Use this search engine to generate custom tables of orbital and/or physical parameters for all asteroids and comets (or a specified sub-set) in our small-body database. If this is your first time here, you may find it helpful to read our tutorial. Otherwise, simply follow the steps in each section: 'Search Constraints', 'Output Fields', and finally 'Format Options'. If you want details for a single object, use the Small Body Browser instead.
You can check the fields description in the documentation: current Full database: https://docs.dataforseo.com/v3/databases/google/full/?bash; Historical Full database: https://docs.dataforseo.com/v3/databases/google/history/full/?bash.
Full Google Database is a combination of the Advanced Google SERP Database and Google Keyword Database.
Google SERP Database offers millions of SERPs collected in 67 regions with most of Google’s advanced SERP features, including featured snippets, knowledge graphs, people also ask sections, top stories, and more.
Google Keyword Database encompasses billions of search terms enriched with related Google Ads data: search volume trends, CPC, competition, and more.
This database is available in JSON format only.
You don’t have to download fresh data dumps in JSON – we can deliver data straight to your storage or database. We send terrabytes of data to dozens of customers every month using Amazon S3, Google Cloud Storage, Microsoft Azure Blob, Eleasticsearch, and Google Big Query. Let us know if you’d like to get your data to any other storage or database.
You can check the fields description in the documentation: current Keyword database: https://docs.dataforseo.com/v3/databases/google/keywords/?bash; Historical Keyword database: https://docs.dataforseo.com/v3/databases/google/history/keywords/?bash. You don’t have to download fresh data dumps in JSON or CSV – we can deliver data straight to your storage or database. We send terrabytes of data to dozens of customers every month using Amazon S3, Google Cloud Storage, Microsoft Azure Blob, Eleasticsearch, and Google Big Query. Let us know if you’d like to get your data to any other storage or database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Canada Internet Usage: Search Engine Market Share: Mobile: Haosou data was reported at 0.010 % in 28 Sep 2024. This stayed constant from the previous number of 0.010 % for 27 Sep 2024. Canada Internet Usage: Search Engine Market Share: Mobile: Haosou data is updated daily, averaging 0.010 % from Sep 2024 (Median) to 28 Sep 2024, with 11 observations. The data reached an all-time high of 0.010 % in 28 Sep 2024 and a record low of 0.010 % in 28 Sep 2024. Canada Internet Usage: Search Engine Market Share: Mobile: Haosou data remains active status in CEIC and is reported by Statcounter Global Stats. The data is categorized under Global Database’s Canada – Table CA.SC.IU: Internet Usage: Search Engine Market Share.
Engine and database to search the three-dimensional fragments within 3D RNA structures using as an input the sequence(s) and / or secondary structure(s) given in the dot-bracket notation. The database contains RNA sequences and secondary structures, described in the dot-bracket notation, derived from PDB-deposited RNA structures and their complexes. It also contains atom coordinates of the unmodified and modified nucleotide and nucleoside residues extracted from the PDB-deposited RNA structures, as well as torsion and pseudotorsion angle values, sugar pucker parameters and classification of base pair types given for the PBD-deposited RNA structures. Knowledge of the three dimensional RNA structure is crucial for all fields of biomolecular research. In contrast to the protein field, only about 1.300 experimentally derived structures of RNAs are deposited in the Protein Data Bank (PDB). To complement the results of experimental studies, new approaches based on bioinformatics and calculation are pursued in several laboratories to make tertiary RNA structure prediction possible. RNA FRABASE version 2.0 should greatly facilitate various RNA structure modelling approaches, RNA structure analysis and motif searching. If one compares the three dimensional RNA structure to a spatial puzzle, the RNA FRABASE allows to pull out a defined piece of this puzzle - the 3D RNA fragment. The architecture of the web-accessible RNA FRABASE engine and database is based on the following information path: PDB-deposited RNA structures �� RNA sequences and secondary structures described in the dot-bracket notation �� secondary structures of RNA fragments �� 3D RNA fragments. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide on the spot structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA structures is provided.
Business Listings Database is the source of point-of-interest data and can provide you with all the information you need to analyze how specific places are used, what kinds of audiences they attract, and how their visitor profile changes over time.
The full fields description may be found on this page: https://docs.dataforseo.com/v3/databases/business_listings/?bash
United States agricultural researchers have many options for making their data available online. This dataset aggregates the primary sources of ag-related data and determines where researchers are likely to deposit their agricultural data. These data serve as both a current landscape analysis and also as a baseline for future studies of ag research data. Purpose As sources of agricultural data become more numerous and disparate, and collaboration and open data become more expected if not required, this research provides a landscape inventory of online sources of open agricultural data. An inventory of current agricultural data sharing options will help assess how the Ag Data Commons, a platform for USDA-funded data cataloging and publication, can best support data-intensive and multi-disciplinary research. It will also help agricultural librarians assist their researchers in data management and publication. The goals of this study were to establish where agricultural researchers in the United States-- land grant and USDA researchers, primarily ARS, NRCS, USFS and other agencies -- currently publish their data, including general research data repositories, domain-specific databases, and the top journals compare how much data is in institutional vs. domain-specific vs. federal platforms determine which repositories are recommended by top journals that require or recommend the publication of supporting data ascertain where researchers not affiliated with funding or initiatives possessing a designated open data repository can publish data Approach The National Agricultural Library team focused on Agricultural Research Service (ARS), Natural Resources Conservation Service (NRCS), and United States Forest Service (USFS) style research data, rather than ag economics, statistics, and social sciences data. To find domain-specific, general, institutional, and federal agency repositories and databases that are open to US research submissions and have some amount of ag data, resources including re3data, libguides, and ARS lists were analysed. Primarily environmental or public health databases were not included, but places where ag grantees would publish data were considered. Search methods We first compiled a list of known domain specific USDA / ARS datasets / databases that are represented in the Ag Data Commons, including ARS Image Gallery, ARS Nutrition Databases (sub-components), SoyBase, PeanutBase, National Fungus Collection, i5K Workspace @ NAL, and GRIN. We then searched using search engines such as Bing and Google for non-USDA / federal ag databases, using Boolean variations of “agricultural data” /“ag data” / “scientific data” + NOT + USDA (to filter out the federal / USDA results). Most of these results were domain specific, though some contained a mix of data subjects. We then used search engines such as Bing and Google to find top agricultural university repositories using variations of “agriculture”, “ag data” and “university” to find schools with agriculture programs. Using that list of universities, we searched each university web site to see if their institution had a repository for their unique, independent research data if not apparent in the initial web browser search. We found both ag specific university repositories and general university repositories that housed a portion of agricultural data. Ag specific university repositories are included in the list of domain-specific repositories. Results included Columbia University – International Research Institute for Climate and Society, UC Davis – Cover Crops Database, etc. If a general university repository existed, we determined whether that repository could filter to include only data results after our chosen ag search terms were applied. General university databases that contain ag data included Colorado State University Digital Collections, University of Michigan ICPSR (Inter-university Consortium for Political and Social Research), and University of Minnesota DRUM (Digital Repository of the University of Minnesota). We then split out NCBI (National Center for Biotechnology Information) repositories. Next we searched the internet for open general data repositories using a variety of search engines, and repositories containing a mix of data, journals, books, and other types of records were tested to determine whether that repository could filter for data results after search terms were applied. General subject data repositories include Figshare, Open Science Framework, PANGEA, Protein Data Bank, and Zenodo. Finally, we compared scholarly journal suggestions for data repositories against our list to fill in any missing repositories that might contain agricultural data. Extensive lists of journals were compiled, in which USDA published in 2012 and 2016, combining search results in ARIS, Scopus, and the Forest Service's TreeSearch, plus the USDA web sites Economic Research Service (ERS), National Agricultural Statistics Service (NASS), Natural Resources and Conservation Service (NRCS), Food and Nutrition Service (FNS), Rural Development (RD), and Agricultural Marketing Service (AMS). The top 50 journals' author instructions were consulted to see if they (a) ask or require submitters to provide supplemental data, or (b) require submitters to submit data to open repositories. Data are provided for Journals based on a 2012 and 2016 study of where USDA employees publish their research studies, ranked by number of articles, including 2015/2016 Impact Factor, Author guidelines, Supplemental Data?, Supplemental Data reviewed?, Open Data (Supplemental or in Repository) Required? and Recommended data repositories, as provided in the online author guidelines for each the top 50 journals. Evaluation We ran a series of searches on all resulting general subject databases with the designated search terms. From the results, we noted the total number of datasets in the repository, type of resource searched (datasets, data, images, components, etc.), percentage of the total database that each term comprised, any dataset with a search term that comprised at least 1% and 5% of the total collection, and any search term that returned greater than 100 and greater than 500 results. We compared domain-specific databases and repositories based on parent organization, type of institution, and whether data submissions were dependent on conditions such as funding or affiliation of some kind. Results A summary of the major findings from our data review: Over half of the top 50 ag-related journals from our profile require or encourage open data for their published authors. There are few general repositories that are both large AND contain a significant portion of ag data in their collection. GBIF (Global Biodiversity Information Facility), ICPSR, and ORNL DAAC were among those that had over 500 datasets returned with at least one ag search term and had that result comprise at least 5% of the total collection. Not even one quarter of the domain-specific repositories and datasets reviewed allow open submission by any researcher regardless of funding or affiliation. See included README file for descriptions of each individual data file in this dataset. Resources in this dataset:Resource Title: Journals. File Name: Journals.csvResource Title: Journals - Recommended repositories. File Name: Repos_from_journals.csvResource Title: TDWG presentation. File Name: TDWG_Presentation.pptxResource Title: Domain Specific ag data sources. File Name: domain_specific_ag_databases.csvResource Title: Data Dictionary for Ag Data Repository Inventory. File Name: Ag_Data_Repo_DD.csvResource Title: General repositories containing ag data. File Name: general_repos_1.csvResource Title: README and file inventory. File Name: README_InventoryPublicDBandREepAgData.txt
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Use this search engine to generate custom tables of orbital and/or physical parameters for all asteroids and comets (or a specified sub-set) in our small-body database. If this is your first time here, you may find it helpful to read our tutorial. Otherwise, simply follow the steps in each section: 'Search Constraints', 'Output Fields', and finally 'Format Options'. If you want details for a single object, use the Small Body Browser instead.