Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the dataset used for pre-training in "ReasonBERT: Pre-trained to Reason with Distant Supervision", EMNLP'21.
There are two files:
sentence_pairs_for_pretrain_no_tokenization.tar.gz -> Contain only sentences as evidence, Text-only
table_pairs_for_pretrain_no_tokenization.tar.gz -> At least one piece of evidence is a table, Hybrid
The data is chunked into multiple tar files for easy loading. We use WebDataset, a PyTorch Dataset (IterableDataset) implementation providing efficient sequential/streaming data access.
For pre-training code, or if you have any questions, please check our GitHub repo https://github.com/sunlab-osu/ReasonBERT
Below is a sample code snippet to load the data
import webdataset as wds
url = './sentence_multi_pairs_for_pretrain_no_tokenization/{000000...000763}.tar' dataset = ( wds.Dataset(url) .shuffle(1000) # cache 1000 samples and shuffle .decode() .to_tuple("json") .batched(20) # group every 20 examples into a batch )
Below we show how the data is organized with two examples.
Text-only
{'s1_text': 'Sils is a municipality in the comarca of Selva, in Catalonia, Spain.', # query sentence 's1_all_links': { 'Sils,_Girona': [[0, 4]], 'municipality': [[10, 22]], 'Comarques_of_Catalonia': [[30, 37]], 'Selva': [[41, 46]], 'Catalonia': [[51, 60]] }, # list of entities and their mentions in the sentence (start, end location) 'pairs': [ # other sentences that share common entity pair with the query, group by shared entity pairs { 'pair': ['Comarques_of_Catalonia', 'Selva'], # the common entity pair 's1_pair_locs': [[[30, 37]], [[41, 46]]], # mention of the entity pair in the query 's2s': [ # list of other sentences that contain the common entity pair, or evidence { 'md5': '2777e32bddd6ec414f0bc7a0b7fea331', 'text': 'Selva is a coastal comarque (county) in Catalonia, Spain, located between the mountain range known as the Serralada Transversal or Puigsacalm and the Costa Brava (part of the Mediterranean coast). Unusually, it is divided between the provinces of Girona and Barcelona, with Fogars de la Selva being part of Barcelona province and all other municipalities falling inside Girona province. Also unusually, its capital, Santa Coloma de Farners, is no longer among its larger municipalities, with the coastal towns of Blanes and Lloret de Mar having far surpassed it in size.', 's_loc': [0, 27], # in addition to the sentence containing the common entity pair, we also keep its surrounding context. 's_loc' is the start/end location of the actual evidence sentence 'pair_locs': [ # mentions of the entity pair in the evidence [[19, 27]], # mentions of entity 1 [[0, 5], [288, 293]] # mentions of entity 2 ], 'all_links': { 'Selva': [[0, 5], [288, 293]], 'Comarques_of_Catalonia': [[19, 27]], 'Catalonia': [[40, 49]] } } ,...] # there are multiple evidence sentences }, ,...] # there are multiple entity pairs in the query }
Hybrid
{'s1_text': 'The 2006 Major League Baseball All-Star Game was the 77th playing of the midseason exhibition baseball game between the all-stars of the American League (AL) and National League (NL), the two leagues comprising Major League Baseball.', 's1_all_links': {...}, # same as text-only 'sentence_pairs': [{'pair': ..., 's1_pair_locs': ..., 's2s': [...]}], # same as text-only 'table_pairs': [ 'tid': 'Major_League_Baseball-1', 'text':[ ['World Series Records', 'World Series Records', ...], ['Team', 'Number of Series won', ...], ['St. Louis Cardinals (NL)', '11', ...], ...] # table content, list of rows 'index':[ [[0, 0], [0, 1], ...], [[1, 0], [1, 1], ...], ...] # index of each cell [row_id, col_id]. we keep only a table snippet, but the index here is from the original table. 'value_ranks':[ [0, 0, ...], [0, 0, ...], [0, 10, ...], ...] # if the cell contain numeric value/date, this is its rank ordered from small to large, follow TAPAS 'value_inv_ranks': [], # inverse rank 'all_links':{ 'St._Louis_Cardinals': { '2': [ [[2, 0], [0, 19]], # [[row_id, col_id], [start, end]] ] # list of mentions in the second row, the key is row_id }, 'CARDINAL:11': {'2': [[[2, 1], [0, 2]]], '8': [[[8, 3], [0, 2]]]}, } 'name': '', # table name, if exists 'pairs': { 'pair': ['American_League', 'National_League'], 's1_pair_locs': [[[137, 152]], [[162, 177]]], # mention in the query 'table_pair_locs': { '17': [ # mention of entity pair in row 17 [ [[17, 0], [3, 18]], [[17, 1], [3, 18]], [[17, 2], [3, 18]], [[17, 3], [3, 18]] ], # mention of the first entity [ [[17, 0], [21, 36]], [[17, 1], [21, 36]], ] # mention of the second entity ] } } ] }
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Music Grounding by Short Video E-commerce (MGSV-EC) Dataset
📄 [Paper] 📦 Feature File 🔧 [PyTorch Dataloader] 🧬 [Model Code]
📝 Dataset Summary
MGSV-EC is a large-scale dataset for the new task of Music Grounding by Short Video (MGSV), which aims to localize a specific music segment that best serves as the background music (BGM) for a given query short video.Unlike traditional video-to-music retrieval (V2MR), MGSV requires both… See the full description on the dataset page: https://huggingface.co/datasets/xxayt/MGSV-EC.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
WiFi CSI-based Long-Range Person Localization Using Directional Antennas
This repository contains the HAllway LOCalization (HALOC) dataset and WiFi system CAD files as proposed in [1].
PyTroch Dataloader
A minimal PyTorch dataloader for the HALOC dataset is provided at: https://github.com/StrohmayerJ/HALOC
Dataset Description
The HALOC dataset comprises six sequences (in .csv format) of synchronized WiFi Channel State Information (CSI) and 3D position labels. Each row in a given .csv file represents a single WiFi packet captured via ESP-IDF, with CSI and 3D coordinates stored in the "data" and ("x", "y", "z") fields, respectively.
The sequences are divided into training, validation, and test subsets as follows:
Subset Sequences
Training 0.csv, 1.csv, 2.csv and 3.csv
Validation 4.csv
Test 5.csv
WiFi System CAD files
We provide CAD files for the 3D printable parts of the proposed WiFi system consisting of the main housing (housing.stl), the lid (lid.stl), and the carrier board (carrier.stl) featuring mounting points for the Nvidia Jetson Orin Nano and the ESP32-S3-DevKitC-1 module.
Download and UseThis data may be used for non-commercial research purposes only. If you publish material based on this data, we request that you include a reference to our paper [1].
[1] Strohmayer, J., and Kampel, M. (2024). “WiFi CSI-based Long-Range Person Localization Using Directional Antennas”, The Second Tiny Papers Track at ICLR 2024, May 2024, Vienna, Austria. https://openreview.net/forum?id=AOJFcEh5Eb
BibTeX citation:
@inproceedings{strohmayer2024wifi,title={WiFi {CSI}-based Long-Range Person Localization Using Directional Antennas},author={Julian Strohmayer and Martin Kampel},booktitle={The Second Tiny Papers Track at ICLR 2024},year={2024},url={https://openreview.net/forum?id=AOJFcEh5Eb}}
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
On the Generalization of WiFi-based Person-centric Sensing in Through-Wall Scenarios
This repository contains the 3DO dataset proposed in [1].
PyTroch Dataloader
A minimal PyTorch dataloader for the 3DO dataset is provided at: https://github.com/StrohmayerJ/3DO
Dataset Description
The 3DO dataset comprises 42 five-minute recordings (~1.25M WiFi packets) of three human activities performed by a single person, captured in a WiFi through-wall sensing scenario over three consecutive days. Each WiFi packet is annotated with a 3D trajectory label and a class label for the activities: no person/background (0), walking (1), sitting (2), and lying (3). (Note: The labels returned in our dataloader example are walking (0), sitting (1), and lying (2), because background sequences are not used.)
The directories 3DO/d1/
, 3DO/d2/
, and 3DO/d3/
contain the sequences from days 1, 2, and 3, respectively. Furthermore, each sequence directory (e.g., 3DO/d1/w1/
) contains a csiposreg.csv
file storing the raw WiFi packet time series and a csiposreg_complex.npy
cache file, which stores the complex Channel State Information (CSI) of the WiFi packet time series. (If missing, csiposreg_complex.npy
is automatically generated by the provided dataloader.)
Dataset Structure:
/3DO
├── d1 <-- day 1 subdirectory
└── w1 <-- sequence subdirectory
└── csiposreg.csv <-- raw WiFi packet time series
└── csiposreg_complex.npy <-- CSI time series cache
├── d2 <-- day 2 subdirectory
├── d3 <-- day 3 subdirectory
In [1], we use the following training, validation, and test split:
Subset | Day | Sequences |
Train | 1 | w1, w2, w3, s1, s2, s3, l1, l2, l3 |
Val | 1 | w4, s4, l4 |
Test | 1 | w5 , s5, l5 |
Test | 2 | w1, w2, w3, w4, w5, s1, s2, s3, s4, s5, l1, l2, l3, l4, l5 |
Test | 3 | w1, w2, w4, w5, s1, s2, s3, s4, s5, l1, l2, l4 |
w = walking, s = sitting and l= lying
Note: On each day, we additionally recorded three ten-minute background sequences (b1, b2, b3), which are provided as well.
Download and Use
This data may be used for non-commercial research purposes only. If you publish material based on this data, we request that you include a reference to our paper [1].
[1] Strohmayer, J., Kampel, M. (2025). On the Generalization of WiFi-Based Person-Centric Sensing in Through-Wall Scenarios. In: Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15315. Springer, Cham. https://doi.org/10.1007/978-3-031-78354-8_13
BibTeX citation:
@inproceedings{strohmayerOn2025, author="Strohmayer, Julian and Kampel, Martin",
title="On the Generalization of WiFi-Based Person-Centric Sensing in Through-Wall Scenarios",
booktitle="Pattern Recognition",
year="2025",
publisher="Springer Nature Switzerland",
address="Cham",
pages="194--211",
isbn="978-3-031-78354-8" }
InfantMarmosetsVox is a dataset for multi-class call-type and caller identification. It contains audio recordings of different individual marmosets and their call-types. The dataset contains a total of 350 files of precisely labelled 10-minute audio recordings across all caller classes. The audio was recorded from five pairs of infant marmoset twins, each recorded individually in two separate sound-proofed recording rooms at a sampling rate of 44.1 kHz. The start and end time, call-type, and marmoset identity of each vocalization are provided, labeled by an experienced researcher. A PyTorch Dataloader is included in this dataset.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the dataset used for pre-training in "ReasonBERT: Pre-trained to Reason with Distant Supervision", EMNLP'21.
There are two files:
sentence_pairs_for_pretrain_no_tokenization.tar.gz -> Contain only sentences as evidence, Text-only
table_pairs_for_pretrain_no_tokenization.tar.gz -> At least one piece of evidence is a table, Hybrid
The data is chunked into multiple tar files for easy loading. We use WebDataset, a PyTorch Dataset (IterableDataset) implementation providing efficient sequential/streaming data access.
For pre-training code, or if you have any questions, please check our GitHub repo https://github.com/sunlab-osu/ReasonBERT
Below is a sample code snippet to load the data
import webdataset as wds
url = './sentence_multi_pairs_for_pretrain_no_tokenization/{000000...000763}.tar' dataset = ( wds.Dataset(url) .shuffle(1000) # cache 1000 samples and shuffle .decode() .to_tuple("json") .batched(20) # group every 20 examples into a batch )
Below we show how the data is organized with two examples.
Text-only
{'s1_text': 'Sils is a municipality in the comarca of Selva, in Catalonia, Spain.', # query sentence 's1_all_links': { 'Sils,_Girona': [[0, 4]], 'municipality': [[10, 22]], 'Comarques_of_Catalonia': [[30, 37]], 'Selva': [[41, 46]], 'Catalonia': [[51, 60]] }, # list of entities and their mentions in the sentence (start, end location) 'pairs': [ # other sentences that share common entity pair with the query, group by shared entity pairs { 'pair': ['Comarques_of_Catalonia', 'Selva'], # the common entity pair 's1_pair_locs': [[[30, 37]], [[41, 46]]], # mention of the entity pair in the query 's2s': [ # list of other sentences that contain the common entity pair, or evidence { 'md5': '2777e32bddd6ec414f0bc7a0b7fea331', 'text': 'Selva is a coastal comarque (county) in Catalonia, Spain, located between the mountain range known as the Serralada Transversal or Puigsacalm and the Costa Brava (part of the Mediterranean coast). Unusually, it is divided between the provinces of Girona and Barcelona, with Fogars de la Selva being part of Barcelona province and all other municipalities falling inside Girona province. Also unusually, its capital, Santa Coloma de Farners, is no longer among its larger municipalities, with the coastal towns of Blanes and Lloret de Mar having far surpassed it in size.', 's_loc': [0, 27], # in addition to the sentence containing the common entity pair, we also keep its surrounding context. 's_loc' is the start/end location of the actual evidence sentence 'pair_locs': [ # mentions of the entity pair in the evidence [[19, 27]], # mentions of entity 1 [[0, 5], [288, 293]] # mentions of entity 2 ], 'all_links': { 'Selva': [[0, 5], [288, 293]], 'Comarques_of_Catalonia': [[19, 27]], 'Catalonia': [[40, 49]] } } ,...] # there are multiple evidence sentences }, ,...] # there are multiple entity pairs in the query }
Hybrid
{'s1_text': 'The 2006 Major League Baseball All-Star Game was the 77th playing of the midseason exhibition baseball game between the all-stars of the American League (AL) and National League (NL), the two leagues comprising Major League Baseball.', 's1_all_links': {...}, # same as text-only 'sentence_pairs': [{'pair': ..., 's1_pair_locs': ..., 's2s': [...]}], # same as text-only 'table_pairs': [ 'tid': 'Major_League_Baseball-1', 'text':[ ['World Series Records', 'World Series Records', ...], ['Team', 'Number of Series won', ...], ['St. Louis Cardinals (NL)', '11', ...], ...] # table content, list of rows 'index':[ [[0, 0], [0, 1], ...], [[1, 0], [1, 1], ...], ...] # index of each cell [row_id, col_id]. we keep only a table snippet, but the index here is from the original table. 'value_ranks':[ [0, 0, ...], [0, 0, ...], [0, 10, ...], ...] # if the cell contain numeric value/date, this is its rank ordered from small to large, follow TAPAS 'value_inv_ranks': [], # inverse rank 'all_links':{ 'St._Louis_Cardinals': { '2': [ [[2, 0], [0, 19]], # [[row_id, col_id], [start, end]] ] # list of mentions in the second row, the key is row_id }, 'CARDINAL:11': {'2': [[[2, 1], [0, 2]]], '8': [[[8, 3], [0, 2]]]}, } 'name': '', # table name, if exists 'pairs': { 'pair': ['American_League', 'National_League'], 's1_pair_locs': [[[137, 152]], [[162, 177]]], # mention in the query 'table_pair_locs': { '17': [ # mention of entity pair in row 17 [ [[17, 0], [3, 18]], [[17, 1], [3, 18]], [[17, 2], [3, 18]], [[17, 3], [3, 18]] ], # mention of the first entity [ [[17, 0], [21, 36]], [[17, 1], [21, 36]], ] # mention of the second entity ] } } ] }