions. Solana (SOL): A high-speed blockchain known for low transaction fees and scalability, often seen as a competitor to Ethereum. Binance Coin (BNB): The native token of Binance, the world's largest cryptocurrency exchange, used for various purposes within the Binance ecosystem. Dogecoin (DOGE): Initially a meme-inspired coin, Dogecoin has gained a strong community and mainstream popularity. USD Coin (USDC): A fully-backed stablecoin pegged to the US Dollar, commonly used in decentralized finance (DeFi) applications. Cardano (ADA): A proof-of-stake blockchain focused on scalability, sustainability, and security. Staked Ethereum (STETH): A token representing Ethereum staked in the Ethereum 2.0 network, earning staking rewards.

    This dataset provides a comprehensive overview of key cryptocurrencies that have shaped and continue to influence the digital asset market. Whether you're conducting research, building prediction models, or analyzing trends, this dataset is an essential resource for understanding the evolution of cryptocurrencies from 2014 to December 2024.

  18. f

    Variability in mean payment per physician, number of physicians, and...

    • plos.figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raphael E. Cuomo; Mingxiang Cai; Neal Shah; Tim K. Mackey (2023). Variability in mean payment per physician, number of physicians, and aggregated payments for transactions in the Open Payments database, 2014–2018, for each top-category specialty available for allopathic and osteopathic physicians. [Dataset]. http://doi.org/10.1371/journal.pone.0252656.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Raphael E. Cuomo; Mingxiang Cai; Neal Shah; Tim K. Mackey
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Variability in mean payment per physician, number of physicians, and aggregated payments for transactions in the Open Payments database, 2014–2018, for each top-category specialty available for allopathic and osteopathic physicians.

  19. v

    United States import data of Table top wooden

    • volza.com
    csv
    Updated May 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza.LLC (2021). United States import data of Table top wooden [Dataset]. https://www.volza.com/imports-united-states/united-states-import-data-of-table+top+wooden
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 10, 2021
    Dataset provided by
    Volza.LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2014 - Sep 30, 2021
    Area covered
    United States
    Variables measured
    Count of exporters, Count of importers, Count of shipments, Sum of import value
    Description

    18226 United States import shipment records of Table top wooden with prices, volume & current Buyer’s suppliers relationships based on actual United States import trade database.

  20. W

    Data from: Prescribed burns

    • wifire-data.sdsc.edu
    csv, esri rest +4
    Updated Sep 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). Prescribed burns [Dataset]. https://wifire-data.sdsc.edu/dataset/prescribed-burns
    Explore at:
    html, kml, esri rest, csv, zip, geojsonAvailable download formats
    Dataset updated
    Sep 27, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This layer contains the fire perimeters from the previous calendar year, and those dating back to 1878, for California. Perimeters are sourced from the Fire and Resource Assessment Program (FRAP) and are updated shortly after the end of each calendar year. Information below is from the FRAP web site. There is also a tile cache version of this layer.


    About the Perimeters in this Layer

    Initially CAL FIRE and the USDA Forest Service jointly developed a fire perimeter GIS layer for public and private lands throughout California. The data covered the period 1950 to 2001 and included USFS wildland fires 10 acres and greater, and CAL FIRE fires 300 acres and greater. BLM and NPS joined the effort in 2002, collecting fires 10 acres and greater. Also in 2002, CAL FIRE’s criteria expanded to include timber fires 10 acres and greater in size, brush fires 50 acres and greater in size, grass fires 300 acres and greater in size, wildland fires destroying three or more structures, and wildland fires causing $300,000 or more in damage. As of 2014, the monetary requirement was dropped and the damage requirement is 3 or more habitable structures or commercial structures.

    In 1989, CAL FIRE units were requested to fill in gaps in their fire perimeter data as part of the California Fire Plan. FRAP provided each unit with a preliminary map of 1950-89 fire perimeters. Unit personnel also verified the pre-1989 perimeter maps to determine if any fires were missing or should be re-mapped. Each CAL FIRE Unit then generated a list of 300+ acre fires that started since 1989 using the CAL FIRE Emergency Activity Reporting System (EARS). The CAL FIRE personnel used this list to gather post-1989 perimeter maps for digitizing. The final product is a statewide GIS layer spanning the period 1950-1999.

    CAL FIRE has completed inventory for the majority of its historical perimeters back to 1950. BLM fire perimeters are complete from 2002 to the present. The USFS has submitted records as far back as 1878. The NPS records date to 1921.


    About the Program

    FRAP compiles fire perimeters and has established an on-going fire perimeter data capture process. CAL FIRE, the United States Forest Service Region 5, the Bureau of Land Management, and the National Park Service jointly develop the fire perimeter GIS layer for public and private lands throughout California at the end of the calendar year. Upon release, the data is current as of the last calendar year.

    The fire perimeter database represents the most complete digital record of fire perimeters in California. However it is still incomplete in many respects. Fire perimeter database users must exercise caution to avoid inaccurate or erroneous conclusions. For more information on potential errors and their source please review the methodology section of these pages.

    The fire perimeters database is an Esri ArcGIS file geodatabase with three data layers (feature classes):

    • A layer depicting wildfire perimeters from contributing agencies current as of the previous fire year;
    • A layer depicting prescribed fires supplied from contributing agencies current as of the previous fire year;
    • A layer representing non-prescribed fire fuel reduction projects that were initially included in the database. Fuels reduction projects that are non prescribed fire are no longer included.

    Recommended Uses

    There are many uses for fire perimeter data. For example, it is used on incidents to locate recently burned areas that may affect fire behavior (see map left).

    Other uses include:

    • Improving fire prevention, suppression, and initial attack success.
    • Reduce and track hazards and risks in urban interface areas.
    • Provide information for fire ecology studies for example studying fire effects on vegetation over time.

    Download the Fire Perimeter GIS data here

    Download a statewide map of Fire Perimeters here


    Source: Fire and Resource Assessment Program (FRAP)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Employee Benefits Security Administration (2025). Top Hat Database [Dataset]. https://catalog.data.gov/dataset/top-hat-database-dacbc
Organization logo

Top Hat Database

Explore at:
Dataset updated
Apr 8, 2025
Dataset provided by
Employee Benefits Security Administrationhttps://www.dol.gov/agencies/ebsa
Description

Database consists of filing data for Top Hat plan notices for management and HCE's, who defer income until termination of employment, and are therefore exempt from ERISA.

Search
Clear search
Close search
Google apps
Main menu