Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.
Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.
ger_train.csv – The German training set as CSV file.
ger_validation.csv – The German validation set as CSV file.
en_test.csv – The English test set as CSV file.
en_train.csv – The English training set as CSV file.
en_validation.csv – The English validation set as CSV file.
splitting.py – The python code for splitting a dataset into train, test and validation set.
DataSetTrans_de.csv – The final German dataset as a CSV file.
DataSetTrans_en.csv – The final English dataset as a CSV file.
translation.py – The python code for translating the cleaned dataset.
Overview
This repository contains ready-to-use frequency time series as well as the corresponding pre-processing scripts in python. The data covers three synchronous areas of the European power grid:
This work is part of the paper "Predictability of Power Grid Frequency"[1]. Please cite this paper, when using the data and the code. For a detailed documentation of the pre-processing procedure we refer to the supplementary material of the paper.
Data sources
We downloaded the frequency recordings from publically available repositories of three different Transmission System Operators (TSOs).
Content of the repository
A) Scripts
The python scripts run with Python 3.7 and with the packages found in "requirements.txt".
B) Yearly converted and cleansed data
The folders "
Use cases
We point out that this repository can be used in two different was:
Use pre-processed data: You can directly use the converted or the cleansed data. Note however, that both data sets include segments of NaN-values due to missing and corrupted recordings. Only a very small part of the NaN-values were eliminated in the cleansed data to not manipulate the data too much.
Produce your own cleansed data: Depending on your application, you might want to cleanse the data in a custom way. You can easily add your custom cleansing procedure in "clean_corrupted_data.py" and then produce cleansed data from the raw data in "
License
This work is licensed under multiple licenses, which are located in the "LICENSES" folder.
Changelog
Version 2:
Version 3:
The dataset is gathered on Sep. 17th 2020 from GitHub. It has more than 5.2K Python repositories and 4.2M type annotations. The dataset is also de-duplicated using the CD4Py tool. Check out the README.MD file for the description of the dataset. Notable changes to each version of the dataset are documented in CHANGELOG.md. The dataset's scripts and utilities are available on its GitHub repository.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The folder named “submission” contains the following:
ijgis.yml
: This file lists all the Python libraries and dependencies required to run the code.ijgis.yml
file to create a Python project and environment. Ensure you activate the environment before running the code.pythonProject
folder contains several .py
files and subfolders, each with specific functionality as described below..png
file for each column of the raw gaze and IMU recordings, color-coded with logged events..csv
files.overlapping_sliding_window_loop.py
.plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5))
in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line..csv
files in the results folder.This part contains three main code blocks:
iii. One for the XGboost code with correct hyperparameter tuning:
Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of
Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.
.csv
file containing inferred labels.The data is licensed under CC-BY, the code is licensed under MIT.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analyzing customers’ characteristics and giving the early warning of customer churn based on machine learning algorithms, can help enterprises provide targeted marketing strategies and personalized services, and save a lot of operating costs. Data cleaning, oversampling, data standardization and other preprocessing operations are done on 900,000 telecom customer personal characteristics and historical behavior data set based on Python language. Appropriate model parameters were selected to build BPNN (Back Propagation Neural Network). Random Forest (RF) and Adaboost, the two classic ensemble learning models were introduced, and the Adaboost dual-ensemble learning model with RF as the base learner was put forward. The four models and the other four classical machine learning models-decision tree, naive Bayes, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) were utilized respectively to analyze the customer churn data. The results show that the four models have better performance in terms of recall rate, precision rate, F1 score and other indicators, and the RF-Adaboost dual-ensemble model has the best performance. Among them, the recall rates of BPNN, RF, Adaboost and RF-Adaboost dual-ensemble model on positive samples are respectively 79%, 90%, 89%,93%, the precision rates are 97%, 99%, 98%, 99%, and the F1 scores are 87%, 95%, 94%, 96%. The RF-Adaboost dual-ensemble model has the best performance, and the three indicators are 10%, 1%, and 6% higher than the reference. The prediction results of customer churn provide strong data support for telecom companies to adopt appropriate retention strategies for pre-churn customers and reduce customer churn.
Wikipedia dataset containing cleaned articles of all languages. The datasets are built from the Wikipedia dump (https://dumps.wikimedia.org/) with one split per language. Each example contains the content of one full Wikipedia article with cleaning to strip markdown and unwanted sections (references, etc.).
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('wikipedia', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains the Europe PMC full text corpus, a collection of 300 articles from the Europe PMC Open Access subset. Each article contains 3 core entity types, manually annotated by curators: Gene/Protein, Disease and Organism.
Corpus Directory Structure
annotations/: contains annotations of the 300 full-text articles in the Europe PMC corpus. Annotations are provided in 3 different formats.
hypothesis/csv/: contains raw annotations fetched from the annotation platform Hypothes.is in comma-separated values (CSV) format.
GROUP0/: contains raw manual annotations made by curator GROUP0.
GROUP1/: contains raw manual annotations made by curator GROUP1.
GROUP2/: contains raw manual annotations made by curator GROUP2.
IOB/: contains automatically extracted annotations using raw manual annotations in hypothesis/csv/, which is in Inside–Outside–Beginning tagging format.
dev/: contains IOB format annotations of 45 articles, suppose to be used a dev set in machine learning task.
test/: contains IOB format annotations of 45 articles, suppose to be used a test set in machine learning task.
train/: contains IOB format annotations of 210 articles, suppose to be used a training set in machine learning task.
JSON/: contains automatically extracted annotations using raw manual annotations in hypothesis/csv/, which is in JSON format. README.md: a detailed description of all the annotation formats.
articles/: contains the full-text articles annotated in Europe PMC corpus.
Sentencised/: contains XML articles whose text has been split into sentences using the Europe PMC sentenciser. XML/: contains XML articles directly fetched using Europe PMC Article Restful API. README.md: a detailed description of the sentencising and fetching of XML articles.
docs/: contains related documents that were used for generating the corpus.
Annotation guideline.pdf: annotation guideline that is provided to curators to assist the manual annotation. demo to molecular conenctions.pdf: annotation platform guideline that is provided to curator to help them get familiar with the Hypothes.is platform. Training set development.pdf: initial document that details the paper selection procedures.
pilot/: contains annotations and articles that were used in a pilot study.
annotations/csv/: contains raw annotations fetched from the annotation platform Hypothes.is in comma-separated values (CSV) format. articles/: contains the full-text articles annotated in the pilot study.
Sentencised/: contains XML articles whose text has been split into sentences using the Europe PMC sentenciser.
XML/: contains XML articles directly fetched using Europe PMC Article Restful API.
README.md: a detailed description of the sentencising and fetching of XML articles.
src/: source codes for cleaning annotations and generating IOB files
metrics/ner_metrics.py: Python script contains SemEval evaluation metrics. annotations.py: Python script used to extract annotations from raw Hypothes.is annotations. generate_IOB_dataset.py: Python script used to convert JSON format annotations to IOB tagging format. generate_json_dataset.py: Python script used to extract annotations to JSON format. hypothesis.py: Python script used to fetch raw Hypothes.is annotations.
License
CCBY
Feedback
For any comment, question, and suggestion, please contact us through helpdesk@europepmc.org or Europe PMC contact page.
WikiHow is a new large-scale dataset using the online WikiHow (http://www.wikihow.com/) knowledge base.
There are two features: - text: wikihow answers texts. - headline: bold lines as summary.
There are two separate versions: - all: consisting of the concatenation of all paragraphs as the articles and the bold lines as the reference summaries. - sep: consisting of each paragraph and its summary.
Download "wikihowAll.csv" and "wikihowSep.csv" from https://github.com/mahnazkoupaee/WikiHow-Dataset and place them in manual folder https://www.tensorflow.org/datasets/api_docs/python/tfds/download/DownloadConfig. Train/validation/test splits are provided by the authors. Preprocessing is applied to remove short articles (abstract length < 0.75 article length) and clean up extra commas.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('wikihow', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data Owner: Y. Aussat, S. Keshav Data File: 32.8 MB zip file containing the data files and description Data Description: This dataset contains daylight signals collected over approximately 200 days in four unoccupied offices in the Davis Center building at the University of Waterloo. Thus, these measure the available daylight in the room. Light levels were measured using custom-built light sensing modules based on the Omega Onion microcomputer with a light sensor. An example of the module is shown in the file sensing-module.png in this directory. Each sensing module is named using four hex digits. We started all modules on August 30, 2018, which corresponds to minute 0 in the dataset. However, the modules were not deployed immediately. Below are the times when we started collecting the light data in each office and corresponding sensing module names. Office number Devices Start time DC3526 af65, b02d September 6, 2018, 11:00 am DC2518 afa7 September 6, 2018, 11:00 am DC2319 af67, f073 September 21, 2018, 11:00 am DC3502 afa5, b969 September 21, 2018, 11:00 am Moreover, due to some technical problems, the initial 6 days for offices 1 and 2 and initial 21 days for offices 3 and 4 are dummy data and should be ignored. Finally, there were two known outages in DC during the data collection process: from 00:00 AM to 4:00 AM on September 17, 2018 from 11:00pm on 10/9/2018 until 7:45am on October 10, 2018 We stopped collecting the data around 2:45 pm on May 16, 2019. Therefore, we have 217 uninterrupted days of clean collected data from October 11, 2018 to May 15, 2019. To take care of these problems, we have provided a python script process-lighting-data.ipynb that extracts clean data from the raw data. Both raw and processed data are provided as described next. Raw data: Raw data folder names correspond to the device names. The light sensing modules log (minute_count, visible_light, IR_light) every minute to a file. Here, minute 0 corresponds to August 30, 2018. Every 1440 minutes (i.e., 1 day) we saved the current file, created a new one, and started writing to it. The filename format is {device_name}_{starting_minute}. For example Omega-AF65_28800.csv is data collected by Omega-AF65, starting at minute 28800. A metadata file can also be found in each folder with the details of the log file structure. Processed data: The folder named ‘processed_data’ contains the processed data, which results from running the python script. Each file in this directory is named after the device ID, for example af65.csv stores the processed data of the device Omega-AF65. The columns in this file are: Minutes: Consecutive minute of the experiment Illum: Illumination level (lux) Min_from_midnight: Minutes from midnight of the current day Day_of_exp: Count of the day number starting from October 11, 2018 Day_of_year: Day of the year Funding: The Natural Sciences and Engineering Research Council of Canada (NSERC)
The purpose of this data release is to provide data in support of the Bureau of Land Management's (BLM) Reasonably Foreseeable Development (RFD) Scenario by estimating water-use associated with oil and gas extraction methods within the BLM Carlsbad Field Office (CFO) planning area, located in Eddy and Lea Counties as well as part of Chaves County, New Mexico. Three comma separated value files and two python scripts are included in this data release. It was determined that all reported oil and gas wells within Chaves County from the FracFocus and New Mexico Oil Conservation Division (NM OCD) databases were outside of the CFO administration area and were excluded from well_records.csv and modeled_estimates.csv. Data from Chaves County are included in the produced_water.csv file to be consistent with the BLM’s water support document. Data were synthesized into comma separated values which include, produced_water.csv (volume) from NM OCD, well_records.csv (including _location and completion) from NM OCD and FracFocus, and modeled_estimates.csv (using FracFocus as well as Ball and others (2020) as input data). The results from modeled_estimates.csv were obtained using a previously published regression model (McShane and McDowell, 2021) to estimate water use associated with unconventional oil and gas activities in the Permian Basin (Valder and others, 2021) for the period of interest (2010-2021). Additionally, python scripts to process, clean, and categorize FracFocus data are provided in this data release.
This dataset was created by Debdatta Chatterjee
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The construction of the dataset involved meticulous processes, including converting production into standardized unit, yield calculation for each dataset, standardization of column names, assembly of data, extensive data cleaning, and making it a hopefully robust and reliable resource for understanding spatial yield distribution in the region.
Data Sources: The dataset comprises seven spatialized yield data sources, six of which are from the LSMS-ISA program (Mali 2014, Mali 2017, Mali 2018, Benin 2018, Burkina Faso 2018, Niger 2018) and one from the RHoMIS study (only Mali 2017 and Burkina Faso 2018 data selected).
Dataset Preparation Methods: The preparation involved integration of machine-readable files, data cleaning and finalization using Python/Jupyter Notebook. This process should ensure the accuracy and consistency of the dataset. Yield have been calculated with declared production quantities and GPS-measured plot areas. Each yield value corresponds to a single plot.
Discussion: This dataset, with its extensive data compilation, presents an invaluable resource for agricultural productivity-related studies in West Africa. However, users must navigate its complexities, including potential biases due to survey and due to UML units, and data inconsistencies. The dataset's comprehensive nature requires careful handling and validation in research applications.
Authors Contributions:
Funding: This project was funded by the INTEN-SAHEL TOSCA project (Centre national d’études spatiales). "123456789" was chosen randomly and is not the actual award number because there is none, but it was mandatory to put one here on Zenodo.
Changelog:
v1.0.0 : initial submission
Overview Welcome to Kaggle's third annual Machine Learning and Data Science Survey ― and our second-ever survey data challenge. You can read our executive summary here.
This year, as in 2017 and 2018, we set out to conduct an industry-wide survey that presents a truly comprehensive view of the state of data science and machine learning. The survey was live for three weeks in October, and after cleaning the data we finished with 19,717 responses!
There's a lot to explore here. The results include raw numbers about who is working with data, what’s happening with machine learning in different industries, and the best ways for new data scientists to break into the field. We've published the data in as raw a format as possible without compromising anonymization, which makes it an unusual example of a survey dataset.
Challenge This year Kaggle is launching the second annual Data Science Survey Challenge, where we will be awarding a prize pool of $30,000 to notebook authors who tell a rich story about a subset of the data science and machine learning community.
In our third year running this survey, we were once again awed by the global, diverse, and dynamic nature of the data science and machine learning industry. This survey data EDA provides an overview of the industry on an aggregate scale, but it also leaves us wanting to know more about the many specific communities comprised within the survey. For that reason, we’re inviting the Kaggle community to dive deep into the survey datasets and help us tell the diverse stories of data scientists from around the world.
The challenge objective: tell a data story about a subset of the data science community represented in this survey, through a combination of both narrative text and data exploration. A “story” could be defined any number of ways, and that’s deliberate. The challenge is to deeply explore (through data) the impact, priorities, or concerns of a specific group of data science and machine learning practitioners. That group can be defined in the macro (for example: anyone who does most of their coding in Python) or the micro (for example: female data science students studying machine learning in masters programs). This is an opportunity to be creative and tell the story of a community you identify with or are passionate about!
Submissions will be evaluated on the following:
Composition - Is there a clear narrative thread to the story that’s articulated and supported by data? The subject should be well defined, well researched, and well supported through the use of data and visualizations. Originality - Does the reader learn something new through this submission? Or is the reader challenged to think about something in a new way? A great entry will be informative, thought provoking, and fresh all at the same time. Documentation - Are your code, and notebook, and additional data sources well documented so a reader can understand what you did? Are your sources clearly cited? A high quality analysis should be concise and clear at each step so the rationale is easy to follow and the process is reproducible To be valid, a submission must be contained in one notebook, made public on or before the submission deadline. Participants are free to use any datasets in addition to the Kaggle Data Science survey, but those datasets must also be publicly available on Kaggle by the deadline for a submission to be valid.
How to Participate To make a submission, complete the submission form. Only one submission will be judged per participant, so if you make multiple submissions we will review the last (most recent) entry.
No submission is necessary for the Weekly Notebook Award. To be eligible, a notebook must be public and use the 2019 Data Science Survey as a data source.
Submission deadline: 11:59PM UTC, December 2nd, 2019.
Survey Methodology This survey received 19,717 usable respondents from 171 countries and territories. If a country or territory received less than 50 respondents, we grouped them into a group named “Other” for anonymity.
We excluded respondents who were flagged by our survey system as “Spam”.
Most of our respondents were found primarily through Kaggle channels, like our email list, discussion forums and social media channels.
The survey was live from October 8th to October 28th. We allowed respondents to complete the survey at any time during that window. The median response time for those who participated in the survey was approximately 10 minutes.
Not every question was shown to every respondent. You can learn more about the different segments we used in the survey_schema.csv file. In general, respondents with more experience were asked more questions and respondents with less experience were asked less questions.
To protect the respondents’ identity, the answers to multiple choice questions have been separated into a separate data file from the open-ended responses. We do not provide a key to match up the multiple choice and free form responses. Further, the free form responses have been randomized column-wise such that the responses that appear on the same row did not necessarily come from the same survey-taker.
Multiple choice single response questions fit into individual columns whereas multiple choice multiple response questions were split into multiple columns. Text responses were encoded to protect user privacy and countries with fewer than 50 respondents were grouped into the category "other".
Data has been released under a CC 2.0 license: https://creativecommons.org/licenses/by/2.0/
Kitsune Network Attack Dataset This is a collection of nine network attack datasets captured from a either an IP-based commercial surveillance system or a network full of IoT devices. Each dataset contains millions of network packets and diffrent cyber attack within it.
For each attack, you are supplied with:
A preprocessed dataset in csv format (ready for machine learning) The corresponding label vector in csv format The original network capture in pcap format (in case you want to engineer your own features)
We will now describe in detail what's in these datasets and how they were collected.
The Network Attacks We have collected a wide variety of attacks which you would find in a real network intrusion. The following is a list of the cyber attack datasets avalaible:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F827271%2F79e305668553e521b0709a2413323c45%2Fkaggle_dataset_table.png?generation=1598461684070844&alt=media" alt="image" width="100">
For more details on the attacks themselves, please refer to our NDSS paper (citation below).
The Data Collection The following figure presents the network topologies which we used to collect the data, and the corrisponding attack vectors at which the attacks were performed. The network capture took place at point 1 and point X at the router (where a network intrusion detection system could feasibly be placed). For each dataset, clean network traffic was captured for the first 1 million packets, then the cyber attack was performed.
The Dataset Format Each preprocessed dataset csv has m rows (packets) and 115 columns (features) with no header. The 115 features were extracted using our AfterImage feature extractor, described in our NDSS paper (see below) and available in Python here. In summary, the 115 features provide a statistical snapshot of the network (hosts and behaviors) in the context of the current packet traversing the network. The AfterImage feature extractor is unique in that it can efficiently process millions of streams (network channels) in real-time, incrementally, making it suitable for handling network traffic.
Citation If you use these datasets, please cite:
@inproceedings{mirsky2018kitsune, title={Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection}, author={Mirsky, Yisroel and Doitshman, Tomer and Elovici, Yuval and Shabtai, Asaf}, booktitle={The Network and Distributed System Security Symposium (NDSS) 2018}, year={2018} }
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
T cell receptors (TR) underpin the diversity and specificity of T cell activity. As such, TR repertoire data is valuable both as an adaptive immune biomarker, and as a way to identify candidate therapeutic TR. Analysis of TR repertoires relies heavily on computational analysis, and therefore it is of vital importance that the data is standardized and computer-readable. However in practice, the usage of different abbreviations and non-standard nomenclature in different datasets makes this data pre-processing non-trivial. tidytcells is a lightweight, platform-independent Python package that provides easy-to-use standardization tools specifically designed for TR nomenclature. The software is open-sourced under the MIT license and is available to install from the Python Package Index (PyPI). At the time of publishing, tidytcells is on version 2.0.0.
These datasets contain cleaned data survey results from the October 2021-January 2022 survey titled "The Impact of COVID-19 on Technical Services Units". This data was gathered from a Qualtrics survey, which was anonymized to prevent Qualtrics from gathering identifiable information from respondents. These specific iterations of data reflect cleaning and standardization so that data can be analyzed using Python. Ultimately, the three files reflect the removal of survey begin/end times, other data auto-recorded by Qualtrics, blank rows, blank responses after question four (the first section of the survey), and non-United States responses. Note that State names for "What state is your library located in?" (Q36) were also standardized beginning in Impact_of_COVID_on_Tech_Services_Clean_3.csv to aid in data analysis. In this step, state abbreviations were spelled out and spelling errors were corrected.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe Department of Rehabilitation Medicine is key to improving patients’ quality of life. Driven by chronic diseases and an aging population, there is a need to enhance the efficiency and resource allocation of outpatient facilities. This study aims to analyze the treatment preferences of outpatient rehabilitation patients by using data and a grading tool to establish predictive models. The goal is to improve patient visit efficiency and optimize resource allocation through these predictive models.MethodsData were collected from 38 Chinese institutions, including 4,244 patients visiting outpatient rehabilitation clinics. Data processing was conducted using Python software. The pandas library was used for data cleaning and preprocessing, involving 68 categorical and 12 continuous variables. The steps included handling missing values, data normalization, and encoding conversion. The data were divided into 80% training and 20% test sets using the Scikit-learn library to ensure model independence and prevent overfitting. Performance comparisons among XGBoost, random forest, and logistic regression were conducted using metrics, including accuracy and receiver operating characteristic (ROC) curves. The imbalanced learning library’s SMOTE technique was used to address the sample imbalance during model training. The model was optimized using a confusion matrix and feature importance analysis, and partial dependence plots (PDP) were used to analyze the key influencing factors.ResultsXGBoost achieved the highest overall accuracy of 80.21% with high precision and recall in Category 1. random forest showed a similar overall accuracy. Logistic Regression had a significantly lower accuracy, indicating difficulties with nonlinear data. The key influencing factors identified include distance to medical institutions, arrival time, length of hospital stay, and specific diseases, such as cardiovascular, pulmonary, oncological, and orthopedic conditions. The tiered diagnosis and treatment tool effectively helped doctors assess patients’ conditions and recommend suitable medical institutions based on rehabilitation grading.ConclusionThis study confirmed that ensemble learning methods, particularly XGBoost, outperform single models in classification tasks involving complex datasets. Addressing class imbalance and enhancing feature engineering can further improve model performance. Understanding patient preferences and the factors influencing medical institution selection can guide healthcare policies to optimize resource allocation, improve service quality, and enhance patient satisfaction. Tiered diagnosis and treatment tools play a crucial role in helping doctors evaluate patient conditions and make informed recommendations for appropriate medical care.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Database of Uniaxial Cyclic and Tensile Coupon Tests for Structural Metallic Materials
Background
This dataset contains data from monotonic and cyclic loading experiments on structural metallic materials. The materials are primarily structural steels and one iron-based shape memory alloy is also included. Summary files are included that provide an overview of the database and data from the individual experiments is also included.
The files included in the database are outlined below and the format of the files is briefly described. Additional information regarding the formatting can be found through the post-processing library (https://github.com/ahartloper/rlmtp/tree/master/protocols).
Usage
The data is licensed through the Creative Commons Attribution 4.0 International.
If you have used our data and are publishing your work, we ask that you please reference both:
this database through its DOI, and
any publication that is associated with the experiments. See the Overall_Summary and Database_References files for the associated publication references.
Included Files
Overall_Summary_2022-08-25_v1-0-0.csv: summarises the specimen information for all experiments in the database.
Summarized_Mechanical_Props_Campaign_2022-08-25_v1-0-0.csv: summarises the average initial yield stress and average initial elastic modulus per campaign.
Unreduced_Data-#_v1-0-0.zip: contain the original (not downsampled) data
Where # is one of: 1, 2, 3, 4, 5, 6. The unreduced data is broken into separate archives because of upload limitations to Zenodo. Together they provide all the experimental data.
We recommend you un-zip all the folders and place them in one "Unreduced_Data" directory similar to the "Clean_Data"
The experimental data is provided through .csv files for each test that contain the processed data. The experiments are organised by experimental campaign and named by load protocol and specimen. A .pdf file accompanies each test showing the stress-strain graph.
There is a "db_tag_clean_data_map.csv" file that is used to map the database summary with the unreduced data.
The computed yield stresses and elastic moduli are stored in the "yield_stress" directory.
Clean_Data_v1-0-0.zip: contains all the downsampled data
The experimental data is provided through .csv files for each test that contain the processed data. The experiments are organised by experimental campaign and named by load protocol and specimen. A .pdf file accompanies each test showing the stress-strain graph.
There is a "db_tag_clean_data_map.csv" file that is used to map the database summary with the clean data.
The computed yield stresses and elastic moduli are stored in the "yield_stress" directory.
Database_References_v1-0-0.bib
Contains a bibtex reference for many of the experiments in the database. Corresponds to the "citekey" entry in the summary files.
File Format: Downsampled Data
These are the "LP_
The header of the first column is empty: the first column corresponds to the index of the sample point in the original (unreduced) data
Time[s]: time in seconds since the start of the test
e_true: true strain
Sigma_true: true stress in MPa
(optional) Temperature[C]: the surface temperature in degC
These data files can be easily loaded using the pandas library in Python through:
import pandas data = pandas.read_csv(data_file, index_col=0)
The data is formatted so it can be used directly in RESSPyLab (https://github.com/AlbanoCastroSousa/RESSPyLab). Note that the column names "e_true" and "Sigma_true" were kept for backwards compatibility reasons with RESSPyLab.
File Format: Unreduced Data
These are the "LP_
The first column is the index of each data point
S/No: sample number recorded by the DAQ
System Date: Date and time of sample
Time[s]: time in seconds since the start of the test
C_1_Force[kN]: load cell force
C_1_Déform1[mm]: extensometer displacement
C_1_Déplacement[mm]: cross-head displacement
Eng_Stress[MPa]: engineering stress
Eng_Strain[]: engineering strain
e_true: true strain
Sigma_true: true stress in MPa
(optional) Temperature[C]: specimen surface temperature in degC
The data can be loaded and used similarly to the downsampled data.
File Format: Overall_Summary
The overall summary file provides data on all the test specimens in the database. The columns include:
hidden_index: internal reference ID
grade: material grade
spec: specifications for the material
source: base material for the test specimen
id: internal name for the specimen
lp: load protocol
size: type of specimen (M8, M12, M20)
gage_length_mm_: unreduced section length in mm
avg_reduced_dia_mm_: average measured diameter for the reduced section in mm
avg_fractured_dia_top_mm_: average measured diameter of the top fracture surface in mm
avg_fractured_dia_bot_mm_: average measured diameter of the bottom fracture surface in mm
fy_n_mpa_: nominal yield stress
fu_n_mpa_: nominal ultimate stress
t_a_deg_c_: ambient temperature in degC
date: date of test
investigator: person(s) who conducted the test
location: laboratory where test was conducted
machine: setup used to conduct test
pid_force_k_p, pid_force_t_i, pid_force_t_d: PID parameters for force control
pid_disp_k_p, pid_disp_t_i, pid_disp_t_d: PID parameters for displacement control
pid_extenso_k_p, pid_extenso_t_i, pid_extenso_t_d: PID parameters for extensometer control
citekey: reference corresponding to the Database_References.bib file
yield_stress_mpa_: computed yield stress in MPa
elastic_modulus_mpa_: computed elastic modulus in MPa
fracture_strain: computed average true strain across the fracture surface
c,si,mn,p,s,n,cu,mo,ni,cr,v,nb,ti,al,b,zr,sn,ca,h,fe: chemical compositions in units of %mass
file: file name of corresponding clean (downsampled) stress-strain data
File Format: Summarized_Mechanical_Props_Campaign
Meant to be loaded in Python as a pandas DataFrame with multi-indexing, e.g.,
tab1 = pd.read_csv('Summarized_Mechanical_Props_Campaign_' + date + version + '.csv', index_col=[0, 1, 2, 3], skipinitialspace=True, header=[0, 1], keep_default_na=False, na_values='')
citekey: reference in "Campaign_References.bib".
Grade: material grade.
Spec.: specifications (e.g., J2+N).
Yield Stress [MPa]: initial yield stress in MPa
size, count, mean, coefvar: number of experiments in campaign, number of experiments in mean, mean value for campaign, coefficient of variation for campaign
Elastic Modulus [MPa]: initial elastic modulus in MPa
size, count, mean, coefvar: number of experiments in campaign, number of experiments in mean, mean value for campaign, coefficient of variation for campaign
Caveats
The files in the following directories were tested before the protocol was established. Therefore, only the true stress-strain is available for each:
A500
A992_Gr50
BCP325
BCR295
HYP400
S460NL
S690QL/25mm
S355J2_Plates/S355J2_N_25mm and S355J2_N_50mm
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Clean Open Legal Data
Overview |
Dataset Structure |
Key Fields |
Example Entry |
Using the Dataset with Python |
License
Overview
This dataset is a comprehensive collection of open legal case records in JSONL format. It comprises 251,038 cases extracted and processed from the Open Legal Data dump (as of 2022-10-18). The dataset is designed for legal research, data science, and natural language processing applications. While… See the full description on the dataset page: https://huggingface.co/datasets/harshildarji/openlegaldata.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This tar file contains all 100 trained models in the MME-only ensemble from Experiment 1 (i.e., those trained with clean data, not with lightly perturbed data). To read one of the models into Python, you can use the method neural_net.read_model in the ml4rt library.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.
Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.
ger_train.csv – The German training set as CSV file.
ger_validation.csv – The German validation set as CSV file.
en_test.csv – The English test set as CSV file.
en_train.csv – The English training set as CSV file.
en_validation.csv – The English validation set as CSV file.
splitting.py – The python code for splitting a dataset into train, test and validation set.
DataSetTrans_de.csv – The final German dataset as a CSV file.
DataSetTrans_en.csv – The final English dataset as a CSV file.
translation.py – The python code for translating the cleaned dataset.