17 datasets found
  1. f

    Data sources and variables.

    • plos.figshare.com
    xls
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kalindu Abeywickrama; Nehan Perera; Sithesha Samarathunga; Harshani Pabasara; Ruwan Jayathilaka; Krishantha Wisenthige (2024). Data sources and variables. [Dataset]. http://doi.org/10.1371/journal.pone.0307071.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Kalindu Abeywickrama; Nehan Perera; Sithesha Samarathunga; Harshani Pabasara; Ruwan Jayathilaka; Krishantha Wisenthige
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This study examines the determinants influencing the likelihood of Sub-Saharan African (SSA) countries seeking assistance from the International Monetary Fund (IMF). The IMF, as a global institution, aims to promote sustainable growth and prosperity among its member countries by supporting economic strategies that foster financial stability and collaboration in monetary affairs. Utilising panel-probit regression, this study analyses data from thirty-nine SSA countries spanning from 2000 to 2022, focusing on twelve factors: Current Account Balance (CAB), inflation, corruption, General Government Net Lending and Borrowing (GGNLB), General Government Gross Debt (GGGD), Gross Domestic Product Growth (GDPG), United Nations Security Council (UNSC) involvement, regime types (Closed Autocracy, Electoral Democracy, Electoral Autocracy, Liberal Democracy) and China Loan. The results indicate that corruption and GDP growth rate have the most significant influence on the likelihood of SSA countries seeking IMF assistance. Conversely, factors such as CAB, UNSC involvement, LD and inflation show inconsequential effects. Notable, countries like Sudan, Burundi, and Guinea consistently rank high in seeking IMF assistance over various time frames within the observed period. Sudan emerges with a probability of more than 44% in seeking IMF assistance, holding the highest ranking. Study emphasises the importance of understanding SSA region rankings and the variability of variables for policymakers, investors, and international organisations to effectively address economic challenges and provide financial assistance.

  2. Total domestic value added, by exporting country, embodied in total exports...

    • ine.es
    csv, html, json +4
    Updated Jul 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INE - Instituto Nacional de Estadística (2025). Total domestic value added, by exporting country, embodied in total exports of other EU-27 countries. [Dataset]. https://www.ine.es/jaxiT3/Tabla.htm?t=74937&L=1
    Explore at:
    html, txt, json, csv, xlsx, text/pc-axis, xlsAvailable download formats
    Dataset updated
    Jul 16, 2025
    Dataset provided by
    National Statistics Institutehttp://www.ine.es/
    Authors
    INE - Instituto Nacional de Estadística
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Time period covered
    Jan 1, 2010 - Jan 1, 2023
    Variables measured
    Countries, Type of data, Domestic Value Added
    Description

    Panel de indicadores TiVA: Total domestic value added, by exporting country, embodied in total exports of other EU-27 countries. Annual. National.

  3. Total foreign value added by country, embodied in total Spanish exports.

    • ine.es
    csv, html, json +4
    Updated Jul 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INE - Instituto Nacional de Estadística (2025). Total foreign value added by country, embodied in total Spanish exports. [Dataset]. https://www.ine.es/jaxiT3/Tabla.htm?t=74943&L=1
    Explore at:
    xls, csv, txt, html, xlsx, json, text/pc-axisAvailable download formats
    Dataset updated
    Jul 16, 2025
    Dataset provided by
    National Statistics Institutehttp://www.ine.es/
    Authors
    INE - Instituto Nacional de Estadística
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Time period covered
    Jan 1, 2010 - Jan 1, 2023
    Variables measured
    Type of data, Foreign Value Added, Countries and continents
    Description

    Panel de indicadores TiVA: Total foreign value added by country, embodied in total Spanish exports. Annual. National.

  4. COKI Open Access Dataset

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Oct 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Richard Hosking; Richard Hosking; James P. Diprose; James P. Diprose; Aniek Roelofs; Aniek Roelofs; Tuan-Yow Chien; Tuan-Yow Chien; Lucy Montgomery; Lucy Montgomery; Cameron Neylon; Cameron Neylon (2023). COKI Open Access Dataset [Dataset]. http://doi.org/10.5281/zenodo.7048603
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 3, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Richard Hosking; Richard Hosking; James P. Diprose; James P. Diprose; Aniek Roelofs; Aniek Roelofs; Tuan-Yow Chien; Tuan-Yow Chien; Lucy Montgomery; Lucy Montgomery; Cameron Neylon; Cameron Neylon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The COKI Open Access Dataset measures open access performance for 142 countries and 5117 institutions and is available in JSON Lines format. The data is visualised at the COKI Open Access Dashboard: https://open.coki.ac/.

    The COKI Open Access Dataset is created with the COKI Academic Observatory data collection pipeline, which fetches data about research publications from multiple sources, synthesises the datasets and creates the open access calculations for each country and institution.

    Each week a number of specialised research publication datasets are collected. The datasets that are used for the COKI Open Access Dataset release include Crossref Metadata, Microsoft Academic Graph, Unpaywall and the Research Organization Registry.

    After fetching the datasets, they are synthesised to produce aggregate time series statistics for each country and institution in the dataset. The aggregate timeseries statistics include publication count, open access status and citation count.

    See https://open.coki.ac/data/ for the dataset schema. A new version of the dataset is deposited every week.

    Code

    License
    COKI Open Access Dataset © 2022 by Curtin University is licenced under CC BY 4.0.

    Attributions
    This work contains information from:

  5. f

    Odds ratios from an unordered logit model of sustainable development in...

    • plos.figshare.com
    xls
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleksandra Łuczak; Klara Cermakova; Sławomir Kalinowski; Eduard Hromada; Oskar Szczygieł (2025). Odds ratios from an unordered logit model of sustainable development in European Union countries. [Dataset]. http://doi.org/10.1371/journal.pone.0326739.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Aleksandra Łuczak; Klara Cermakova; Sławomir Kalinowski; Eduard Hromada; Oskar Szczygieł
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    European Union
    Description

    Odds ratios from an unordered logit model of sustainable development in European Union countries.

  6. f

    Odds ratios from an unordered logit model of the standard of living in...

    • plos.figshare.com
    xls
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleksandra Łuczak; Klara Cermakova; Sławomir Kalinowski; Eduard Hromada; Oskar Szczygieł (2025). Odds ratios from an unordered logit model of the standard of living in European Union countries. [Dataset]. http://doi.org/10.1371/journal.pone.0326739.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Aleksandra Łuczak; Klara Cermakova; Sławomir Kalinowski; Eduard Hromada; Oskar Szczygieł
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    European Union
    Description

    Odds ratios from an unordered logit model of the standard of living in European Union countries.

  7. f

    The type of development positions are determined by the level of sustainable...

    • plos.figshare.com
    xls
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleksandra Łuczak; Klara Cermakova; Sławomir Kalinowski; Eduard Hromada; Oskar Szczygieł (2025). The type of development positions are determined by the level of sustainable development and standard of living and corresponding development scenarios for European countries in 2017. [Dataset]. http://doi.org/10.1371/journal.pone.0326739.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Aleksandra Łuczak; Klara Cermakova; Sławomir Kalinowski; Eduard Hromada; Oskar Szczygieł
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    The type of development positions are determined by the level of sustainable development and standard of living and corresponding development scenarios for European countries in 2017.

  8. i

    Distribution of touristic expenditure and average daily expenditure made...

    • ine.es
    csv, html, json +4
    Updated Sep 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INE - Instituto Nacional de Estadística (2025). Distribution of touristic expenditure and average daily expenditure made according to country of destination - Monthly top [Dataset]. https://www.ine.es/jaxiT3/Tabla.htm?t=58926&L=1
    Explore at:
    txt, csv, xlsx, xls, text/pc-axis, html, jsonAvailable download formats
    Dataset updated
    Sep 26, 2025
    Dataset authored and provided by
    INE - Instituto Nacional de Estadística
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Time period covered
    Jan 1, 2019 - Jun 1, 2025
    Variables measured
    Countries, Type of data, Tourist Expenditure
    Description

    Distribución del gasto realizado por los residentes en sus visitas al Extranjero según país de destino: Distribution of touristic expenditure and average daily expenditure made according to country of destination - Monthly top. Monthly. National.

  9. f

    Values of synthetic measures for the level of standard of living for...

    • plos.figshare.com
    xls
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleksandra Łuczak; Klara Cermakova; Sławomir Kalinowski; Eduard Hromada; Oskar Szczygieł (2025). Values of synthetic measures for the level of standard of living for European Union countries in 2017–2023. [Dataset]. http://doi.org/10.1371/journal.pone.0326739.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Aleksandra Łuczak; Klara Cermakova; Sławomir Kalinowski; Eduard Hromada; Oskar Szczygieł
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    European Union
    Description

    Values of synthetic measures for the level of standard of living for European Union countries in 2017–2023.

  10. f

    Values of synthetic measures for the level of sustainable development for...

    • plos.figshare.com
    xls
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleksandra Łuczak; Klara Cermakova; Sławomir Kalinowski; Eduard Hromada; Oskar Szczygieł (2025). Values of synthetic measures for the level of sustainable development for European Union countries in 2017–2023. [Dataset]. http://doi.org/10.1371/journal.pone.0326739.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Aleksandra Łuczak; Klara Cermakova; Sławomir Kalinowski; Eduard Hromada; Oskar Szczygieł
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    European Union
    Description

    Values of synthetic measures for the level of sustainable development for European Union countries in 2017–2023.

  11. Total domestic value added, by importing country, embodied in total Spanish...

    • ine.es
    csv, html, json +4
    Updated Jul 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INE - Instituto Nacional de Estadística (2025). Total domestic value added, by importing country, embodied in total Spanish exports. [Dataset]. https://www.ine.es/jaxiT3/Tabla.htm?t=74934&L=1
    Explore at:
    html, xls, csv, txt, xlsx, text/pc-axis, jsonAvailable download formats
    Dataset updated
    Jul 16, 2025
    Dataset provided by
    National Statistics Institutehttp://www.ine.es/
    Authors
    INE - Instituto Nacional de Estadística
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Time period covered
    Jan 1, 2010 - Jan 1, 2023
    Variables measured
    Type of data, Domestic Value Added, Countries and continents
    Description

    Panel de indicadores TiVA: Total domestic value added, by importing country, embodied in total Spanish exports. Annual. National.

  12. Data Countries and Coproductions San Sebastián 1953-2019

    • figshare.com
    xlsx
    Updated Nov 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonio Peláez-Barceló (2021). Data Countries and Coproductions San Sebastián 1953-2019 [Dataset]. http://doi.org/10.6084/m9.figshare.16959691.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 9, 2021
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Antonio Peláez-Barceló
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Donostia-San Sebastian
    Description

    Producing countries of the films programmed in the Official Selection of San Sebastián International Film Festival during 1953-2019.Relación de los países productores de las películas presentadas en la Sección Oficial del Festival Internacional de San Sebastián entre 1953-2019.

  13. f

    Panel probit model estimated results with marginal effect.

    • plos.figshare.com
    xls
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kalindu Abeywickrama; Nehan Perera; Sithesha Samarathunga; Harshani Pabasara; Ruwan Jayathilaka; Krishantha Wisenthige (2024). Panel probit model estimated results with marginal effect. [Dataset]. http://doi.org/10.1371/journal.pone.0307071.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Kalindu Abeywickrama; Nehan Perera; Sithesha Samarathunga; Harshani Pabasara; Ruwan Jayathilaka; Krishantha Wisenthige
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Panel probit model estimated results with marginal effect.

  14. f

    Core indicators for measuring progress towards the SDG targets and related...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katherine C. Sharrock; Teymur Noori; Maria Axelsson; Maria Buti; Asuncion Diaz; Olga Fursa; Greet Hendrickx; Cary James; Irena Klavs; Marko Korenjak; Mojca Maticic; Antons Mozalevskis; Lars Peters; Rafaela Rigoni; Magdalena Rosinska; Kristi Ruutel; Eberhard Schatz; Thomas Seyler; Irene Veldhuijzen; Erika Duffell (2023). Core indicators for measuring progress towards the SDG targets and related 2020 targets. [Dataset]. http://doi.org/10.1371/journal.pgph.0000841.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    PLOS Global Public Health
    Authors
    Katherine C. Sharrock; Teymur Noori; Maria Axelsson; Maria Buti; Asuncion Diaz; Olga Fursa; Greet Hendrickx; Cary James; Irena Klavs; Marko Korenjak; Mojca Maticic; Antons Mozalevskis; Lars Peters; Rafaela Rigoni; Magdalena Rosinska; Kristi Ruutel; Eberhard Schatz; Thomas Seyler; Irene Veldhuijzen; Erika Duffell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Core indicators for measuring progress towards the SDG targets and related 2020 targets.

  15. i

    Excursions, excursions by person and index over the average by Autonomous...

    • ine.es
    csv, html, json +4
    Updated Sep 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INE - Instituto Nacional de Estadística (2025). Excursions, excursions by person and index over the average by Autonomous Community of residence of the excursionists [Dataset]. https://www.ine.es/jaxiT3/Tabla.htm?t=13234&L=1
    Explore at:
    xls, xlsx, txt, text/pc-axis, json, csv, htmlAvailable download formats
    Dataset updated
    Sep 24, 2025
    Dataset authored and provided by
    INE - Instituto Nacional de Estadística
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Time period covered
    Jan 1, 2015 - Apr 1, 2025
    Variables measured
    Type of data, Age semi-brackets, Touristic concept, Countries and Continents, Autonomous Community of residence
    Description

    Residents Travel Survey: Excursions, excursions by person and index over the average by Autonomous Community of residence of the excursionists. Quarterly. Autonomous Communities and Cities.

  16. Excursions, excursions by person and index over the average by Autonomous...

    • ine.es
    csv, html, json +4
    Updated Sep 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INE - Instituto Nacional de Estadística (2025). Excursions, excursions by person and index over the average by Autonomous Community of residence of the travellers [Dataset]. https://www.ine.es/jaxiT3/Tabla.htm?t=13230&L=1
    Explore at:
    csv, html, text/pc-axis, txt, xls, xlsx, jsonAvailable download formats
    Dataset updated
    Sep 24, 2025
    Dataset provided by
    National Statistics Institutehttp://www.ine.es/
    Authors
    INE - Instituto Nacional de Estadística
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Time period covered
    Jan 1, 2015 - Apr 1, 2025
    Variables measured
    Type of data, Age semi-brackets, Touristic concept, Countries and Continents, Autonomous Community of residence
    Description

    Residents Travel Survey: Excursions, excursions by person and index over the average by Autonomous Community of residence of the travellers. Quarterly. Autonomous Communities and Cities.

  17. Travels, overnight stays, average stay and expenditure by Autonomous...

    • ine.es
    csv, html, json +4
    Updated Sep 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INE - Instituto Nacional de Estadística (2025). Travels, overnight stays, average stay and expenditure by Autonomous Community of residence of the travellers [Dataset]. https://www.ine.es/jaxiT3/Tabla.htm?t=12448&L=1
    Explore at:
    text/pc-axis, csv, html, txt, xlsx, xls, jsonAvailable download formats
    Dataset updated
    Sep 24, 2025
    Dataset provided by
    National Statistics Institutehttp://www.ine.es/
    Authors
    INE - Instituto Nacional de Estadística
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Time period covered
    Jan 1, 2015 - Apr 1, 2025
    Variables measured
    Type of data, Touristic concept, Countries and Continents, Autonomous Community of residence
    Description

    Residents Travel Survey: Travels, overnight stays, average stay and expenditure by Autonomous Community of residence of the travellers. Quarterly. Autonomous Communities and Cities.

  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kalindu Abeywickrama; Nehan Perera; Sithesha Samarathunga; Harshani Pabasara; Ruwan Jayathilaka; Krishantha Wisenthige (2024). Data sources and variables. [Dataset]. http://doi.org/10.1371/journal.pone.0307071.t001

Data sources and variables.

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
Jul 16, 2024
Dataset provided by
PLOS ONE
Authors
Kalindu Abeywickrama; Nehan Perera; Sithesha Samarathunga; Harshani Pabasara; Ruwan Jayathilaka; Krishantha Wisenthige
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This study examines the determinants influencing the likelihood of Sub-Saharan African (SSA) countries seeking assistance from the International Monetary Fund (IMF). The IMF, as a global institution, aims to promote sustainable growth and prosperity among its member countries by supporting economic strategies that foster financial stability and collaboration in monetary affairs. Utilising panel-probit regression, this study analyses data from thirty-nine SSA countries spanning from 2000 to 2022, focusing on twelve factors: Current Account Balance (CAB), inflation, corruption, General Government Net Lending and Borrowing (GGNLB), General Government Gross Debt (GGGD), Gross Domestic Product Growth (GDPG), United Nations Security Council (UNSC) involvement, regime types (Closed Autocracy, Electoral Democracy, Electoral Autocracy, Liberal Democracy) and China Loan. The results indicate that corruption and GDP growth rate have the most significant influence on the likelihood of SSA countries seeking IMF assistance. Conversely, factors such as CAB, UNSC involvement, LD and inflation show inconsequential effects. Notable, countries like Sudan, Burundi, and Guinea consistently rank high in seeking IMF assistance over various time frames within the observed period. Sudan emerges with a probability of more than 44% in seeking IMF assistance, holding the highest ranking. Study emphasises the importance of understanding SSA region rankings and the variability of variables for policymakers, investors, and international organisations to effectively address economic challenges and provide financial assistance.

Search
Clear search
Close search
Google apps
Main menu