ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Traffic-related data collected by the Boston Transportation Department, as well as other City departments and State agencies. Various types of counts: Turning Movement Counts, Automated Traffic Recordings, Pedestrian Counts, Delay Studies, and Gap Studies.
~_Turning Movement Counts (TMC)_ present the number of motor vehicles, pedestrians, and cyclists passing through the particular intersection. Specific movements and crossings are recorded for all street approaches involved with the intersection. This data is used in traffic signal retiming programs and for signal requests. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.
~_Automated Traffic Recordings (ATR)_ record the volume of motor vehicles traveling along a particular road, measures of travel speeds, and approximations of the class of the vehicles (motorcycle, 2-axle, large box truck, bus, etc). This type of count is conducted only along a street link/corridor, to gather data between two intersections or points of interest. This data is used in travel studies, as well as to review concerns about street use, speeding, and capacity. Counts are typically conducted for 12- & 24-Hr periods.
~_Pedestrian Counts (PED)_ record the volume of individual persons crossing a given street, whether at an existing intersection or a mid-block crossing. This data is used to review concerns about crossing safety, as well as for access analysis for points of interest. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.
~_Delay Studies (DEL)_ measure the delay experienced by motor vehicles due to the effects of congestion. Counts are typically conducted for a 1-Hr period at a given intersection or point of intersecting vehicular traffic.
~_Gap Studies (GAP)_ record the number of gaps which are typically present between groups of vehicles traveling through an intersection or past a point on a street. This data is used to assess opportunities for pedestrians to cross the street and for analyses on vehicular “platooning”. Counts are typically conducted for a specific 1-Hr period at a single point of crossing.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global real-time traffic data market size is anticipated to reach USD 15.3 billion by 2032 from an estimated USD 6.5 billion in 2023, exhibiting a robust CAGR of 10.1% over the forecast period. This substantial growth is driven by the increasing need for efficient traffic management systems and the rising adoption of smart city initiatives worldwide. Governments and commercial entities are investing heavily in advanced technologies to optimize traffic flow and enhance urban mobility, thus fostering market expansion.
The surge in urbanization and the consequent rise in vehicle ownership have led to severe traffic congestion issues in many metropolitan areas. This has necessitated the implementation of real-time traffic data systems that can provide accurate and timely information to manage traffic effectively. With the integration of sophisticated technologies such as IoT, AI, and big data analytics, these systems are becoming more efficient, thereby driving market growth. Furthermore, the growing emphasis on reducing carbon emissions and enhancing road safety is also propelling the adoption of real-time traffic data solutions.
Technological advancements are playing a pivotal role in shaping the real-time traffic data market. Innovations in sensor technology, the proliferation of GPS devices, and the widespread use of mobile data are providing rich sources of real-time traffic information. The ability to integrate data from multiple sources and deliver actionable insights is significantly enhancing traffic management capabilities. Additionally, the development of cloud-based solutions is enabling scalable and cost-effective deployment of traffic data systems, further contributing to market growth.
Another critical growth factor is the increasing investment in smart city projects. Governments across the globe are prioritizing the development of smart transportation infrastructure to improve urban mobility and reduce traffic-related issues. Real-time traffic data systems are integral to these initiatives, providing essential data for optimizing traffic flow, enabling route optimization, and enhancing public transport efficiency. The involvement of private sector players in these projects is also fueling market growth by introducing innovative solutions and fostering public-private partnerships.
The exponential rise in Mobile Data Traffic is another significant factor influencing the real-time traffic data market. As more people rely on smartphones and mobile applications for navigation and traffic updates, the demand for real-time data has surged. Mobile data provides a wealth of information about traffic patterns and congestion levels, enabling more accurate and timely traffic management. The integration of mobile data with other data sources, such as GPS and sensor data, enhances the overall effectiveness of traffic data systems. This trend is particularly evident in urban areas where mobile devices are ubiquitous, and the need for efficient traffic management is critical. The ability to harness mobile data for traffic insights is driving innovation and growth in the market, as companies develop new solutions to leverage this valuable resource.
Regionally, North America and Europe are leading the market due to their early adoption of advanced traffic management technologies and significant investments in smart city projects. However, the Asia Pacific region is expected to witness the highest growth rate over the forecast period, driven by rapid urbanization, increasing vehicle ownership, and growing government initiatives to develop smart transportation infrastructure. Emerging economies in Latin America and the Middle East & Africa are also showing promising growth potential, fueled by ongoing infrastructure development and increasing awareness of the benefits of real-time traffic data solutions.
The real-time traffic data market by component is segmented into software, hardware, and services. Each component plays a crucial role in the overall functionality and effectiveness of traffic data systems. The software segment includes traffic management software, route optimization software, and other analytical tools that help process and analyze traffic data. The hardware segment comprises sensors, GPS devices, and other data collection tools. The services segment includes installation, maintenance, and consulting services that support the deployment and operation of traffic data systems
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
You can also access an API version of this dataset.
TMS
(traffic monitoring system) daily-updated traffic counts API
Important note: due to the size of this dataset, you won't be able to open it fully in Excel. Use notepad / R / any software package which can open more than a million rows.
Data reuse caveats: as per license.
Data quality
statement: please read the accompanying user manual, explaining:
how
this data is collected identification
of count stations traffic
monitoring technology monitoring
hierarchy and conventions typical
survey specification data
calculation TMS
operation.
Traffic
monitoring for state highways: user manual
[PDF 465 KB]
The data is at daily granularity. However, the actual update
frequency of the data depends on the contract the site falls within. For telemetry
sites it's once a week on a Wednesday. Some regional sites are fortnightly, and
some monthly or quarterly. Some are only 4 weeks a year, with timing depending
on contractors’ programme of work.
Data quality caveats: you must use this data in
conjunction with the user manual and the following caveats.
The
road sensors used in data collection are subject to both technical errors and
environmental interference.Data
is compiled from a variety of sources. Accuracy may vary and the data
should only be used as a guide.As
not all road sections are monitored, a direct calculation of Vehicle
Kilometres Travelled (VKT) for a region is not possible.Data
is sourced from Waka Kotahi New Zealand Transport Agency TMS data.For
sites that use dual loops classification is by length. Vehicles with a length of less than 5.5m are
classed as light vehicles. Vehicles over 11m long are classed as heavy
vehicles. Vehicles between 5.5 and 11m are split 50:50 into light and
heavy.In September 2022, the National Telemetry contract was handed to a new contractor. During the handover process, due to some missing documents and aged technology, 40 of the 96 national telemetry traffic count sites went offline. Current contractor has continued to upload data from all active sites and have gradually worked to bring most offline sites back online. Please note and account for possible gaps in data from National Telemetry Sites.
The NZTA Vehicle
Classification Relationships diagram below shows the length classification (typically dual loops) and axle classification (typically pneumatic tube counts),
and how these map to the Monetised benefits and costs manual, table A37,
page 254.
Monetised benefits and costs manual [PDF 9 MB]
For the full TMS
classification schema see Appendix A of the traffic counting manual vehicle
classification scheme (NZTA 2011), below.
Traffic monitoring for state highways: user manual [PDF 465 KB]
State highway traffic monitoring (map)
State highway traffic monitoring sites
New York City Department of Transportation (NYC DOT) uses Automated Traffic Recorders (ATR) to collect traffic sample volume counts at bridge crossings and roadways.These counts do not cover the entire year, and the number of days counted per location may vary from year to year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main aim of this dataset is to enable detection of traffic congestion from surveillance cameras using one-stage object detectors. The dataset contains congested and uncongested traffic scenes with their respective labels. This dataset is collected from different surveillance cameras video footage. To prepare the dataset frames are extracted from video sources and resized to a dimension of 500 x 500 with .jpg image format. To Annotate, the image LabelImg software has used. The format of the label is .txt with the same name as the image. The dataset is mainly prepared for YOLO Models but it can be converted to other models format.
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Average Annual Daily Traffic data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain data on the total volume of vehicle traffic on a highway or road for a year divided by 365 days.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This traffic-count data is provided by the City of Pittsburgh's Department of Mobility & Infrastructure (DOMI). Counters were deployed as part of traffic studies, including intersection studies, and studies covering where or whether to install speed humps. In some cases, data may have been collected by the Southwestern Pennsylvania Commission (SPC) or BikePGH.
Data is currently available for only the most-recent count at each location.
Traffic count data is important to the process for deciding where to install speed humps. According to DOMI, they may only be legally installed on streets where traffic counts fall below a minimum threshhold. Residents can request an evaluation of their street as part of DOMI's Neighborhood Traffic Calming Program. The City has also shared data on the impact of the Neighborhood Traffic Calming Program in reducing speeds.
Different studies may collect different data. Speed hump studies capture counts and speeds. SPC and BikePGH conduct counts of cyclists. Intersection studies included in this dataset may not include traffic counts, but reports of individual studies may be requested from the City. Despite the lack of count data, intersection studies are included to facilitate data requests.
Data captured by different types of counting devices are included in this data. StatTrak counters are in use by the City, and capture data on counts and speeds. More information about these devices may be found on the company's website. Data includes traffic counts and average speeds, and may also include separate counts of bicycles.
Tubes are deployed by both SPC and BikePGH and used to count cyclists. SPC may also deploy video counters to collect data.
NOTE: The data in this dataset has not updated since 2021 because of a broken data feed. We're working to fix it.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update NotesMar 16 2024, remove spaces in the file and folder names.Mar 31 2024, delete the underscore in the city names with a space (such as San Francisco) in the '02_TransCAD_results' folder to ensure correct data loading by TransCAD (software version: 9.0).Aug 31 2024, add the 'cityname_link_LinkFlows.csv' file in the '02_TransCAD_results' folder to match the link from input data and the link from TransCAD results (LinkFlows) with the same Link_ID.IntroductionThis is a unified and validated traffic dataset for 20 US cities. There are 3 folders for each city.01 Input datathe initial network data obtained from OpenStreetMap (OSM)the visualization of the OSM dataprocessed node / link / od data02 TransCAD results (software version: 9.0)cityname.dbd : geographical network database of the city supported by TransCAD (version 9.0)cityname_link.shp / cityname_node.shp : network data supported by GIS software, which can be imported into TransCAD manually. Then the corresponding '.dbd' file can be generated for TransCAD with a version lower than 9.0od.mtx : OD matrix supported by TransCADLinkFlows.bin / LinkFlows.csv : traffic assignment results by TransCADcityname_link_LinkFlows.csv: the input link attributes with the traffic assignment results by TransCADShortestPath.mtx / ue_travel_time.csv : the traval time (min) between OD pairs by TransCAD03 AequilibraE results (software version: 0.9.3)cityname.shp : shapefile network data of the city support by QGIS or other GIS softwareod_demand.aem : OD matrix supported by AequilibraEnetwork.csv : the network file used for traffic assignment in AequilibraEassignment_result.csv : traffic assignment results by AequilibraEPublicationXu, X., Zheng, Z., Hu, Z. et al. (2024). A unified dataset for the city-scale traffic assignment model in 20 U.S. cities. Sci Data 11, 325. https://doi.org/10.1038/s41597-024-03149-8Usage NotesIf you use this dataset in your research or any other work, please cite both the dataset and paper above.A brief introduction about how to use this dataset can be found in GitHub. More detailed illustration for compiling the traffic dataset on AequilibraE can be referred to GitHub code or Colab code.ContactIf you have any inquiries, please contact Xiaotong Xu (email: kid-a.xu@connect.polyu.hk).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SDCC Traffic Congestion Saturation Flow Data April to Sept 2024. Traffic volumes, traffic saturation, and congestion data for sites across South Dublin County. Used by traffic management to control stage timings on junctions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the Department of Transport and Main Roads road location details (both spatial and through distance) as well as associated traffic data.
It allows users to locate themselves with respect to road section number and through distance using the spatial coordinates on the state-controlled road network.
Through distance – the distance in kilometres measured from the gazetted start point of the road section.
Note: "Road location and traffic data" resource has been updated as of May 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
roadway gradients
A collection of layers maintained by the Traffic Monitoring Unit.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains hourly data on the traffic volume for westbound I-94, a major interstate highway in the US that connects Minneapolis and St Paul, Minnesota. The data was collected by the Minnesota Department of Transportation (MnDOT) from 2012 to 2018 at a station roughly midway between the two cities.
- holiday: a categorical variable that indicates whether the date is a US national holiday or a regional holiday (such as the Minnesota State Fair).
- temp: a numeric variable that shows the average temperature in kelvin.
- rain_1h: a numeric variable that shows the amount of rain in mm that occurred in the hour.
- snow_1h: a numeric variable that shows the amount of snow in mm that occurred in the hour.
- clouds_all: a numeric variable that shows the percentage of cloud cover.
- weather_main: a categorical variable that gives a short textual description of the current weather (such as Clear, Clouds, Rain, etc.).
- weather_description: a categorical variable that gives a longer textual description of the current weather (such as light rain, overcast clouds, etc.).
- date_time: a datetime variable that shows the hour of the data collected in local CST time.
- traffic_volume: a numeric variable that shows the hourly I-94 reported westbound traffic volume.
The dataset can be used for regression tasks to predict the traffic volume based on the weather and holiday features. It can also be used for exploratory data analysis to understand the patterns and trends of traffic volume over time and across different conditions.
A collection of historic traffic count data and guidelines for how to collect new data for Massachusetts Department of Transportation (MassDOT) projects.
https://www.icpsr.umich.edu/web/ICPSR/studies/38584/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38584/terms
This dataset contains measures of traffic volume per census tract and ZIP code tabulation area (ZCTA) in the United States from 1963 to 2019 (primarily 1997 to 2019). High traffic volume may be used as a proxy for heavy traffic, high traffic speeds, and impediments to walking or biking. The dataset contains measures of the average, maximum, and minimum traffic volume per year or per ZCTA per year. These figures are available for all streets, highways, and non-highways. In the ZCTA dataset, data is collected intermittently across locations over time, therefore traffic volume has been interpolated for years in which no measures are available. Data Source: Traffic volume measurements are derived from Kalibrate's TrafficMetrix database accessed via Esri Demographics. Census tract boundaries come from the 2010 TIGER/Line shapefiles. ZCTA boundaries come from the 2019 TIGER/Line shapefiles.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Linear network representing the estimated traffic flows for roads and highways managed by the Ministry of Transport and Sustainable Mobility (MTMD). These flows are obtained using a statistical estimation method applied to data from more than 4,500 collection sites spread over the main roads of Quebec. It includes DJMA (annual average daily flow), DJME (summer average daily flow), DJME (summer average daily flow (June, July, August, September) and DJMH (average daily winter flow (December, January, February, March) as well as other traffic data. It is important to note that these values are calculated for total traffic directions. Interactive map: Some files are accessible by querying a section of traffic à la carte with a click (the file links are displayed in the descriptive table that is displayed when clicking): • Historical aggregated data (PDF) • Annual reports for permanent sites (PDF and Excel) • Hourly data (hourly average per weekday per month) (Excel) • Annual reports for permanent sites (PDF and Excel) • Hourly data (hourly average per weekday per month) (Excel)**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
The City of Houston captures traffic activity and throughput through the use of traffic counts, which are turned into Average Daily Traffic (ADT) counts estimates to provide...
Leverage the most reliable and compliant mobile device location/foot traffic dataset on the market. Veraset Movement (Mobile Device GPS / Foot Traffic Data) offers unparalleled insights into footfall traffic patterns across North America.
Covering the United States, Canada and Mexico, Veraset's Mobile Location Data draws on raw GPS data from tier-1 apps, SDKs, and aggregators of mobile devices to provide customers with accurate, up-to-the-minute information on human movement. Ideal for ad tech, planning, retail analysis, and transportation logistics, Veraset's Movement data helps in shaping strategy and making data-driven decisions.
Veraset’s North American Movement Panel: - United States: 768M Devices, 70B+ Pings - Canada: 55M+ Devices, 9B+ Pings - Mexico: 125M+ Devices, 14B+ Pings - MAU/Devices and Monthly Pings
Uses for Veraset's Mobile Location Data: - Advertising - Ad Placement, Attribution, and Segmentation - Audience Creation/Building - Dynamic Ad Targeting - Infrastructure Plans - Route Optimization - Public Transit Optimization - Credit Card Loyalty - Competitive Analysis - Risk assessment, Underwriting, and Policy Personalization - Enrichment of Existing Datasets - Trade Area Analysis - Predictive Analytics and Trend Forecasting
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
D.C.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Traffic-related data collected by the Boston Transportation Department, as well as other City departments and State agencies. Various types of counts: Turning Movement Counts, Automated Traffic Recordings, Pedestrian Counts, Delay Studies, and Gap Studies.
~_Turning Movement Counts (TMC)_ present the number of motor vehicles, pedestrians, and cyclists passing through the particular intersection. Specific movements and crossings are recorded for all street approaches involved with the intersection. This data is used in traffic signal retiming programs and for signal requests. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.
~_Automated Traffic Recordings (ATR)_ record the volume of motor vehicles traveling along a particular road, measures of travel speeds, and approximations of the class of the vehicles (motorcycle, 2-axle, large box truck, bus, etc). This type of count is conducted only along a street link/corridor, to gather data between two intersections or points of interest. This data is used in travel studies, as well as to review concerns about street use, speeding, and capacity. Counts are typically conducted for 12- & 24-Hr periods.
~_Pedestrian Counts (PED)_ record the volume of individual persons crossing a given street, whether at an existing intersection or a mid-block crossing. This data is used to review concerns about crossing safety, as well as for access analysis for points of interest. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.
~_Delay Studies (DEL)_ measure the delay experienced by motor vehicles due to the effects of congestion. Counts are typically conducted for a 1-Hr period at a given intersection or point of intersecting vehicular traffic.
~_Gap Studies (GAP)_ record the number of gaps which are typically present between groups of vehicles traveling through an intersection or past a point on a street. This data is used to assess opportunities for pedestrians to cross the street and for analyses on vehicular “platooning”. Counts are typically conducted for a specific 1-Hr period at a single point of crossing.