Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books and is filtered where the book is Data structures and software development in an object-oriented domain, featuring 7 columns including author, BNB id, book, book publisher, and ISBN. The preview is ordered by publication date (descending).
Under the direction and funding of the National Cooperative Mapping Program with guidance and encouragement from the United States Geological Survey (USGS), a digital database of three-dimensional (3D) vector data, displayed as two-dimensional (2D) data-extent bounding polygons. This geodatabase is to act as a virtual and digital inventory of 3D structure contour and isopach vector data for the USGS National Geologic Synthesis (NGS) team. This data will be available visually through a USGS web application and can be queried using complimentary nonspatial tables associated with each data harboring polygon. This initial publication contains 60 datasets collected directly from USGS specific publications and federal repositories. Further publications of dataset collections in versioned releases will be annotated in additional appendices, respectfully. These datasets can be identified from their specific version through their nonspatial tables. This digital dataset contains spatial extents of the 2D geologic vector data as polygon features that are attributed with unique identifiers that link the spatial data to nonspatial tables that define the data sources used and describe various aspects of each published model. The nonspatial DataSources table includes full citation and URL address for both published model reports, any digital model data released as a separate publication, and input type of vector data, using several classification schemes. A tabular glossary defines terms used in the dataset. A tabular data dictionary describes the entity and attribute information for all attributes of the geospatial data and the accompanying nonspatial tables.
description: The Dictionary of Algorithms and Data Structures (DADS) is an online, publicly accessible dictionary of generally useful algorithms, data structures, algorithmic techniques, archetypal problems, and related definitions. In addition to brief definitions, some entries have links to related entries, links to implementations, and additional information. DADS is meant to be a resource for the practicing programmer, although students and researchers may find it a useful starting point. DADS has fundamental entries in areas such as theory, cryptography and compression, graphs, trees, and searching, for instance, Ackermann's function, quick sort, traveling salesman, big O notation, merge sort, AVL tree, hash table, and Byzantine generals. DADS also has index pages that list entries by area and by type. Currently DADS does not include algorithms particular to business data processing, communications, operating systems or distributed algorithms, programming languages, AI, graphics, or numerical analysis.; abstract: The Dictionary of Algorithms and Data Structures (DADS) is an online, publicly accessible dictionary of generally useful algorithms, data structures, algorithmic techniques, archetypal problems, and related definitions. In addition to brief definitions, some entries have links to related entries, links to implementations, and additional information. DADS is meant to be a resource for the practicing programmer, although students and researchers may find it a useful starting point. DADS has fundamental entries in areas such as theory, cryptography and compression, graphs, trees, and searching, for instance, Ackermann's function, quick sort, traveling salesman, big O notation, merge sort, AVL tree, hash table, and Byzantine generals. DADS also has index pages that list entries by area and by type. Currently DADS does not include algorithms particular to business data processing, communications, operating systems or distributed algorithms, programming languages, AI, graphics, or numerical analysis.
The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision (LOMRs) that have been issued against those databases since their publication date. The DFIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper Flood Insurance Rate Maps(FIRMs). The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The NFHL data are derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The specifications for the horizontal control of DFIRM data are consistent with those required for mapping at a scale of 1:12,000. The NFHL data contain layers in the Standard DFIRM datasets except for S_Label_Pt and S_Label_Ld. The NFHL is available as State or US Territory data sets. Each State or Territory data set consists of all DFIRMs and corresponding LOMRs available on the publication date of the data set.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book subjects and is filtered where the books includes Data structures and abstractions with Java. It has 10 columns such as book subject, earliest publication date, latest publication date, average publication date, and number of authors. The data is ordered by earliest publication date (descending).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data management is a critical aspect of empirical research. Unfortunately, principles of good data management are rarely taught to social scientists in a systematic way as part of their methods training. As a result, researchers often do things in an ad hoc fashion and have to learn from their mistakes.
The Qualitative Data Repository (QDR, www.qdr.org) presented a webinar on social science data management, with a special focus on keeping qualitative data safe and secure. The webinar will emphasize best practices with the aim of helping participants to save time and minimize frustration in their future research endeavors. We will cover the following topics:
1) The value of planning and Data Management Plans (DMPs)
2) Transparency and data documentation
3) Ethical, legal, and logistical challenges to sharing qualitative data and best practices to address them
4) Keeping data safe and secure.
Attribution: Parts of this presentation are based on slides used in a course co-taught by personnel from QDR and the UK Data Service. All materials provided under a CC-BY license.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data collected during a study ("Towards High-Value Datasets determination for data-driven development: a systematic literature review") conducted by Anastasija Nikiforova (University of Tartu), Nina Rizun, Magdalena Ciesielska (Gdańsk University of Technology), Charalampos Alexopoulos (University of the Aegean) and Andrea Miletič (University of Zagreb) It being made public both to act as supplementary data for "Towards High-Value Datasets determination for data-driven development: a systematic literature review" paper (pre-print is available in Open Access here -> https://arxiv.org/abs/2305.10234) and in order for other researchers to use these data in their own work.
The protocol is intended for the Systematic Literature review on the topic of High-value Datasets with the aim to gather information on how the topic of High-value datasets (HVD) and their determination has been reflected in the literature over the years and what has been found by these studies to date, incl. the indicators used in them, involved stakeholders, data-related aspects, and frameworks. The data in this dataset were collected in the result of the SLR over Scopus, Web of Science, and Digital Government Research library (DGRL) in 2023.
Methodology
To understand how HVD determination has been reflected in the literature over the years and what has been found by these studies to date, all relevant literature covering this topic has been studied. To this end, the SLR was carried out to by searching digital libraries covered by Scopus, Web of Science (WoS), Digital Government Research library (DGRL).
These databases were queried for keywords ("open data" OR "open government data") AND ("high-value data*" OR "high value data*"), which were applied to the article title, keywords, and abstract to limit the number of papers to those, where these objects were primary research objects rather than mentioned in the body, e.g., as a future work. After deduplication, 11 articles were found unique and were further checked for relevance. As a result, a total of 9 articles were further examined. Each study was independently examined by at least two authors.
To attain the objective of our study, we developed the protocol, where the information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information.
Test procedure Each study was independently examined by at least two authors, where after the in-depth examination of the full-text of the article, the structured protocol has been filled for each study. The structure of the survey is available in the supplementary file available (see Protocol_HVD_SLR.odt, Protocol_HVD_SLR.docx) The data collected for each study by two researchers were then synthesized in one final version by the third researcher.
Description of the data in this data set
Protocol_HVD_SLR provides the structure of the protocol Spreadsheets #1 provides the filled protocol for relevant studies. Spreadsheet#2 provides the list of results after the search over three indexing databases, i.e. before filtering out irrelevant studies
The information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information
Descriptive information
1) Article number - a study number, corresponding to the study number assigned in an Excel worksheet
2) Complete reference - the complete source information to refer to the study
3) Year of publication - the year in which the study was published
4) Journal article / conference paper / book chapter - the type of the paper -{journal article, conference paper, book chapter}
5) DOI / Website- a link to the website where the study can be found
6) Number of citations - the number of citations of the article in Google Scholar, Scopus, Web of Science
7) Availability in OA - availability of an article in the Open Access
8) Keywords - keywords of the paper as indicated by the authors
9) Relevance for this study - what is the relevance level of the article for this study? {high / medium / low}
Approach- and research design-related information 10) Objective / RQ - the research objective / aim, established research questions 11) Research method (including unit of analysis) - the methods used to collect data, including the unit of analy-sis (country, organisation, specific unit that has been ana-lysed, e.g., the number of use-cases, scope of the SLR etc.) 12) Contributions - the contributions of the study 13) Method - whether the study uses a qualitative, quantitative, or mixed methods approach? 14) Availability of the underlying research data- whether there is a reference to the publicly available underly-ing research data e.g., transcriptions of interviews, collected data, or explanation why these data are not shared? 15) Period under investigation - period (or moment) in which the study was conducted 16) Use of theory / theoretical concepts / approaches - does the study mention any theory / theoretical concepts / approaches? If any theory is mentioned, how is theory used in the study?
Quality- and relevance- related information
17) Quality concerns - whether there are any quality concerns (e.g., limited infor-mation about the research methods used)?
18) Primary research object - is the HVD a primary research object in the study? (primary - the paper is focused around the HVD determination, sec-ondary - mentioned but not studied (e.g., as part of discus-sion, future work etc.))
HVD determination-related information
19) HVD definition and type of value - how is the HVD defined in the article and / or any other equivalent term?
20) HVD indicators - what are the indicators to identify HVD? How were they identified? (components & relationships, “input -> output")
21) A framework for HVD determination - is there a framework presented for HVD identification? What components does it consist of and what are the rela-tionships between these components? (detailed description)
22) Stakeholders and their roles - what stakeholders or actors does HVD determination in-volve? What are their roles?
23) Data - what data do HVD cover?
24) Level (if relevant) - what is the level of the HVD determination covered in the article? (e.g., city, regional, national, international)
Format of the file .xls, .csv (for the first spreadsheet only), .odt, .docx
Licenses or restrictions CC-BY
For more info, see README.txt
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This folder contains the Spider-Realistic dataset used for evaluation in the paper "Structure-Grounded Pretraining for Text-to-SQL". The dataset is created based on the dev split of the Spider dataset (2020-06-07 version from https://yale-lily.github.io/spider). We manually modified the original questions to remove the explicit mention of column names while keeping the SQL queries unchanged to better evaluate the model's capability in aligning the NL utterance and the DB schema. For more details, please check our paper at https://arxiv.org/abs/2010.12773.
It contains the following files:
- spider-realistic.json
# The spider-realistic evaluation set
# Examples: 508
# Databases: 19
- dev.json
# The original dev split of Spider
# Examples: 1034
# Databases: 20
- tables.json
# The original DB schemas from Spider
# Databases: 166
- README.txt
- license
The Spider-Realistic dataset is created based on the dev split of the Spider dataset realsed by Yu, Tao, et al. "Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task." It is a subset of the original dataset with explicit mention of the column names removed. The sql queries and databases are kept unchanged.
For the format of each json file, please refer to the github page of Spider https://github.com/taoyds/spider.
For the database files please refer to the official Spider release https://yale-lily.github.io/spider.
This dataset is distributed under the CC BY-SA 4.0 license.
If you use the dataset, please cite the following papers including the original Spider datasets, Finegan-Dollak et al., 2018 and the original datasets for Restaurants, GeoQuery, Scholar, Academic, IMDB, and Yelp.
@article{deng2020structure,
title={Structure-Grounded Pretraining for Text-to-SQL},
author={Deng, Xiang and Awadallah, Ahmed Hassan and Meek, Christopher and Polozov, Oleksandr and Sun, Huan and Richardson, Matthew},
journal={arXiv preprint arXiv:2010.12773},
year={2020}
}
@inproceedings{Yu&al.18c,
year = 2018,
title = {Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task},
booktitle = {EMNLP},
author = {Tao Yu and Rui Zhang and Kai Yang and Michihiro Yasunaga and Dongxu Wang and Zifan Li and James Ma and Irene Li and Qingning Yao and Shanelle Roman and Zilin Zhang and Dragomir Radev }
}
@InProceedings{P18-1033,
author = "Finegan-Dollak, Catherine
and Kummerfeld, Jonathan K.
and Zhang, Li
and Ramanathan, Karthik
and Sadasivam, Sesh
and Zhang, Rui
and Radev, Dragomir",
title = "Improving Text-to-SQL Evaluation Methodology",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
year = "2018",
publisher = "Association for Computational Linguistics",
pages = "351--360",
location = "Melbourne, Australia",
url = "http://aclweb.org/anthology/P18-1033"
}
@InProceedings{data-sql-imdb-yelp,
dataset = {IMDB and Yelp},
author = {Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig},
title = {SQLizer: Query Synthesis from Natural Language},
booktitle = {International Conference on Object-Oriented Programming, Systems, Languages, and Applications, ACM},
month = {October},
year = {2017},
pages = {63:1--63:26},
url = {http://doi.org/10.1145/3133887},
}
@article{data-academic,
dataset = {Academic},
author = {Fei Li and H. V. Jagadish},
title = {Constructing an Interactive Natural Language Interface for Relational Databases},
journal = {Proceedings of the VLDB Endowment},
volume = {8},
number = {1},
month = {September},
year = {2014},
pages = {73--84},
url = {http://dx.doi.org/10.14778/2735461.2735468},
}
@InProceedings{data-atis-geography-scholar,
dataset = {Scholar, and Updated ATIS and Geography},
author = {Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer},
title = {Learning a Neural Semantic Parser from User Feedback},
booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
year = {2017},
pages = {963--973},
location = {Vancouver, Canada},
url = {http://www.aclweb.org/anthology/P17-1089},
}
@inproceedings{data-geography-original
dataset = {Geography, original},
author = {John M. Zelle and Raymond J. Mooney},
title = {Learning to Parse Database Queries Using Inductive Logic Programming},
booktitle = {Proceedings of the Thirteenth National Conference on Artificial Intelligence - Volume 2},
year = {1996},
pages = {1050--1055},
location = {Portland, Oregon},
url = {http://dl.acm.org/citation.cfm?id=1864519.1864543},
}
@inproceedings{data-restaurants-logic,
author = {Lappoon R. Tang and Raymond J. Mooney},
title = {Automated Construction of Database Interfaces: Intergrating Statistical and Relational Learning for Semantic Parsing},
booktitle = {2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora},
year = {2000},
pages = {133--141},
location = {Hong Kong, China},
url = {http://www.aclweb.org/anthology/W00-1317},
}
@inproceedings{data-restaurants-original,
author = {Ana-Maria Popescu, Oren Etzioni, and Henry Kautz},
title = {Towards a Theory of Natural Language Interfaces to Databases},
booktitle = {Proceedings of the 8th International Conference on Intelligent User Interfaces},
year = {2003},
location = {Miami, Florida, USA},
pages = {149--157},
url = {http://doi.acm.org/10.1145/604045.604070},
}
@inproceedings{data-restaurants,
author = {Alessandra Giordani and Alessandro Moschitti},
title = {Automatic Generation and Reranking of SQL-derived Answers to NL Questions},
booktitle = {Proceedings of the Second International Conference on Trustworthy Eternal Systems via Evolving Software, Data and Knowledge},
year = {2012},
location = {Montpellier, France},
pages = {59--76},
url = {https://doi.org/10.1007/978-3-642-45260-4_5},
}
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Structures: A simplified point layer of California State Parks structures other than buildings, providing location, name, function and other attributes. Current as of October 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We propose a new data structure multiset-trie that is designed for storing and efficiently processing a set of multisets. Moreover, multiset-trie can operate on a set of sets without efficiency loss. The multiset-trie is a search tree with properties similar to those of a trie. It implements all standard search tree operations together with the multiset containment operations such as sub-multiset and super-multiset. Suppose we have a set of multisets S and a multiset X. The multiset containment operations retrieve multisets from S that are either sub-multisets or super-multisets of X. We present the mathematical analysis of a multiset-trie that gives the time complexity of the algorithms and the space complexity of the data structure. Further, the empirical analysis of the data structure is implemented in a series of experiments. The experiments illuminate the time complexity space of the multiset containment operations. For reproducability reasons we publish the datasets used in our experiments, in this repository.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Structure tensor validationGeneral informationThis item contains test data to validate the structure tensor algorithms and a supplemental paper describing how the data was generated and used.ContentsThe test_data.zip archive contains 101 slices of a cylinder (701x701 pixels) with two artificially created fibre orientations. The outer fibres are oriented longitudinally, and the inner fibres are oriented circumferentially, similar to the ones found in the rat uterus.The SupplementaryMaterials_rat_uterus_texture_validation.pdf file is a short supplemental paper describing the generation of the test data and the results after being processed with the structure tensor code.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
USGS Structures from The National Map (TNM) consists of data to include the name, function, location, and other core information and characteristics of selected manmade facilities across all US states and territories. The types of structures collected are largely determined by the needs of disaster planning and emergency response, and homeland security organizations. Structures currently included are: School, School:Elementary, School:Middle, School:High, College/University, Technical/Trade School, Ambulance Service, Fire Station/EMS Station, Law Enforcement, Prison/Correctional Facility, Post Office, Hospital/Medical Center, Cabin, Campground, Cemetery, Historic Site/Point of Interest, Picnic Area, Trailhead, Vistor/Information Center, US Capitol, State Capitol, US Supreme Court, State Supreme Court, Court House, Headquarters, Ranger St ...
This is the updated version of the dataset from 10.5281/zenodo.6320761 Information The diverse publicly available compound/bioactivity databases constitute a key resource for data-driven applications in chemogenomics and drug design. Analysis of their coverage of compound entries and biological targets revealed considerable differences, however, suggesting benefit of a consensus dataset. Therefore, we have combined and curated information from five esteemed databases (ChEMBL, PubChem, BindingDB, IUPHAR/BPS and Probes&Drugs) to assemble a consensus compound/bioactivity dataset comprising 1144648 compounds with 10915362 bioactivities on 5613 targets (including defined macromolecular targets as well as cell-lines and phenotypic readouts). It also provides simplified information on assay types underlying the bioactivity data and on bioactivity confidence by comparing data from different sources. We have unified the source databases, brought them into a common format and combined them, enabling an ease for generic uses in multiple applications such as chemogenomics and data-driven drug design. The consensus dataset provides increased target coverage and contains a higher number of molecules compared to the source databases which is also evident from a larger number of scaffolds. These features render the consensus dataset a valuable tool for machine learning and other data-driven applications in (de novo) drug design and bioactivity prediction. The increased chemical and bioactivity coverage of the consensus dataset may improve robustness of such models compared to the single source databases. In addition, semi-automated structure and bioactivity annotation checks with flags for divergent data from different sources may help data selection and further accurate curation. This dataset belongs to the publication: https://doi.org/10.3390/molecules27082513 Structure and content of the dataset Dataset structure ChEMBL ID PubChem ID IUPHAR ID Target Activity type Assay type Unit Mean C (0) ... Mean PC (0) ... Mean B (0) ... Mean I (0) ... Mean PD (0) ... Activity check annotation Ligand names Canonical SMILES C ... Structure check (Tanimoto) Source The dataset was created using the Konstanz Information Miner (KNIME) (https://www.knime.com/) and was exported as a CSV-file and a compressed CSV-file. Except for the canonical SMILES columns, all columns are filled with the datatype ‘string’. The datatype for the canonical SMILES columns is the smiles-format. We recommend the File Reader node for using the dataset in KNIME. With the help of this node the data types of the columns can be adjusted exactly. In addition, only this node can read the compressed format. Column content: ChEMBL ID, PubChem ID, IUPHAR ID: chemical identifier of the databases Target: biological target of the molecule expressed as the HGNC gene symbol Activity type: for example, pIC50 Assay type: Simplification/Classification of the assay into cell-free, cellular, functional and unspecified Unit: unit of bioactivity measurement Mean columns of the databases: mean of bioactivity values or activity comments denoted with the frequency of their occurrence in the database, e.g. Mean C = 7.5 *(15) -> the value for this compound-target pair occurs 15 times in ChEMBL database Activity check annotation: a bioactivity check was performed by comparing values from the different sources and adding an activity check annotation to provide automated activity validation for additional confidence no comment: bioactivity values are within one log unit; check activity data: bioactivity values are not within one log unit; only one data point: only one value was available, no comparison and no range calculated; no activity value: no precise numeric activity value was available; no log-value could be calculated: no negative decadic logarithm could be calculated, e.g., because the reported unit was not a compound concentration Ligand names: all unique names contained in the five source databases are listed Canonical SMILES columns: Molecular structure of the compound from each database Structure check (Tanimoto): To denote matching or differing compound structures in different source databases match: molecule structures are the same between different sources; no match: the structures differ. We calculated the Jaccard-Tanimoto similarity coefficient from Morgan Fingerprints to reveal true differences between sources and reported the minimum value; 1 structure: no structure comparison is possible, because there was only one structure available; no structure: no structure comparison is possible, because there was no structure available. Source: From which databases the data come from
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Developments in Artificial Intelligence (AI) have had an enormous impact on scientific research in recent years. Yet, relatively few robust methods have been reported in the field of structure-based drug discovery. To train AI models to abstract from structural data, highly curated and precise biomolecule-ligand interaction datasets are urgently needed. We present MISATO, a curated dataset of almost 20000 experimental structures of protein-ligand complexes, associated molecular dynamics traces, and electronic properties. Semi-empirical quantum mechanics was used to systematically refine protonation states of proteins and small molecule ligands. Molecular dynamics traces for protein-ligand complexes were obtained in explicit water. The dataset is made readily available to the scientific community via simple python data-loaders. AI baseline models are provided for dynamical and electronic properties. This highly curated dataset is expected to enable the next-generation of AI models for structure-based drug discovery. Our vision is to make MISATO the first step of a vibrant community project for the development of powerful AI-based drug discovery tools.
This digital dataset was created as part of a U.S. Geological Survey study, done in cooperation with the Monterey County Water Resource Agency, to conduct a hydrologic resource assessment and develop an integrated numerical hydrologic model of the hydrologic system of Salinas Valley, CA. As part of this larger study, the USGS developed this digital dataset of geologic data and three-dimensional hydrogeologic framework models, referred to here as the Salinas Valley Geological Framework (SVGF), that define the elevation, thickness, extent, and lithology-based texture variations of nine hydrogeologic units in Salinas Valley, CA. The digital dataset includes a geospatial database that contains two main elements as GIS feature datasets: (1) input data to the 3D framework and textural models, within a feature dataset called “ModelInput”; and (2) interpolated elevation, thicknesses, and textural variability of the hydrogeologic units stored as arrays of polygonal cells, within a feature dataset called “ModelGrids”. The model input data in this data release include stratigraphic and lithologic information from water, monitoring, and oil and gas wells, as well as data from selected published cross sections, point data derived from geologic maps and geophysical data, and data sampled from parts of previous framework models. Input surface and subsurface data have been reduced to points that define the elevation of the top of each hydrogeologic units at x,y locations; these point data, stored in a GIS feature class named “ModelInputData”, serve as digital input to the framework models. The location of wells used a sources of subsurface stratigraphic and lithologic information are stored within the GIS feature class “ModelInputData”, but are also provided as separate point feature classes in the geospatial database. Faults that offset hydrogeologic units are provided as a separate line feature class. Borehole data are also released as a set of tables, each of which may be joined or related to well location through a unique well identifier present in each table. Tables are in Excel and ascii comma-separated value (CSV) format and include separate but related tables for well location, stratigraphic information of the depths to top and base of hydrogeologic units intercepted downhole, downhole lithologic information reported at 10-foot intervals, and information on how lithologic descriptors were classed as sediment texture. Two types of geologic frameworks were constructed and released within a GIS feature dataset called “ModelGrids”: a hydrostratigraphic framework where the elevation, thickness, and spatial extent of the nine hydrogeologic units were defined based on interpolation of the input data, and (2) a textural model for each hydrogeologic unit based on interpolation of classed downhole lithologic data. Each framework is stored as an array of polygonal cells: essentially a “flattened”, two-dimensional representation of a digital 3D geologic framework. The elevation and thickness of the hydrogeologic units are contained within a single polygon feature class SVGF_3DHFM, which contains a mesh of polygons that represent model cells that have multiple attributes including XY location, elevation and thickness of each hydrogeologic unit. Textural information for each hydrogeologic unit are stored in a second array of polygonal cells called SVGF_TextureModel. The spatial data are accompanied by non-spatial tables that describe the sources of geologic information, a glossary of terms, a description of model units that describes the nine hydrogeologic units modeled in this study. A data dictionary defines the structure of the dataset, defines all fields in all spatial data attributer tables and all columns in all nonspatial tables, and duplicates the Entity and Attribute information contained in the metadata file. Spatial data are also presented as shapefiles. Downhole data from boreholes are released as a set of tables related by a unique well identifier, tables are in Excel and ascii comma-separated value (CSV) format.
http://www.apache.org/licenses/LICENSE-2.0http://www.apache.org/licenses/LICENSE-2.0
Copyright 2020 Riccardo CAPPUZZO
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
The datasets contained in this directory were used while working with EmbDI on the relevant paper. Please refer to the full repository for more info.
What is provided here was sourced mostly from The Magellan Data Repository. For each dataset, three tables are provided: table-A and table-B are taken from the original repository and slightly modified (lower casing, spaces were replaced by _
, some special characters were removed), while the third table is the concatenation of tables A and B.
Edgelists are the data structures used by EmbDI. They are generated starting from each concatenated dataset and are then fed to the algorithm.
The EQ tests
folder contains all the tests used to perform the Embeddings Quality evaluation in the paper.
The additional resources include:
(partially preprocessed) base datasets.
Their Entity Resolution and Schema Matching versions.
Edgelists for both ER and SM versions.
Ground truth files for ER and SM tasks.
Test directories for the EQ task.
Copies of the configuration files provided in this repository.
Configuration files, info files and ER match files were left in this repository in pipeline/config_files/default
,
pipeline/info
and pipeline/matches/default
.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
iEEG and EEG data from 5 centers is organized in our study with a total of 100 subjects. We publish 4 centers' dataset here due to data sharing issues.
Acquisitions include ECoG and SEEG. Each run specifies a different snapshot of EEG data from that specific subject's session. For seizure sessions, this means that each run is a EEG snapshot around a different seizure event.
For additional clinical metadata about each subject, refer to the clinical Excel table in the publication.
NIH, JHH, UMMC, and UMF agreed to share. Cleveland Clinic did not, so requires an additional DUA.
All data, except for Cleveland Clinic was approved by their centers to be de-identified and shared. All data in this dataset have no PHI, or other identifiers associated with patient. In order to access Cleveland Clinic data, please forward all requests to Amber Sours, SOURSA@ccf.org:
Amber Sours, MPH Research Supervisor | Epilepsy Center Cleveland Clinic | 9500 Euclid Ave. S3-399 | Cleveland, OH 44195 (216) 444-8638
You will need to sign a data use agreement (DUA).
For each subject, there was a raw EDF file, which was converted into the BrainVision format with mne_bids
.
Each subject with SEEG implantation, also has an Excel table, called electrode_layout.xlsx
, which outlines where the clinicians marked each electrode anatomically. Note that there is no rigorous atlas applied, so the main points of interest are: WM
, GM
, VENTRICLE
, CSF
, and OUT
, which represent white-matter, gray-matter, ventricle, cerebrospinal fluid and outside the brain. WM, Ventricle, CSF and OUT were removed channels from further analysis. These were labeled in the corresponding BIDS channels.tsv
sidecar file as status=bad
.
The dataset uploaded to openneuro.org
does not contain the sourcedata
since there was an extra
anonymization step that occurred when fully converting to BIDS.
Derivatives include: * fragility analysis * frequency analysis * graph metrics analysis * figures
These can be computed by following the following paper: Neural Fragility as an EEG Marker for the Seizure Onset Zone
Within each EDF file, there contain event markers that are annotated by clinicians, which may inform you of specific clinical events that are occuring in time, or of when they saw seizures onset and offset (clinical and electrographic).
During a seizure event, specifically event markers may follow this time course:
* eeg onset, or clinical onset - the onset of a seizure that is either marked electrographically, or by clinical behavior. Note that the clinical onset may not always be present, since some seizures manifest without clinical behavioral changes.
* Marker/Mark On - these are usually annotations within some cases, where a health practitioner injects a chemical marker for use in ICTAL SPECT imaging after a seizure occurs. This is commonly done to see which portions of the brain are active metabolically.
* Marker/Mark Off - This is when the ICTAL SPECT stops imaging.
* eeg offset, or clinical offset - this is the offset of the seizure, as determined either electrographically, or by clinical symptoms.
Other events included may be beneficial for you to understand the time-course of each seizure. Note that ICTAL SPECT occurs in all Cleveland Clinic data. Note that seizure markers are not consistent in their description naming, so one might encode some specific regular-expression rules to consistently capture seizure onset/offset markers across all dataset. In the case of UMMC data, all onset and offset markers were provided by the clinicians on an Excel sheet instead of via the EDF file. So we went in and added the annotations manually to each EDF file.
For various datasets, there are seizures present within the dataset. Generally there is only one seizure per EDF file. When seizures are present, they are marked electrographically (and clinically if present) via standard approaches in the epilepsy clinical workflow.
Clinical onset are just manifestation of the seizures with clinical syndromes. Sometimes the maker may not be present.
What is actually important in the evaluation of datasets is the clinical annotations of their localization hypotheses of the seizure onset zone.
These generally include:
* early onset: the earliest onset electrodes participating in the seizure that clinicians saw
* early/late spread (optional): the electrodes that showed epileptic spread activity after seizure onset. Not all seizures has spread contacts annotated.
For patients with the post-surgical MRI available, then the segmentation process outlined above tells us which electrodes were within the surgical removed brain region.
Otherwise, clinicians give us their best estimate, of which electrodes were resected/ablated based on their surgical notes.
For surgical patients whose postoperative medical records did not explicitly indicate specific resected or ablated contacts, manual visual inspection was performed to determine the approximate contacts that were located in later resected/ablated tissue. Postoperative T1 MRI scans were compared against post-SEEG implantation CT scans or CURRY coregistrations of preoperative MRI/post SEEG CT scans. Contacts of interest in and around the area of the reported resection were selected individually and the corresponding slice was navigated to on the CT scan or CURRY coregistration. After identifying landmarks of that slice (e.g. skull shape, skull features, shape of prominent brain structures like the ventricles, central sulcus, superior temporal gyrus, etc.), the location of a given contact in relation to these landmarks, and the location of the slice along the axial plane, the corresponding slice in the postoperative MRI scan was navigated to. The resected tissue within the slice was then visually inspected and compared against the distinct landmarks identified in the CT scans, if brain tissue was not present in the corresponding location of the contact, then the contact was marked as resected/ablated. This process was repeated for each contact of interest.
Adam Li, Chester Huynh, Zachary Fitzgerald, Iahn Cajigas, Damian Brusko, Jonathan Jagid, Angel Claudio, Andres Kanner, Jennifer Hopp, Stephanie Chen, Jennifer Haagensen, Emily Johnson, William Anderson, Nathan Crone, Sara Inati, Kareem Zaghloul, Juan Bulacio, Jorge Gonzalez-Martinez, Sridevi V. Sarma. Neural Fragility as an EEG Marker of the Seizure Onset Zone. bioRxiv 862797; doi: https://doi.org/10.1101/862797
Appelhoff, S., Sanderson, M., Brooks, T., Vliet, M., Quentin, R., Holdgraf, C., Chaumon, M., Mikulan, E., Tavabi, K., Höchenberger, R., Welke, D., Brunner, C., Rockhill, A., Larson, E., Gramfort, A. and Jas, M. (2019). MNE-BIDS: Organizing electrophysiological data into the BIDS format and facilitating their analysis. Journal of Open Source Software 4: (1896). https://doi.org/10.21105/joss.01896
Holdgraf, C., Appelhoff, S., Bickel, S., Bouchard, K., D'Ambrosio, S., David, O., … Hermes, D. (2019). iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Scientific Data, 6, 102. https://doi.org/10.1038/s41597-019-0105-7
Pernet, C. R., Appelhoff, S., Gorgolewski, K. J., Flandin, G., Phillips, C., Delorme, A., Oostenveld, R. (2019). EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Scientific Data, 6, 103. https://doi.org/10.1038/s41597-019-0104-8
Automatically describing images using natural sentences is an essential task to visually impaired people's inclusion on the Internet. Although there are many datasets in the literature, most of them contain only English captions, whereas datasets with captions described in other languages are scarce.
PraCegoVer arose on the Internet, stimulating users from social media to publish images, tag #PraCegoVer and add a short description of their content. Inspired by this movement, we have proposed the #PraCegoVer, a multi-modal dataset with Portuguese captions based on posts from Instagram. It is the first large dataset for image captioning in Portuguese with freely annotated images.
Dataset Structure
containing the images. The file dataset.json comprehends a list of json objects with the attributes:
user: anonymized user that made the post;
filename: image file name;
raw_caption: raw caption;
caption: clean caption;
date: post date.
Each instance in dataset.json is associated with exactly one image in the images directory whose filename is pointed by the attribute filename. Also, we provide a sample with five instances, so the users can download the sample to get an overview of the dataset before downloading it completely.
Download Instructions
If you just want to have an overview of the dataset structure, you can download sample.tar.gz. But, if you want to use the dataset, or any of its subsets (63k and 173k), you must download all the files and run the following commands to uncompress and join the files:
cat images.tar.gz.part* > images.tar.gz tar -xzvf images.tar.gz
Alternatively, you can download the entire dataset from the terminal using the python script download_dataset.py available in PraCegoVer repository. In this case, first, you have to download the script and create an access token here. Then, you can run the following command to download and uncompress the image files:
python download_dataset.py --access_token=
https://earth.esa.int/eogateway/documents/20142/1564626/Terms-and-Conditions-for-the-use-of-ESA-Data.pdfhttps://earth.esa.int/eogateway/documents/20142/1564626/Terms-and-Conditions-for-the-use-of-ESA-Data.pdf
The Fundamental Data Record (FDR) for Atmospheric Composition UVN v.1.0 dataset is a cross-instrument Level-1 product [ATMOS_L1B] generated in 2023 and resulting from the ESA FDR4ATMOS project. The FDR contains selected Earth Observation Level 1b parameters (irradiance/reflectance) from the nadir-looking measurements of the ERS-2 GOME and Envisat SCIAMACHY missions for the period ranging from 1995 to 2012. The data record offers harmonised cross-calibrated spectra with focus on spectral windows in the Ultraviolet-Visible-Near Infrared regions for the retrieval of critical atmospheric constituents like ozone (O3), sulphur dioxide (SO2), nitrogen dioxide (NO2) column densities, alongside cloud parameters. The FDR4ATMOS products should be regarded as experimental due to the innovative approach and the current use of a limited-sized test dataset to investigate the impact of harmonization on the Level 2 target species, specifically SO2, O3 and NO2. Presently, this analysis is being carried out within follow-on activities. The FDR4ATMOS V1 is currently being extended to include the MetOp GOME-2 series. Product format For many aspects, the FDR product has improved compared to the existing individual mission datasets: GOME solar irradiances are harmonised using a validated SCIAMACHY solar reference spectrum, solving the problem of the fast-changing etalon present in the original GOME Level 1b data; Reflectances for both GOME and SCIAMACHY are provided in the FDR product. GOME reflectances are harmonised to degradation-corrected SCIAMACHY values, using collocated data from the CEOS PIC sites; SCIAMACHY data are scaled to the lowest integration time within the spectral band using high-frequency PMD measurements from the same wavelength range. This simplifies the use of the SCIAMACHY spectra which were split in a complex cluster structure (with own integration time) in the original Level 1b data; The harmonization process applied mitigates the viewing angle dependency observed in the UV spectral region for GOME data; Uncertainties are provided. Each FDR product provides, within the same file, irradiance/reflectance data for UV-VIS-NIR special regions across all orbits on a single day, including therein information from the individual ERS-2 GOME and Envisat SCIAMACHY measurements. FDR has been generated in two formats: Level 1A and Level 1B targeting expert users and nominal applications respectively. The Level 1A [ATMOS_L1A] data include additional parameters such as harmonisation factors, PMD, and polarisation data extracted from the original mission Level 1 products. The ATMOS_L1A dataset is not part of the nominal dissemination to users. In case of specific requirements, please contact EOHelp. Please refer to the README file for essential guidance before using the data. All the new products are conveniently formatted in NetCDF. Free standard tools, such as Panoply, can be used to read NetCDF data. Panoply is sourced and updated by external entities. For further details, please consult our Terms and Conditions page. Uncertainty characterisation One of the main aspects of the project was the characterization of Level 1 uncertainties for both instruments, based on metrological best practices. The following documents are provided: General guidance on a metrological approach to Fundamental Data Records (FDR) Uncertainty Characterisation document Effect tables NetCDF files containing example uncertainty propagation analysis and spectral error correlation matrices for SCIAMACHY (Atlantic and Mauretania scene for 2003 and 2010) and GOME (Atlantic scene for 2003) reflectance_uncertainty_example_FDR4ATMOS_GOME.nc reflectance_uncertainty_example_FDR4ATMOS_SCIA.nc
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books and is filtered where the book is Data structures and software development in an object-oriented domain, featuring 7 columns including author, BNB id, book, book publisher, and ISBN. The preview is ordered by publication date (descending).