Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: none of the data sets published here contain actual data, they are for testing purposes only.
This data repository contains graph datasets, where each graph is represented by two CSV files: one for node information and another for edge details. To link the files to the same graph, their names include a common identifier based on the number of nodes. For example:
dataset_30_nodes_interactions.csv
:contains 30 rows (nodes).dataset_30_edges_interactions.csv
: contains 47 rows (edges).dataset_30
refers to the same graph.Each dataset contains the following columns:
Name of the Column | Type | Description |
UniProt ID | string | protein identification |
label | string | protein label (type of node) |
properties | string | a dictionary containing properties related to the protein. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
Relationship ID | string | relationship identification |
Source ID | string | identification of the source protein in the relationship |
Target ID | string | identification of the target protein in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_30* |
30 | 47 |
Y |
dataset_60* |
60 |
181 |
Y |
dataset_120* |
120 |
689 |
Y |
dataset_240* |
240 |
2819 |
Y |
dataset_300* |
300 |
4658 |
Y |
dataset_600* |
600 |
18004 |
Y |
dataset_1200* |
1200 |
71785 |
Y |
dataset_2400* |
2400 |
288600 |
Y |
dataset_3000* |
3000 |
449727 |
Y |
dataset_6000* |
6000 |
1799413 |
Y |
dataset_12000* |
12000 |
7199863 |
Y |
dataset_24000* |
24000 |
28792361 |
Y |
dataset_30000* |
30000 |
44991744 |
Y |
This repository include two (2) additional tiny graph datasets to experiment before dealing with larger datasets.
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | node identification |
label | string | node label (type of node) |
properties | string | a dictionary containing properties related to the node. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | relationship identification |
source | string | identification of the source node in the relationship |
target | string | identification of the target node in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_dummy* | 3 | 6 | N |
dataset_dummy2* | 3 | 6 | N |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”
A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org
Please cite this when using the dataset.
Detailed description of the dataset:
1 Film Dataset: Festival Programs
The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.
The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.
The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.
The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.
2 Survey Dataset
The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.
The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.
The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.
The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.
3 IMDb & Scripts
The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.
The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.
The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.
The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.
The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.
The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.
The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.
The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.
The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.
The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.
The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.
The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.
The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.
The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.
The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.
The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.
The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.
The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.
The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.
4 Festival Library Dataset
The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.
The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories,
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains transcripts of call center interactions, capturing a variety of customer service scenarios. It includes details such as call type, sentiment, customer name, order number, product number, and the full conversation transcript.
The dataset is structured in a CSV format. Here's a breakdown of the columns:
Column
Type
Description
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This data set is a subset of the "Records of foreign capital" (Registros de capitais estrangeiros", RCE) published by the Central Bank of Brazil (CBB) on their website.The data set consists of three data files and three corresponding metadata files. All files are in openly accessible .csv or .txt formats. See detailed outline below for data contained in each. Data files contain transaction-specific data such as unique identifier, currency, cancelled status and amount. Metadata files outline variables in the corresponding data file.RCE_Unclean_full_dataset.csv - all transactions published to the Central Bank website from the four main categories outlined belowMetadata_Unclean_full_dataset.csvRCE_Unclean_cancelled_dataset.csv - data extracted from the RCE_Unclean_full_dataset.csv where transactions were registered then cancelledMetadata_Unclean_cancelled_dataset.csvRCE_Clean_selection_dataset.csv - transaction data extracted from RCE_Unclean_full_dataset.csv and RCE_Unclean_cancelled_dataset.csv for the nine companies and criteria identified belowMetadata_Clean_selection_dataset.csvThe data include the period between October 2000 and July 2011. This is the only time span for the data provided by the Central Bank of Brazil at this stage. The records were published monthly by the Central Bank of Brazil as required by Art. 66 in Decree nº 55.762 of 17 February 1965, modified by Decree nº 4.842 of 17 September 2003. The records were published on the bank’s website starting October 2000, as per communique nº 011489 of 7 October 2003. This remained the case until August 2011, after which the amount of each transaction was no longer disclosed (and publication of these stopped altogether after October 2011). The disclosure of the records was suspended in order to review their legal and technical aspects, and ensure their suitability to the requirements of the rules governing the confidentiality of the information (Law nº 12.527 of 18 November 2011 and Decree nº 7724 of May 2012) (pers. comm. Central Bank of Brazil, 2016. Name of contact available upon request to Authors).The records track transfers of foreign capital made from abroad to companies domiciled in Brazil, with information on the foreign company (name and country) transferring the money, and on the company receiving the capital (name and federative unit). For the purpose of this study, we consider the four categories of foreign capital transactions which are published with their amount and currency in the Central Bank’s data, and which are all part of the “Register of financial transactions” (abbreviated RDE-ROF): loans, leasing, financed import and cash in advance (see below for a detailed description). Additional categories exist, such as foreign direct investment (RDE-IED) and External Investment in Portfolio (RDE-Portfólio), for which no amount is published and which are therefore not included.We used the data posted online as PDFs on the bank’s website, and created a script to extract the data automatically from these four categories into the RCE_Unclean_full_dataset.csv file. This data set has not been double-checked manually and may contain errors. We used a similar script to extract rows from the "cancelled transactions" sections of the PDFs into the RCE_Unclean_cancelled_dataset.csv file. This is useful to identify transactions that have been registered to the Central Bank but later cancelled. This data set has not been double-checked manually and may contain errors.From these raw data sets, we conducted the following selections and calculations in order to create the RCE_Clean_selection_dataset.csv file. This data set has been double-checked manually to secure that no errors have been made in the extraction process.We selected all transactions whose recipient company name corresponds to one of these nine companies, or to one of their known subsidiaries in Brazil, according to the list of subsidiaries recorded in the Orbis database, maintained by Bureau Van Dijk. Transactions are included if the recipient company name matches one of the following:- the current or former name of one of the nine companies in our sample (former names are identified using Orbis, Bloomberg’s company profiles or the company website);- the name of a known subsidiary of one of the nine companies, if and only if we find evidence (in Orbis, Bloomberg’s company profiles or on the company website) that this subsidiary was owned at some point during the period 2000-2011, and that it operated in a sector related to the soy or beef industry (including fertilizers and trading activities).For each transaction, we extracted the name of the company sending capital and when possible, attributed the transaction to the known ultimate owner.The name of the countries of origin sometimes comes with typos or different denominations: we harmonized them.A manual check of all the selected data unveiled that a few transactions (n=14), appear twice in the database while bearing the same unique identification number. According to the Central Bank of Brazil (pers. comm., November 2016), this is due to errors in their routine of data extraction. We therefore deleted duplicates in our database, keeping only the latest occurrence of each unique transaction. Six (6) transactions recorded with an amount of zero were also deleted. Two (2) transactions registered in August 2003 with incoherent currencies (Deutsche Mark and Dutch guilder, which were demonetised in early 2002) were also deleted.To secure that the import of data from PDF to the database did not contain any systematic errors, for instance due to mistakes in coding, data were checked in two ways. First, because the script identifies the end of the row in the PDF using the amount of the transaction, which can sometimes fail if the amount is not entered correctly, we went through the extracted raw data (2798 rows) and cleaned all rows whose end had not been correctly identified by the script. Next, we manually double-checked the 486 largest transactions representing 90% of the total amount of capital inflows, as well as 140 randomly selected additional rows representing 5% of the total rows, compared the extracted data to the original PDFs, and found no mistakes.Transfers recorded in the database have been made in different currencies, including US dollars, Euros, Japanese Yens, Brazilian Reais, and more. The conversion to US dollars of all amounts denominated in other currencies was done using the average monthly exchange rate as published by the International Monetary Fund (International Financial Statistics: Exchange rates, national currency per US dollar, period average). Due to the limited time period, we have not corrected for inflation but aggregated nominal amounts in USD over the period 2000-2011.The categories loans, cash in advance (anticipated payment for exports), financed import, and leasing/rental, are those used by the Central Bank of Brazil in their published data. They are denominated respectively: “Loans” (“emprestimos” in original source) - : includes all loans, either contracted directly with creditors or indirectly through the issuance of securities, brokered by foreign agents. “Anticipated payment for exports” (“pagamento/renovacao pagamento antecipado de exportacao” in original source): defined as a type of loan (used in trade finance)“Financed import” (“importacao financiada” in original source): comprises all import financing transactions either direct (contracted by the importer with a foreign bank or with a foreign supplier), or indirect (contracted by Brazilian banks with foreign banks on behalf of Brazilian importers). They must be declared to the Central Bank if their term of payment is superior to 360 days.“Leasing/rental” (“arrendamento mercantil, leasing e aluguel” in original source) : concerns all types of external leasing operations consented by a Brazilian entity to a foreign one. They must be declared if the term of payment is superior to 360 days.More information about the different categories can be found through the Central Bank online.(Research Data Support provided by Springer Nature)
Recent USDA/ARS patent- and PVP-protected plant cultivars that are available for licensing are described, including summary, contact, and patent number/status. Updated June 2018. Resources in this dataset:Resource Title: Available Plant Cultivars - June 2018. File Name: June Avail Plants.pptxResource Description: Slides presenting title, patent no./protection status, contact, docket number(s), description, and USPTO patent database URL of each new cultivar.Resource Title: Available Plant Cultivars - June 2018. File Name: Available_Plants_2018-06.csvResource Description: Listing of patent- and PVP-protected cultivars. This CSV file provides the title, patent no./protection status, contact, docket number(s), description, and USPTO patent database URL of each new cultivar. Machine-readable content extracted from corresponding slides accompanying this dataset.Resource Title: Available Plants Data Dictionary. File Name: available-plants-data-dictionary.csvResource Description: Defines fields, data type, allowed values etc. in available patented plants tables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we present a dataset, MNIST4OD, of large size (number of dimensions and number of instances) suitable for Outliers Detection task.The dataset is based on the famous MNIST dataset (http://yann.lecun.com/exdb/mnist/).We build MNIST4OD in the following way:To distinguish between outliers and inliers, we choose the images belonging to a digit as inliers (e.g. digit 1) and we sample with uniform probability on the remaining images as outliers such as their number is equal to 10% of that of inliers. We repeat this dataset generation process for all digits. For implementation simplicity we then flatten the images (28 X 28) into vectors.Each file MNIST_x.csv.gz contains the corresponding dataset where the inlier class is equal to x.The data contains one instance (vector) in each line where the last column represents the outlier label (yes/no) of the data point. The data contains also a column which indicates the original image class (0-9).See the following numbers for a complete list of the statistics of each datasets ( Name | Instances | Dimensions | Number of Outliers in % ):MNIST_0 | 7594 | 784 | 10MNIST_1 | 8665 | 784 | 10MNIST_2 | 7689 | 784 | 10MNIST_3 | 7856 | 784 | 10MNIST_4 | 7507 | 784 | 10MNIST_5 | 6945 | 784 | 10MNIST_6 | 7564 | 784 | 10MNIST_7 | 8023 | 784 | 10MNIST_8 | 7508 | 784 | 10MNIST_9 | 7654 | 784 | 10
By US Open Data Portal, data.gov [source]
This dataset provides an inside look at the performance of the Veterans Health Administration (VHA) hospitals on timely and effective care measures. It contains detailed information such as hospital names, addresses, census-designated cities and locations, states, ZIP codes county names, phone numbers and associated conditions. Additionally, each entry includes a score, sample size and any notes or footnotes to give further context. This data is collected through either Quality Improvement Organizations for external peer review programs as well as direct electronic medical records. By understanding these performance scores of VHA hospitals on timely care measures we can gain valuable insights into how VA healthcare services are delivering values throughout the country!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains information about the performance of Veterans Health Administration hospitals on timely and effective care measures. In this dataset, you can find the hospital name, address, city, state, ZIP code, county name, phone number associated with each hospital as well as data related to the timely and effective care measure such as conditions being measured and their associated scores.
To use this dataset effectively, we recommend first focusing on identifying an area of interest for analysis. For example: what condition is most impacting wait times for patients? Once that has been identified you can narrow down which fields would best fit your needs - for example if you are studying wait times then “Score” may be more valuable to filter than Footnote. Additionally consider using aggregation functions over certain fields (like average score over time) in order to get a better understanding of overall performance by factor--for instance Location.
Ultimately this dataset provides a snapshot into how Veteran's Health Administration hospitals are performing on timely and effective care measures so any research should focus around that aspect of healthcare delivery
- Analyzing and predicting hospital performance on a regional level to improve the quality of healthcare for veterans across the country.
- Using this dataset to identify trends and develop strategies for hospitals that consistently score low on timely and effective care measures, with the goal of improving patient outcomes.
- Comparison analysis between different VHA hospitals to discover patterns and best practices in providing effective care so they can be shared with other hospitals in the system
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: csv-1.csv | Column name | Description | |:-----------------------|:-------------------------------------------------------------| | Hospital Name | Name of the VHA hospital. (String) | | Address | Street address of the VHA hospital. (String) | | City | City where the VHA hospital is located. (String) | | State | State where the VHA hospital is located. (String) | | ZIP Code | ZIP code of the VHA hospital. (Integer) | | County Name | County where the VHA hospital is located. (String) | | Phone Number | Phone number of the VHA hospital. (String) | | Condition | Condition being measured. (String) | | Measure Name | Measure used to measure the condition. (String) | | Score | Score achieved by the VHA h...
182 simulated datasets (first set contains small datasets and second set contains large datasets) with different cluster compositions – i.e., different number clusters and separation values – generated using clusterGeneration package in R. Each set of simulation datasets consists of 91 datasets in comma separated values (csv) format (total of 182 csv files) with 3-15 clusters and 0.1 to 0.7 separation values. Separation values can range between (−0.999, 0.999), where a higher separation value indicates cluster structure with more separable clusters. Size of the dataset, number of clusters, and separation value of the clusters in the dataset is printed in file name. size_X_n_Y_sepval_Z.csv: Size of the dataset = X number of clusters in the dataset = Y separation value of the clusters in the dataset = Z
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please see the original paper at https://doi.org/10.1038/s41597-021-00833-x for more information about this dataset.
This package contains a datasets described by Donchev et al. [1]: DES370K, It is presented as a CSV (DES370K.csv) and .mol files (geometries//DES370K_.mol). Also included is a metadata file DES370K_meta.csv, which contains a set of long-form column descriptions replicating those in [1], as well as data types and units (when applicable) for each column.
DES370K.csv : Full dataset, containing interaction energies calculated using CCSD(T), MP2, HF, and SAPT0, as well as dimer geometries.
DES370K_meta.csv : Long-form descriptions of the columns in DES370K, as well as datatypes and units (when applicable) for each column
LICENSE.txt : License for using and redistributing the datasets provided.
README.md : This file.
The datasets are presented as CSVs as a compromise between human-readability, format uniformity, and parsing speed. While an almost uncountable number of packages exist to read CSV files, we recommend using the python data analysis
[1] A. G. Donchev, A. G. Taube, E. Decolvenaere, C. Hargus, R. T. McGibbon, K.-H. Law, B. A. Gregersen, J.-L. Li, K. Palmo, K. Siva, M. Bergdorf, J. L. Klepeis, and D. E. Shaw. "Quantum chemical benchmark database of dimer interaction energies at a “gold standard” level of accuracy"
[2] R. T. McGibbon, A. G. Taube, A. G. Donchev, K. Siva, F. Fernandez, C. Hargus, K.-H. Law, J.L. Klepeis, and D. E. Shaw. "Improving the accuracy of Moller-Plesset perturbation theory with neural networks"
[3] M. K. Kesharwani, A. Karton, N. Sylvetsky, J. M. L. Nitai. "The S66 non-covalent interactions benchmark reconsidered using explicitly correlated methods near the basis set limit."
DESRES DATA SETS LICENSE AGREEMENT
Copyright 2020, D. E. Shaw Research. All rights reserved.
Redistribution and use of electronic structure data released in the DESRES
Data Sets (DES370K, DES15K, DES5M, DESS66, and DESS66x8) with or without
modification, is permitted provided that the following conditions are met:
* Redistributions of the data must retain the above copyright notice,
this list of conditions, and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.
Neither the name of D. E. Shaw Research nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE AND DATA ARE PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDINGNEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE AND/OR DATA, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The dataset has been collected in the frame of the Prac1 of the subject Tipology and Data Life Cycle of the Master's Degree in Data Science of the Universitat Oberta de Catalunya (UOC).
The dataset contains 25 variables and 52478 records corresponding to books on the GoodReads Best Books Ever list (the larges list on the site).
Original code used to retrieve the dataset can be found on github repository: github.com/scostap/goodreads_bbe_dataset
The data was retrieved in two sets, the first 30000 books and then the remainig 22478. Dates were not parsed and reformated on the second chunk so publishDate and firstPublishDate are representet in a mm/dd/yyyy format for the first 30000 records and Month Day Year for the rest.
Book cover images can be optionally downloaded from the url in the 'coverImg' field. Python code for doing so and an example can be found on the github repo.
The 25 fields of the dataset are:
| Attributes | Definition | Completeness |
| ------------- | ------------- | ------------- |
| bookId | Book Identifier as in goodreads.com | 100 |
| title | Book title | 100 |
| series | Series Name | 45 |
| author | Book's Author | 100 |
| rating | Global goodreads rating | 100 |
| description | Book's description | 97 |
| language | Book's language | 93 |
| isbn | Book's ISBN | 92 |
| genres | Book's genres | 91 |
| characters | Main characters | 26 |
| bookFormat | Type of binding | 97 |
| edition | Type of edition (ex. Anniversary Edition) | 9 |
| pages | Number of pages | 96 |
| publisher | Editorial | 93 |
| publishDate | publication date | 98 |
| firstPublishDate | Publication date of first edition | 59 |
| awards | List of awards | 20 |
| numRatings | Number of total ratings | 100 |
| ratingsByStars | Number of ratings by stars | 97 |
| likedPercent | Derived field, percent of ratings over 2 starts (as in GoodReads) | 99 |
| setting | Story setting | 22 |
| coverImg | URL to cover image | 99 |
| bbeScore | Score in Best Books Ever list | 100 |
| bbeVotes | Number of votes in Best Books Ever list | 100 |
| price | Book's price (extracted from Iberlibro) | 73 |
Introduction and Rationale: Due to our increasing understanding of the role the surrounding landscape plays in ecological processes, a detailed characterization of land cover, including both agricultural and natural habitats, is ever more important for both researchers and conservation practitioners. Unfortunately, in the United States, different types of land cover data are split across thematic datasets that emphasize agricultural or natural vegetation, but not both. To address this data gap and reduce duplicative efforts in geospatial processing, we merged two major datasets, the LANDFIRE National Vegetation Classification (NVC) and USDA-NASS Cropland Data Layer (CDL), to produce an integrated land cover map. Our workflow leveraged strengths of the NVC and the CDL to produce detailed rasters comprising both agricultural and natural land-cover classes. We generated these maps for each year from 2012-2021 for the conterminous United States, quantified agreement between input layers and accuracy of our merged product, and published the complete workflow necessary to update these data. In our validation analyses, we found that approximately 5.5% of NVC agricultural pixels conflicted with the CDL, but we resolved a majority of these conflicts based on surrounding agricultural land, leaving only 0.6% of agricultural pixels unresolved in our merged product. Contents: Spatial data Attribute table for merged rasters Technical validation data Number and proportion of mismatched pixels Number and proportion of unresolved pixels Producer's and User's accuracy values and coverage of reference data Resources in this dataset:Resource Title: Attribute table for merged rasters. File Name: CombinedRasterAttributeTable_CDLNVC.csvResource Description: Raster attribute table for merged raster product. Class names and recommended color map were taken from USDA-NASS Cropland Data Layer and LANDFIRE National Vegetation Classification. Class values are also identical to source data, except classes from the CDL are now negative values to avoid overlapping NVC values. Resource Title: Number and proportion of mismatched pixels. File Name: pixel_mismatch_byyear_bycounty.csvResource Description: Number and proportion of pixels that were mismatched between the Cropland Data Layer and National Vegetation Classification, per year from 2012-2021, per county in the conterminous United States.Resource Title: Number and proportion of unresolved pixels. File Name: unresolved_conflict_byyear_bycounty.csvResource Description: Number and proportion of unresolved pixels in the final merged rasters, per year from 2012-2021, per county in the conterminous United States. Unresolved pixels are a result of mismatched pixels that we could not resolve based on surrounding agricultural land (no agriculture with 90m radius).Resource Title: Producer's and User's accuracy values and coverage of reference data. File Name: accuracy_datacoverage_byyear_bycounty.csvResource Description: Producer's and User's accuracy values and coverage of reference data, per year from 2012-2021, per county in the conterminous United States. We defined coverage of reference data as the proportional area of land cover classes that were included in the reference data published by USDA-NASS and LANDFIRE for the Cropland Data Layer and National Vegetation Classification, respectively. CDL and NVC classes with reference data also had published accuracy statistics. Resource Title: Data Dictionary. File Name: Data_Dictionary_RasterMerge.csv
Global Telemarketing Data | 95% Phone & Email Accuracy | 270M+ Verified Contacts Forager.ai redefines telemarketing success with the world’s most actionable contact database. We combine 100M+ mobile numbers and 170M+ verified emails with deep company insights – all updated every 14 days to maintain 95% accuracy rates that outperform legacy providers.
Why Telemarketing Teams Choose Us ✅ Dual-Channel Verified Every record confirms both working mobile numbers AND valid Personal email or Work email addresses – critical for multi-touch campaigns.
✅ Decision-Maker Intel 41% of contacts hold budget authority (Director to C-Suite) with:
Direct mobile numbers
Verified corporate emails
Department hierarchy mapping
Purchase intent signals
✅ Freshness Engine Bi-weekly verification sweeps catch: ✖ Job changers (23% of database monthly) ✖ Company restructuring ✖ Number/email deactivations
✅ Compliance Built-In Automated opt-out management + full GDPR/CCPA documentation.
Your Complete Telemarketing Toolkit Core Data Points: ✔ Direct dial mobile/work numbers ✔ Verified corporate email addresses ✔ Job title & decision-making authority ✔ Company size/revenue/tech stack ✔ Department structure & team size ✔ Location data (HQ/local offices) ✔ LinkedIn/Social media validation
Proven Use Cases • Cold Calling 2.0: Target CROs with mobile numbers + know their tech stack before dialing • Email-to-Call Sequencing: Match verified emails to mobile numbers for 360° outreach • List Hygiene: Clean existing CRM contacts against our live database • Market Expansion: Target specific employee counts (50-200 person companies) • Event Follow-Ups: Re-engage webinar/trade show leads with updated contact info
Enterprise-Grade Delivery
Real-Time API: Connect to Five9/Aircall/Salesforce
CRM-Ready Files: CSV with custom fields
Compliance Hub: Automated opt-out tracking
PostgreSQL Sync/ JSON files: 2-3 weeks updates for large datasets
Why We Outperform Competitors → 62% Connect Rate: Actual client result vs. industry 38% average → 3:1 ROI Guarantee: We’ll prove value or extend your license → Free Audit: Upload 10K contacts – we’ll show % salvageable
Need Convincing? Free API test account → Experience our accuracy firsthand. See why 89% of trial users convert to paid plans.
Telemarketing Data | Verified Contact Database | Cold Calling Lists | Phone & Email Data | Decision-Maker Contacts | CRM Enrichment | GDPR-Compliant Leads | B2B Contact Data | Sales Prospecting | ABM Targeting
Roblox Player Profile Dataset
Overview
This dataset contains player profile data scraped from the Roblox platform. It includes various attributes that provide insights into user accounts, allowing for analyses, modeling, and research into Roblox's user base.
Dataset Details
Format: CSV File Name: roblox_player_data.csv Number of Entries: [10]
Fields
Column Name Description
user_id Unique identifier for the user
username Roblox username… See the full description on the dataset page: https://huggingface.co/datasets/ZelonPrograms/RobloxUsers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gait recognition is the characterization of unqiue biometric patterns associated with each inidvidual which can be utilized to identify a person without direct contact. A public gain database with relatively large number of subjects can provide a great oppportunity to future studies to build and validate gait authentication models. The goal of this study is to introduce a comprehensive gait database of 93 human subjects who walked between two end points (320 meters) during two different sessions and record their gait data using two smart phones, one was attached to right thigh and another one on left side of waist. This data is collected with intention to be utilized by deep learning-based method which requires enough time points. The meta data including age, gender, smoking, daily exercise time, height, and weight of an individual is recorded. this data set is publicly available.
Except 19 subjects who did not attend for second session, every subject is associated with 4 different log files (each session contains two log files). Every file name has one of the following patterns: · sub0-lw-s1.csv: subject number 0, left waist, session 1 · sub0-rp-s1.csv: subject number 0, right thigh, session 1 · sub0-lw-s2.csv: subject number 0, left waist, session 2 · sub0-rp-s2.csv: subject number 0, right thigh, session 2 Every log file contains 58 features that are internally captured and calculated using SensorLog app. Additionally, an Excel file contain the meta data is provided for each subject.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This replication package contains datasets and scripts related to the paper: "*How do Hugging Face Models Document Datasets, Bias, and Licenses? An Empirical Study*"
## Root directory
- `statistics.r`: R script used to compute the correlation between usage and downloads, and the RQ1/RQ2 inter-rater agreements
- `modelsInfo.zip`: zip file containing all the downloaded model cards (in JSON format)
- `script`: directory containing all the scripts used to collect and process data. For further details, see README file inside the script directory.
## Dataset
- `Dataset/Dataset_HF-models-list.csv`: list of HF models analyzed
- `Dataset/Dataset_github-prj-list.txt`: list of GitHub projects using the *transformers* library
- `Dataset/Dataset_github-Prj_model-Used.csv`: contains usage pairs: project, model
- `Dataset/Dataset_prj-num-models-reused.csv`: number of models used by each GitHub project
- `Dataset/Dataset_model-download_num-prj_correlation.csv` contains, for each model used by GitHub projects: the name, the task, the number of reusing projects, and the number of downloads
## RQ1
- `RQ1/RQ1_dataset-list.txt`: list of HF datasets
- `RQ1/RQ1_datasetSample.csv`: sample set of models used for the manual analysis of datasets
- `RQ1/RQ1_analyzeDatasetTags.py`: Python script to analyze model tags for the presence of datasets. it requires to unzip the `modelsInfo.zip` in a directory with the same name (`modelsInfo`) at the root of the replication package folder. Produces the output to stdout. To redirect in a file fo be analyzed by the `RQ2/countDataset.py` script
- `RQ1/RQ1_countDataset.py`: given the output of `RQ2/analyzeDatasetTags.py` (passed as argument) produces, for each model, a list of Booleans indicating whether (i) the model only declares HF datasets, (ii) the model only declares external datasets, (iii) the model declares both, and (iv) the model is part of the sample for the manual analysis
- `RQ1/RQ1_datasetTags.csv`: output of `RQ2/analyzeDatasetTags.py`
- `RQ1/RQ1_dataset_usage_count.csv`: output of `RQ2/countDataset.py`
## RQ2
- `RQ2/tableBias.pdf`: table detailing the number of occurrences of different types of bias by model Task
- `RQ2/RQ2_bias_classification_sheet.csv`: results of the manual labeling
- `RQ2/RQ2_isBiased.csv`: file to compute the inter-rater agreement of whether or not a model documents Bias
- `RQ2/RQ2_biasAgrLabels.csv`: file to compute the inter-rater agreement related to bias categories
- `RQ2/RQ2_final_bias_categories_with_levels.csv`: for each model in the sample, this file lists (i) the bias leaf category, (ii) the first-level category, and (iii) the intermediate category
## RQ3
- `RQ3/RQ3_LicenseValidation.csv`: manual validation of a sample of licenses
- `RQ3/RQ3_{NETWORK-RESTRICTIVE|RESTRICTIVE|WEAK-RESTRICTIVE|PERMISSIVE}-license-list.txt`: lists of licenses with different permissiveness
- `RQ3/RQ3_prjs_license.csv`: for each project linked to models, among other fields it indicates the license tag and name
- `RQ3/RQ3_models_license.csv`: for each model, indicates among other pieces of info, whether the model has a license, and if yes what kind of license
- `RQ3/RQ3_model-prj-license_contingency_table.csv`: usage contingency table between projects' licenses (columns) and models' licenses (rows)
- `RQ3/RQ3_models_prjs_licenses_with_type.csv`: pairs project-model, with their respective licenses and permissiveness level
## scripts
Contains the scripts used to mine Hugging Face and GitHub. Details are in the enclosed README
Our Data Enrichment Service allows you to provide a CSV file with Linkedin Profile URLs (either regular, Sales Navigator or Recruiter), and we'll transform that basic data into a rich set of enriched contact info with data such as full name, emails, phones, job titles, location, company information, and more!
The process is simple:
Prepare Your File: If you only Linkedin Profile URLs, that's sufficient. Provide us your file.
Receive Enriched Data: You'll get a file with enriched details. We'll source data on the person and company in real-time, enabling you to supercharge your outreach or marketing campaigns. Whether you're building prospect lists, personalizing email campaigns, or targeting decision-makers, this data gives you the advantage of deeper insights for better results.
Our service is designed for speed, accuracy, and high-quality data, ensuring your team has what they need to engage effectively.
Our Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/" class="govuk-link">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The April 2025 release includes:
As we will be adding to the April data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download:
T1DiabetesGranada
A longitudinal multi-modal dataset of type 1 diabetes mellitus
Documented by:
Rodriguez-Leon, C., Aviles-Perez, M. D., Banos, O., Quesada-Charneco, M., Lopez-Ibarra, P. J., Villalonga, C., & Munoz-Torres, M. (2023). T1DiabetesGranada: a longitudinal multi-modal dataset of type 1 diabetes mellitus. Scientific Data, 10(1), 916. https://doi.org/10.1038/s41597-023-02737-4
Background
Type 1 diabetes mellitus (T1D) patients face daily difficulties in keeping their blood glucose levels within appropriate ranges. Several techniques and devices, such as flash glucose meters, have been developed to help T1D patients improve their quality of life. Most recently, the data collected via these devices is being used to train advanced artificial intelligence models to characterize the evolution of the disease and support its management. The main problem for the generation of these models is the scarcity of data, as most published works use private or artificially generated datasets. For this reason, this work presents T1DiabetesGranada, a open under specific permission longitudinal dataset that not only provides continuous glucose levels, but also patient demographic and clinical information. The dataset includes 257780 days of measurements over four years from 736 T1D patients from the province of Granada, Spain. This dataset progresses significantly beyond the state of the art as one the longest and largest open datasets of continuous glucose measurements, thus boosting the development of new artificial intelligence models for glucose level characterization and prediction.
Data Records
The data are stored in four comma-separated values (CSV) files which are available in T1DiabetesGranada.zip. These files are described in detail below.
Patient_info.csv
Patient_info.csv is the file containing information about the patients, such as demographic data, start and end dates of blood glucose level measurements and biochemical parameters, number of biochemical parameters or number of diagnostics. This file is composed of 736 records, one for each patient in the dataset, and includes the following variables:
Patient_ID – Unique identifier of the patient. Format: LIB19XXXX.
Sex – Sex of the patient. Values: F (for female), masculine (for male)
Birth_year – Year of birth of the patient. Format: YYYY.
Initial_measurement_date – Date of the first blood glucose level measurement of the patient in the Glucose_measurements.csv file. Format: YYYY-MM-DD.
Final_measurement_date – Date of the last blood glucose level measurement of the patient in the Glucose_measurements.csv file. Format: YYYY-MM-DD.
Number_of_days_with_measures – Number of days with blood glucose level measurements of the patient, extracted from the Glucose_measurements.csv file. Values: ranging from 8 to 1463.
Number_of_measurements – Number of blood glucose level measurements of the patient, extracted from the Glucose_measurements.csv file. Values: ranging from 400 to 137292.
Initial_biochemical_parameters_date – Date of the first biochemical test to measure some biochemical parameter of the patient, extracted from the Biochemical_parameters.csv file. Format: YYYY-MM-DD.
Final_biochemical_parameters_date – Date of the last biochemical test to measure some biochemical parameter of the patient, extracted from the Biochemical_parameters.csv file. Format: YYYY-MM-DD.
Number_of_biochemical_parameters – Number of biochemical parameters measured on the patient, extracted from the Biochemical_parameters.csv file. Values: ranging from 4 to 846.
Number_of_diagnostics – Number of diagnoses realized to the patient, extracted from the Diagnostics.csv file. Values: ranging from 1 to 24.
Glucose_measurements.csv
Glucose_measurements.csv is the file containing the continuous blood glucose level measurements of the patients. The file is composed of more than 22.6 million records that constitute the time series of continuous blood glucose level measurements. It includes the following variables:
Patient_ID – Unique identifier of the patient. Format: LIB19XXXX.
Measurement_date – Date of the blood glucose level measurement. Format: YYYY-MM-DD.
Measurement_time – Time of the blood glucose level measurement. Format: HH:MM:SS.
Measurement – Value of the blood glucose level measurement in mg/dL. Values: ranging from 40 to 500.
Biochemical_parameters.csv
Biochemical_parameters.csv is the file containing data of the biochemical tests performed on patients to measure their biochemical parameters. This file is composed of 87482 records and includes the following variables:
Patient_ID – Unique identifier of the patient. Format: LIB19XXXX.
Reception_date – Date of receipt in the laboratory of the sample to measure the biochemical parameter. Format: YYYY-MM-DD.
Name – Name of the measured biochemical parameter. Values: 'Potassium', 'HDL cholesterol', 'Gammaglutamyl Transferase (GGT)', 'Creatinine', 'Glucose', 'Uric acid', 'Triglycerides', 'Alanine transaminase (GPT)', 'Chlorine', 'Thyrotropin (TSH)', 'Sodium', 'Glycated hemoglobin (Ac)', 'Total cholesterol', 'Albumin (urine)', 'Creatinine (urine)', 'Insulin', 'IA ANTIBODIES'.
Value – Value of the biochemical parameter. Values: ranging from -4.0 to 6446.74.
Diagnostics.csv
Diagnostics.csv is the file containing diagnoses of diabetes mellitus complications or other diseases that patients have in addition to type 1 diabetes mellitus. This file is composed of 1757 records and includes the following variables:
Patient_ID – Unique identifier of the patient. Format: LIB19XXXX.
Code – ICD-9-CM diagnosis code. Values: subset of 594 of the ICD-9-CM codes (https://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/codes).
Description – ICD-9-CM long description. Values: subset of 594 of the ICD-9-CM long description (https://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/codes).
Technical Validation
Blood glucose level measurements are collected using FreeStyle Libre devices, which are widely used for healthcare in patients with T1D. Abbott Diabetes Care, Inc., Alameda, CA, USA, the manufacturer company, has conducted validation studies of these devices concluding that the measurements made by their sensors compare to YSI analyzer devices (Xylem Inc.), the gold standard, yielding results of 99.9% of the time within zones A and B of the consensus error grid. In addition, other studies external to the company concluded that the accuracy of the measurements is adequate.
Moreover, it was also checked in most cases the blood glucose level measurements per patient were continuous (i.e. a sample at least every 15 minutes) in the Glucose_measurements.csv file as they should be.
Usage Notes
For data downloading, it is necessary to be authenticated on the Zenodo platform, accept the Data Usage Agreement and send a request specifying full name, email, and the justification of the data use. This request will be processed by the Secretary of the Department of Computer Engineering, Automatics, and Robotics of the University of Granada and access to the dataset will be granted.
The files that compose the dataset are CSV type files delimited by commas and are available in T1DiabetesGranada.zip. A Jupyter Notebook (Python v. 3.8) with code that may help to a better understanding of the dataset, with graphics and statistics, is available in UsageNotes.zip.
Graphs_and_stats.ipynb
The Jupyter Notebook generates tables, graphs and statistics for a better understanding of the dataset. It has four main sections, one dedicated to each file in the dataset. In addition, it has useful functions such as calculating the patient age, deleting a patient list from a dataset file and leaving only a patient list in a dataset file.
Code Availability
The dataset was generated using some custom code located in CodeAvailability.zip. The code is provided as Jupyter Notebooks created with Python v. 3.8. The code was used to conduct tasks such as data curation and transformation, and variables extraction.
Original_patient_info_curation.ipynb
In the Jupyter Notebook is preprocessed the original file with patient data. Mainly irrelevant rows and columns are removed, and the sex variable is recoded.
Glucose_measurements_curation.ipynb
In the Jupyter Notebook is preprocessed the original file with the continuous glucose level measurements of the patients. Principally rows without information or duplicated rows are removed and the variable with the timestamp is transformed into two new variables, measurement date and measurement time.
Biochemical_parameters_curation.ipynb
In the Jupyter Notebook is preprocessed the original file with patient data of the biochemical tests performed on patients to measure their biochemical parameters. Mainly irrelevant rows and columns are removed and the variable with the name of the measured biochemical parameter is translated.
Diagnostic_curation.ipynb
In the Jupyter Notebook is preprocessed the original file with patient data of the diagnoses of diabetes mellitus complications or other diseases that patients have in addition to T1D.
Get_patient_info_variables.ipynb
In the Jupyter Notebook it is coded the feature extraction process from the files Glucose_measurements.csv, Biochemical_parameters.csv and Diagnostics.csv to complete the file Patient_info.csv. It is divided into six sections, the first three to extract the features from each of the mentioned files and the next three to add the extracted features to the resulting new file.
Data Usage Agreement
The conditions for use are as follows:
You confirm that you will not attempt to re-identify research participants for any reason, including for re-identification theory research.
You commit to keeping the T1DiabetesGranada dataset confidential and secure and will not redistribute data or Zenodo account credentials.
You will require
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This parent dataset (collection of datasets) describes the general organization of data in the datasets for each growing season (year) when maize (Zea mays, L., also known as corn in the United States) was grown for grain at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). Maize was grown for grain on between two and four large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The four fields were contiguous and arranged in four quadrants, which were labeled northeast (NE), southeast (SE), northwest (NW), and southwest (SW). See the resource titled "Geographic Coordinates, USDA, ARS, Bushland, Texas" for UTM geographic coordinates for field and lysimeter locations. Maize was grown on only the NE and SE fields in 1989 and 1990, and on all four fields in 1994, 2013, 2016, and 2018. Irrigation was by linear move sprinkler system in 1989, 1990, and 1994, although the system was equipped with various application technologies such as high-pressure impact sprinklers, low pressure spray applications, and low energy precision applicators (LEPA). In 2013, 2016, and 2018, two lysimeters and their respective fields were irrigated using subsurface drip irrigation (SDI), and two lysimeters and their respective fields were irrigated by a linear move sprinkler system equipped with spray applicators. Irrigations were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe from 0.10- to 2.4-m depth in the field. The number and spacing of neutron probe reading locations changed through the years (additional sites were added), which is one reason why subsidiary datasets and data dictionaries are needed. The lysimeters and fields were planted to the same plant density, row spacing, tillage depth (by hand on the lysimeters and by machine in the fields), and fertilizer and pesticide applications. The weighing lysimeters were used to measure relative soil water storage to 0.05 mm accuracy at 5-minute intervals, and the 5-minute change in soil water storage was used along with precipitation, dew and frost accumulation, and irrigation amounts to calculate crop evapotranspiration (ET), which is reported at 15-minute intervals. Each lysimeter was equipped with a suite of instruments to sense wind speed, air temperature and humidity, radiant energy (incoming and reflected, typically both shortwave and longwave), surface temperature, soil heat flux, and soil temperature, all of which are reported at 15-minute intervals. Instruments used changed from season to season, which is another reason that subsidiary datasets and data dictionaries for each season are required.Important conventions concerning the data-time correspondence, sign conventions, and terminology specific to the USDA ARS, Bushland, TX, field operations are given in the resource titled "Conventions for Bushland, TX, Weighing Lysimeter Datasets".There are six datasets in this collection. Common symbols and abbreviations used in the datasets are defined in the resource titled, "Symbols and Abbreviations for Bushland, TX, Weighing Lysimeter Datasets". Datasets consist of Excel (xlsx) files. Each xlsx file contains an Introductory tab that explains the other tabs, lists the authors, describes conventions and symbols used and lists any instruments used. The remaining tabs in a file consist of dictionary and data tabs. There is a dictionary tab for every data tab. The name of the dictionary tab contains the name of the corresponding data tab. Tab names are unique so that if individual tabs were saved to CSV files, each CSV file in the entire collection would have a different name. The six datasets, according to their titles, are as follows:Agronomic Calendars for the Bushland, Texas Maize for Grain DatasetsGrowth and Yield Data for the Bushland, Texas Maize for Grain DatasetsWeighing Lysimeter Data for The Bushland, Texas Maize for Grain DatasetsSoil Water Content Data for The Bushland, Texas, Large Weighing Lysimeter ExperimentsEvapotranspiration, Irrigation, Dew/frost - Water Balance Data for The Bushland, Texas Maize for Grain DatasetsStandard Quality Controlled Research Weather Data – USDA-ARS, Bushland, TexasSee the README for descriptions of each dataset.The land slope is
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This publication contains several datasets that have been used in the paper "Crowdsourcing open citations with CROCI – An analysis of the current status of open citations, and a proposal" submitted to the 17th International Conference on Scientometrics and Bibliometrics (ISSI 2019), available at https://opencitations.wordpress.com/2019/02/07/crowdsourcing-open-citations-with-croci/.
Additional information about the analyses described in the paper, including the code and the data we have used to compute all the figures, is available as a Jupyter notebook at https://github.com/sosgang/pushing-open-citations-issi2019/blob/master/script/croci_nb.ipynb. The datasets contain the following information.
non_open.zip: it is a zipped (~5 GB unzipped) CSV file containing the numbers of open citations and closed citations received by the entities in the Crossref dump used in our computation, dated October 2018. All the entity types retrieved from Crossref were aligned to one of following five categories: journal, book, proceedings, dataset, other. The open CC0 citation data we used came from the CSV dump of most recent release of COCI dated 12 November 2018. The number of closed citations was calculated by subtracting the number of open citations to each entity available within COCI from the value “is-referenced-by-count” available in the Crossref metadata for that particular cited entity, which reports all the DOI-to-DOI citation links that point to the cited entity from within the whole Crossref database (including those present in the Crossref ‘closed’ dataset).
The columns of the CSV file are the following ones:
croci_types.csv: it is a CSV file that contains the numbers of open citations and closed citations received by the entities in the Crossref dump used in our computation, as collected in the previous CSV file, alligned in five classes depening on the entity types retrieved from Crossref: journal (Crossref types: journal-article, journal-issue, journal-volume, journal), book (Crossref types: book, book-chapter, book-section, monograph, book track, book-part, book-set, reference-book, dissertation, book series, edited book), proceedings (Crossref types: proceedings-article, proceedings, proceedings-series), dataset (Crossref types: dataset), other (Crossref types: other, report, peer review, reference-entry, component, report-series, standard, posted-content, standard-series).
The columns of the CSV file are the following ones:
publishers_cits.csv: it is a CSV file that contains the top twenty publishers that received the greatest number of open citations. The columns of the CSV file are the following ones:
20publishers_cr.csv: it is a CSV file that contains the numbers of the contributions to open citations made by the twenty publishers introduced in the previous CSV file as of 24 January 2018, according to the data available through the Crossref API. The counts listed in this file refers to the number of publications for which each publisher has submitted metadata to Crossref that include the publication’s reference list. The categories 'closed', 'limited' and 'open' refer to publications for which the reference lists are not visible to anyone outside the Crossref Cited-by membership, are visible only to them and to Crossref Metadata Plus members, or are visible to all, respectively. In addition, the file also record the total number of publications for which the publisher has submitted metadata to Crossref, whether or not those metadata include the reference lists of those publications.
The columns of the CSV file are the following ones:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: none of the data sets published here contain actual data, they are for testing purposes only.
This data repository contains graph datasets, where each graph is represented by two CSV files: one for node information and another for edge details. To link the files to the same graph, their names include a common identifier based on the number of nodes. For example:
dataset_30_nodes_interactions.csv
:contains 30 rows (nodes).dataset_30_edges_interactions.csv
: contains 47 rows (edges).dataset_30
refers to the same graph.Each dataset contains the following columns:
Name of the Column | Type | Description |
UniProt ID | string | protein identification |
label | string | protein label (type of node) |
properties | string | a dictionary containing properties related to the protein. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
Relationship ID | string | relationship identification |
Source ID | string | identification of the source protein in the relationship |
Target ID | string | identification of the target protein in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_30* |
30 | 47 |
Y |
dataset_60* |
60 |
181 |
Y |
dataset_120* |
120 |
689 |
Y |
dataset_240* |
240 |
2819 |
Y |
dataset_300* |
300 |
4658 |
Y |
dataset_600* |
600 |
18004 |
Y |
dataset_1200* |
1200 |
71785 |
Y |
dataset_2400* |
2400 |
288600 |
Y |
dataset_3000* |
3000 |
449727 |
Y |
dataset_6000* |
6000 |
1799413 |
Y |
dataset_12000* |
12000 |
7199863 |
Y |
dataset_24000* |
24000 |
28792361 |
Y |
dataset_30000* |
30000 |
44991744 |
Y |
This repository include two (2) additional tiny graph datasets to experiment before dealing with larger datasets.
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | node identification |
label | string | node label (type of node) |
properties | string | a dictionary containing properties related to the node. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | relationship identification |
source | string | identification of the source node in the relationship |
target | string | identification of the target node in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_dummy* | 3 | 6 | N |
dataset_dummy2* | 3 | 6 | N |