82 datasets found
  1. d

    Dataset metadata of known Dataverse installations

    • search.dataone.org
    • dataverse.harvard.edu
    • +1more
    Updated Nov 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gautier, Julian (2023). Dataset metadata of known Dataverse installations [Dataset]. http://doi.org/10.7910/DVN/DCDKZQ
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Gautier, Julian
    Description

    This dataset contains the metadata of the datasets published in 77 Dataverse installations, information about each installation's metadata blocks, and the list of standard licenses that dataset depositors can apply to the datasets they publish in the 36 installations running more recent versions of the Dataverse software. The data is useful for reporting on the quality of dataset and file-level metadata within and across Dataverse installations. Curators and other researchers can use this dataset to explore how well Dataverse software and the repositories using the software help depositors describe data. How the metadata was downloaded The dataset metadata and metadata block JSON files were downloaded from each installation on October 2 and October 3, 2022 using a Python script kept in a GitHub repo at https://github.com/jggautier/dataverse-scripts/blob/main/other_scripts/get_dataset_metadata_of_all_installations.py. In order to get the metadata from installations that require an installation account API token to use certain Dataverse software APIs, I created a CSV file with two columns: one column named "hostname" listing each installation URL in which I was able to create an account and another named "apikey" listing my accounts' API tokens. The Python script expects and uses the API tokens in this CSV file to get metadata and other information from installations that require API tokens. How the files are organized ├── csv_files_with_metadata_from_most_known_dataverse_installations │ ├── author(citation).csv │ ├── basic.csv │ ├── contributor(citation).csv │ ├── ... │ └── topic_classification(citation).csv ├── dataverse_json_metadata_from_each_known_dataverse_installation │ ├── Abacus_2022.10.02_17.11.19.zip │ ├── dataset_pids_Abacus_2022.10.02_17.11.19.csv │ ├── Dataverse_JSON_metadata_2022.10.02_17.11.19 │ ├── hdl_11272.1_AB2_0AQZNT_v1.0.json │ ├── ... │ ├── metadatablocks_v5.6 │ ├── astrophysics_v5.6.json │ ├── biomedical_v5.6.json │ ├── citation_v5.6.json │ ├── ... │ ├── socialscience_v5.6.json │ ├── ACSS_Dataverse_2022.10.02_17.26.19.zip │ ├── ADA_Dataverse_2022.10.02_17.26.57.zip │ ├── Arca_Dados_2022.10.02_17.44.35.zip │ ├── ... │ └── World_Agroforestry_-_Research_Data_Repository_2022.10.02_22.59.36.zip └── dataset_pids_from_most_known_dataverse_installations.csv └── licenses_used_by_dataverse_installations.csv └── metadatablocks_from_most_known_dataverse_installations.csv This dataset contains two directories and three CSV files not in a directory. One directory, "csv_files_with_metadata_from_most_known_dataverse_installations", contains 18 CSV files that contain the values from common metadata fields of all 77 Dataverse installations. For example, author(citation)_2022.10.02-2022.10.03.csv contains the "Author" metadata for all published, non-deaccessioned, versions of all datasets in the 77 installations, where there's a row for each author name, affiliation, identifier type and identifier. The other directory, "dataverse_json_metadata_from_each_known_dataverse_installation", contains 77 zipped files, one for each of the 77 Dataverse installations whose dataset metadata I was able to download using Dataverse APIs. Each zip file contains a CSV file and two sub-directories: The CSV file contains the persistent IDs and URLs of each published dataset in the Dataverse installation as well as a column to indicate whether or not the Python script was able to download the Dataverse JSON metadata for each dataset. For Dataverse installations using Dataverse software versions whose Search APIs include each dataset's owning Dataverse collection name and alias, the CSV files also include which Dataverse collection (within the installation) that dataset was published in. One sub-directory contains a JSON file for each of the installation's published, non-deaccessioned dataset versions. The JSON files contain the metadata in the "Dataverse JSON" metadata schema. The other sub-directory contains information about the metadata models (the "metadata blocks" in JSON files) that the installation was using when the dataset metadata was downloaded. I saved them so that they can be used when extracting metadata from the Dataverse JSON files. The dataset_pids_from_most_known_dataverse_installations.csv file contains the dataset PIDs of all published datasets in the 77 Dataverse installations, with a column to indicate if the Python script was able to download the dataset's metadata. It's a union of all of the "dataset_pids_..." files in each of the 77 zip files. The licenses_used_by_dataverse_installations.csv file contains information about the licenses that a number of the installations let depositors choose when creating datasets. When I collected ... Visit https://dataone.org/datasets/sha256%3Ad27d528dae8cf01e3ea915f450426c38fd6320e8c11d3e901c43580f997a3146 for complete metadata about this dataset.

  2. d

    CrowdTangle Platform and API

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Garmur, Matt; King, Gary; Mukerjee, Zagreb; Persily, Nate; Silverman, Brandon (2023). CrowdTangle Platform and API [Dataset]. http://doi.org/10.7910/DVN/SCCQYD
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Garmur, Matt; King, Gary; Mukerjee, Zagreb; Persily, Nate; Silverman, Brandon
    Description

    A codebook for CrowdTangle, a social media content discovery and analytics platform. The data describes aggregated interactions with Facebook and Instagram posts from public pages, public groups, or public people, including user reactions, shares, comments, and comparisons to a benchmark. Pages are included if they exceed 110k likes/followers, or if a user has added them previously to CrowdTangle.

  3. H

    Harvard Art Museums API

    • datasetcatalog.nlm.nih.gov
    • dataverse.harvard.edu
    Updated Dec 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steward, Jeff (2015). Harvard Art Museums API [Dataset]. http://doi.org/10.7910/DVN/AGTG4E
    Explore at:
    Dataset updated
    Dec 11, 2015
    Authors
    Steward, Jeff
    Description

    The Harvard Art Museums API is a REST-style service designed for developers who wish to explore and integrate the museums’ collections in their projects. The API provides direct access to JSON formatted data that describes many aspects of the museums. Details at http://www.harvardartmuseums.org/collections/api and https://github.com/harvardartmuseums/api-docs.

  4. S

    SUPER DADA for Dataverse 5+ [Version 1.0]

    • sodha.be
    sh, text/markdown
    Updated Apr 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Sciences and Digital Humanities Archive – SODHA (2022). SUPER DADA for Dataverse 5+ [Version 1.0] [Dataset]. http://doi.org/10.34934/DVN/WBVVIM
    Explore at:
    sh(8767), text/markdown(5495)Available download formats
    Dataset updated
    Apr 25, 2022
    Dataset provided by
    Social Sciences and Digital Humanities Archive – SODHA
    Dataset funded by
    Belgian Science Policy Office (BELSPO)
    Description

    SUPER DADA is a bash script that adapts XML-DDI metadata files produced by Dataverse in order to make them compliant with the technical requirements of the CESSDA Data Catalogue (CDC). This version of the script is geared towards versions 5+ of Dataverse. In its current state, SUPER DADA modifies XML-DDI files produced by a version 5+ Dataverse installation so that the files become fully compliant with the 'BASIC' level of validation (or 'validation gate') of the CESSDA Metadata Validator against the CESSDA Data Catalogue (CDC) DDI 2.5 Profile 1.0.4. See the README file for technical details and specifications.

  5. D

    Dataset for Design Ideation Study

    • dataverse.azure.uit.no
    • dataverse.no
    application/x-h5, pdf +3
    Updated Feb 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Filip Gornitzka Abelson; Filip Gornitzka Abelson; Henrikke Dybvik; Henrikke Dybvik; Martin Steinert; Martin Steinert (2024). Dataset for Design Ideation Study [Dataset]. http://doi.org/10.18710/PZQC4A
    Explore at:
    tsv(7501), txt(13093), application/x-h5(25860340), application/x-h5(286920385), zip(581532), tsv(295160), application/x-h5(540715825), tsv(767327), application/x-h5(49209334), application/x-h5(510702725), tsv(1336354), tsv(2010), tsv(1935109), pdf(33267), application/x-h5(272694817)Available download formats
    Dataset updated
    Feb 28, 2024
    Dataset provided by
    DataverseNO
    Authors
    Filip Gornitzka Abelson; Filip Gornitzka Abelson; Henrikke Dybvik; Henrikke Dybvik; Martin Steinert; Martin Steinert
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Study information Design ideation study (N = 24) using eye tracking technology. Participants solved a total of twelve design problems while receiving inspirational stimuli on a monitor. Their task was to generate as many solutions to each problem and explain their solution briefly by thinking aloud. The study allows for getting further insight into how inspirational stimuli improve idea fluency during design ideation. This dataset features processed data from the experiment. Eye tracking data includes gaze data, fixation data, blink data, and pupillometry data for all participants. The study is based on the following research paper and follows the same experimental setup: Goucher-Lambert, K., Moss, J., & Cagan, J. (2019). A neuroimaging investigation of design ideation with and without inspirational stimuli—understanding the meaning of near and far stimuli. Design Studies, 60, 1-38. DOI Dataset Most files in the dataset are saved as CSV files or other human readable file formats. Large files are saved in Hierarchical Data Format (HDF5/H5) to allow for smaller file sizes and higher compression. All data is described thoroughly in 00_ReadMe.txt. The following processed data is included in the dataset: Concatenated annotations file of experimental flow for all participants (CSV). All eye tracking raw data in concatenated files. Annotated with only participant ID. (CSV/HDF5) Annotated eye tracking data for ideation routines only. A subset of the files above. (CSV/HDF5) Audio transcriptions from Google Cloud Speech-to-Text API of each recording with annotations. (CSV) Raw API response for each transcription. These files include time offset for each word in a recording. (JSON) Data for questionnaire feedback and ideas generated during the experiment. (CSV) Data for the post-experiment survey, including demographic information (TSV). Python code used for the open-source experimental setup and dataset construction is hosted at GitHub. Repository also includes code of how the dataset has been further processed.

  6. c

    ckanext-dataverse

    • catalog.civicdataecosystem.org
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ckanext-dataverse [Dataset]. https://catalog.civicdataecosystem.org/dataset/ckanext-dataverse
    Explore at:
    Dataset updated
    Jun 4, 2025
    Description

    The Dataverse extension for CKAN facilitates integration and interaction with Dataverse installations. This likely empowers users to connect their CKAN instance with Dataverse repositories, potentially allowing for the discovery, harvesting, and management of datasets residing in Dataverse. Given the limited information, the exact features and capabilities will need to be derived from the source code. Key Features (Assumed Based on Extension Name): Dataverse Integration: Likely provides functionality to connect and interact with remote Dataverse instances including potentially retrieving metadata about published datasets. Dataset Discovery: May include tools to search and discover datasets within connected Dataverse repositories directly from the CKAN interface. Data Harvesting (Potential): Could offer data harvesting capabilities, making it possible to import datasets from Dataverse into CKAN for centralized management. Technical Integration (Limited Information): Due to the limited information, exact integration methods are unclear. However, it likely utilizes CKAN's plugin system and API to add new functionalities for managing Dataverse interactions. It may involve configuration settings to specify Dataverse endpoints and credentials. Given that it is a GeoSolutions extension there may be related GeoServer functionalities if CKAN and Dataverse can be integrated or configured to share common workflows. Benefits & Impact (Inferred): Connecting CKAN with Dataverse could promote data accessibility and interoperability between platforms. It allows users to take advantage of both systems' capabilities, by potentially enabling the seamless transfer of datasets and catalog information and enabling broader collaboration with a wide variety of potential systems.

  7. T

    SK Test Dataset 1

    • dataverse-training.tdl.org
    • dataverse-dev.tdl.org
    Updated May 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Susan Kung; Susan Kung (2017). SK Test Dataset 1 [Dataset]. https://dataverse-training.tdl.org/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5072/FK2/GTP7VO
    Explore at:
    pdf(13343), application/zipped-shapefile(1988589), jpeg(583790), tsv(615), xls(156160), tsv(10143)Available download formats
    Dataset updated
    May 23, 2017
    Dataset provided by
    Texas Data Repository ***TRAINING*** Dataverse
    Authors
    Susan Kung; Susan Kung
    License

    https://dataverse-training.tdl.org/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5072/FK2/GTP7VOhttps://dataverse-training.tdl.org/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5072/FK2/GTP7VO

    Description

    Test data set for training purposes

  8. d

    ADE & API data and Appendix

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    higashi, yoshitaka (2025). ADE & API data and Appendix [Dataset]. http://doi.org/10.7910/DVN/CUWQAC
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    higashi, yoshitaka
    Description

    ADE & API data and Appendix for ADE. Visit https://dataone.org/datasets/sha256%3A1c1bfe7650e379e0780425b4ba4ad4df193c7e63985eae0c7acefa6aec57edbb for complete metadata about this dataset.

  9. R

    SicpaOpenData for .Net

    • entrepot.recherche.data.gouv.fr
    zip
    Updated May 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thierry Heirman; Thierry Heirman (2023). SicpaOpenData for .Net [Dataset]. http://doi.org/10.57745/B2BOYY
    Explore at:
    zip(584975)Available download formats
    Dataset updated
    May 25, 2023
    Dataset provided by
    Recherche Data Gouv
    Authors
    Thierry Heirman; Thierry Heirman
    License

    https://spdx.org/licenses/etalab-2.0.htmlhttps://spdx.org/licenses/etalab-2.0.html

    Description

    The Sicpa_OpenData libraries allow to facilitate the publication of data to the INRAE dataverse in a transparent way 1/ by simplifying the creation of the metadata document from the data already present in the information systems, 2/ by simplifying the use of dataverse.org APIs. Available as a DLL, the SicpaOpenData for .Net library can be used from all developments using the Microsoft .NET platform

  10. T

    Choice no data only

    • dataverse.tdl.org
    tsv, xlsx
    Updated Aug 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juliana Rangel Posada; Juliana Rangel Posada (2024). Choice no data only [Dataset]. http://doi.org/10.18738/T8/IYDLL8
    Explore at:
    xlsx(8142), tsv(3908), tsv(86900), tsv(50821), tsv(2973)Available download formats
    Dataset updated
    Aug 6, 2024
    Dataset provided by
    Texas Data Repository
    Authors
    Juliana Rangel Posada; Juliana Rangel Posada
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Choice and no-choice experimental data with nurse bees

  11. H

    Replication Data for: Open Journal Systems and Dataverse Integration–...

    • datasetcatalog.nlm.nih.gov
    • dataverse.harvard.edu
    Updated Oct 15, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crosas, Merce; Whitney, Jen; Altman, Micah; Durbin, Philip; Castro, Eleni (2015). Replication Data for: Open Journal Systems and Dataverse Integration– Helping Journals to Upgrade Data Publication for Reusable Research [Dataset]. http://doi.org/10.7910/DVN/Y3WOOE
    Explore at:
    Dataset updated
    Oct 15, 2015
    Authors
    Crosas, Merce; Whitney, Jen; Altman, Micah; Durbin, Philip; Castro, Eleni
    Description

    This article describes the novel open source tools for open data publication in open access journal workflows. This comprises a plugin for Open Journal Systems that supports a data submission, citation, review, and publication workflow; and an extension to the Dataverse system that provides a standard deposit API. We describe the function and design of these tools, provide examples of their use, and summarize their initial reception. We conclude by discussing future plans and potential impact.

  12. T

    Data from: AILLA Multimedia Folder

    • dataverse-training.tdl.org
    audio/vnd.wave, avi +1
    Updated Jan 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan Sullivant; Ryan Sullivant (2020). AILLA Multimedia Folder [Dataset]. http://doi.org/10.33536/FK2/4S3YRO
    Explore at:
    audio/vnd.wave(274732484), avi(1289019396), audio/vnd.wave(259280248), mpeg(1365841924)Available download formats
    Dataset updated
    Jan 14, 2020
    Dataset provided by
    Texas Data Repository ***TRAINING*** Dataverse
    Authors
    Ryan Sullivant; Ryan Sullivant
    License

    https://dataverse-training.tdl.org/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.33536/FK2/4S3YROhttps://dataverse-training.tdl.org/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.33536/FK2/4S3YRO

    Description

    A young man's life story.

  13. d

    Course Planner API

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard University IT (2023). Course Planner API [Dataset]. http://doi.org/10.7910/DVN/NCSJZW
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Harvard University IT
    Description

    The Course Planner API allows developers to create applications that will interact with Course Planner data. Using this API, you can build applications that will allow your users (that are enrolled Harvard College/GSAS students) to add courses to their Course Planner, view the courses that are in the Course Planner, and remove courses.

  14. U

    FISH-AI_WP2_2.1_D06_Data Management Plan

    • dataverse.unimi.it
    pdf
    Updated Feb 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federica Camin; Federica Camin (2024). FISH-AI_WP2_2.1_D06_Data Management Plan [Dataset]. http://doi.org/10.13130/RD_UNIMI/CE0D2S
    Explore at:
    pdf(410481)Available download formats
    Dataset updated
    Feb 14, 2024
    Dataset provided by
    UNIMI Dataverse
    Authors
    Federica Camin; Federica Camin
    License

    https://dataverse.unimi.it/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.13130/RD_UNIMI/CE0D2Shttps://dataverse.unimi.it/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.13130/RD_UNIMI/CE0D2S

    Description

    This dataset regards the data management plan. The first draft prepared by UMIL, circulated among partners to be discussed and amended until a complete consensus. Regularly it is implemented and modified as necessary.

  15. U

    Fish-AI_WP4_D4.2_3.Mechanical properties of hydrogels

    • dataverse.unimi.it
    bin, docx, pdf, pptx
    Updated Feb 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federica Camin; Federica Camin (2024). Fish-AI_WP4_D4.2_3.Mechanical properties of hydrogels [Dataset]. http://doi.org/10.13130/RD_UNIMI/YMN1UZ
    Explore at:
    docx(3703695), pptx(8976752), bin(540532), docx(1317429), pptx(1456399), pptx(6982783), pdf(1322856), pptx(13941791), pptx(23263656)Available download formats
    Dataset updated
    Feb 14, 2024
    Dataset provided by
    UNIMI Dataverse
    Authors
    Federica Camin; Federica Camin
    License

    https://dataverse.unimi.it/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.13130/RD_UNIMI/YMN1UZhttps://dataverse.unimi.it/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.13130/RD_UNIMI/YMN1UZ

    Description

    This dataset collects all the experimental design, the raw and processed data, and the results regarding the mechanical properties of hydrogels

  16. b

    CrowdTangle Platform and API

    • berd-platform.de
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matt Garmur; Gary King; Zagreb Mukerjee; Nate Persily; Brandon Silverman; Matt Garmur; Gary King; Zagreb Mukerjee; Nate Persily; Brandon Silverman (2025). CrowdTangle Platform and API [Dataset]. http://doi.org/10.7910/dvn/sccqyd/whs1sp
    Explore at:
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Matt Garmur; Gary King; Zagreb Mukerjee; Nate Persily; Brandon Silverman; Matt Garmur; Gary King; Zagreb Mukerjee; Nate Persily; Brandon Silverman
    Description

    This document describes the CrowdTangle API and user interface being provided to researchers by Social Science One under its collaboration framework with Facebook. CrowdTangle is a content discovery and analytics platform designed to give content creators the data and insights they need to succeed. The CrowdTangle API surfaces stories, and data to measure their social performance and identify influencers. This codebook describes the data's scope, structure, and fields.

  17. d

    Digital Access to Scholarship at Harvard (DASH)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shieber, Stuart (2023). Digital Access to Scholarship at Harvard (DASH) [Dataset]. http://doi.org/10.7910/DVN/2JRU5X
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Shieber, Stuart
    Description

    DASH is Harvard's digital repository for scholarly articles, theses and dissertatinos, and other Harvard-affiliate generated literature. Harvard Library makes the bibliographic data openly available for all uses, with a standard set of APIs.

  18. D

    Replication Data for: Climate Nags: Affect and the Convergence of Global...

    • dataverse.no
    • dataverse.azure.uit.no
    Updated Sep 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jessica Yarin Robinson; Jessica Yarin Robinson (2023). Replication Data for: Climate Nags: Affect and the Convergence of Global Risk in Online Networks [Dataset]. http://doi.org/10.18710/G1CIXA
    Explore at:
    txt(2845), text/comma-separated-values(47452886)Available download formats
    Dataset updated
    Sep 28, 2023
    Dataset provided by
    DataverseNO
    Authors
    Jessica Yarin Robinson; Jessica Yarin Robinson
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This data set contains the IDs of the 1,186,322 tweets used in "Climate Nags: Affect and the Convergence of Global Risk in Online Networks" (published in Continuum, 2023). The data was collected from Twitter's Streaming API using the DMI-TCAT during the first four months of the Coronavirus pandemic; 2020 U.S. presidential race; and the early stages of the 2022 Russia–Ukraine War. These collections were then filtered based on key words related to climate change (see README file for more details).

  19. U

    Fish-AI_WP4_D4.2_2.Permeability assays of large and small compounds through...

    • dataverse.unimi.it
    bin, docx, pdf, pptx +1
    Updated Feb 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federica Camin; Federica Camin (2024). Fish-AI_WP4_D4.2_2.Permeability assays of large and small compounds through hydrogel films [Dataset]. http://doi.org/10.13130/RD_UNIMI/OUUEA2
    Explore at:
    pptx(8976752), tsv(4010), bin(184244), bin(374337), tsv(6223), docx(3703695), bin(484361), pptx(13941791), docx(1317429), pptx(1456399), pptx(6982783), pptx(23263656), pdf(1322856)Available download formats
    Dataset updated
    Feb 14, 2024
    Dataset provided by
    UNIMI Dataverse
    Authors
    Federica Camin; Federica Camin
    License

    https://dataverse-unimi-restore2.4science.cloud/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.13130/RD_UNIMI/OUUEA2https://dataverse-unimi-restore2.4science.cloud/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.13130/RD_UNIMI/OUUEA2

    Description

    This dataset gathers the experimental design, the raw and processed data and the results regarding the permeability assay of large and small compounds through hydrogel films

  20. D

    Le Dictionnaire topographique. Une API pour les toponymes anciens français

    • dataverse.nl
    pdf
    Updated Dec 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vincent Jolivet; Julien Pilla; Vincent Jolivet; Julien Pilla (2019). Le Dictionnaire topographique. Une API pour les toponymes anciens français [Dataset]. http://doi.org/10.34894/AFYDEK
    Explore at:
    pdf(2216447), pdf(388938)Available download formats
    Dataset updated
    Dec 17, 2019
    Dataset provided by
    DataverseNL
    Authors
    Vincent Jolivet; Julien Pilla; Vincent Jolivet; Julien Pilla
    License

    https://dataverse.nl/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.34894/AFYDEKhttps://dataverse.nl/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.34894/AFYDEK

    Area covered
    French
    Description

    Abstract and poster of paper 0681 presented at the Digital Humanities Conference 2019 (DH2019), Utrecht , the Netherlands 9-12 July, 2019.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Gautier, Julian (2023). Dataset metadata of known Dataverse installations [Dataset]. http://doi.org/10.7910/DVN/DCDKZQ

Dataset metadata of known Dataverse installations

Explore at:
Dataset updated
Nov 22, 2023
Dataset provided by
Harvard Dataverse
Authors
Gautier, Julian
Description

This dataset contains the metadata of the datasets published in 77 Dataverse installations, information about each installation's metadata blocks, and the list of standard licenses that dataset depositors can apply to the datasets they publish in the 36 installations running more recent versions of the Dataverse software. The data is useful for reporting on the quality of dataset and file-level metadata within and across Dataverse installations. Curators and other researchers can use this dataset to explore how well Dataverse software and the repositories using the software help depositors describe data. How the metadata was downloaded The dataset metadata and metadata block JSON files were downloaded from each installation on October 2 and October 3, 2022 using a Python script kept in a GitHub repo at https://github.com/jggautier/dataverse-scripts/blob/main/other_scripts/get_dataset_metadata_of_all_installations.py. In order to get the metadata from installations that require an installation account API token to use certain Dataverse software APIs, I created a CSV file with two columns: one column named "hostname" listing each installation URL in which I was able to create an account and another named "apikey" listing my accounts' API tokens. The Python script expects and uses the API tokens in this CSV file to get metadata and other information from installations that require API tokens. How the files are organized ├── csv_files_with_metadata_from_most_known_dataverse_installations │ ├── author(citation).csv │ ├── basic.csv │ ├── contributor(citation).csv │ ├── ... │ └── topic_classification(citation).csv ├── dataverse_json_metadata_from_each_known_dataverse_installation │ ├── Abacus_2022.10.02_17.11.19.zip │ ├── dataset_pids_Abacus_2022.10.02_17.11.19.csv │ ├── Dataverse_JSON_metadata_2022.10.02_17.11.19 │ ├── hdl_11272.1_AB2_0AQZNT_v1.0.json │ ├── ... │ ├── metadatablocks_v5.6 │ ├── astrophysics_v5.6.json │ ├── biomedical_v5.6.json │ ├── citation_v5.6.json │ ├── ... │ ├── socialscience_v5.6.json │ ├── ACSS_Dataverse_2022.10.02_17.26.19.zip │ ├── ADA_Dataverse_2022.10.02_17.26.57.zip │ ├── Arca_Dados_2022.10.02_17.44.35.zip │ ├── ... │ └── World_Agroforestry_-_Research_Data_Repository_2022.10.02_22.59.36.zip └── dataset_pids_from_most_known_dataverse_installations.csv └── licenses_used_by_dataverse_installations.csv └── metadatablocks_from_most_known_dataverse_installations.csv This dataset contains two directories and three CSV files not in a directory. One directory, "csv_files_with_metadata_from_most_known_dataverse_installations", contains 18 CSV files that contain the values from common metadata fields of all 77 Dataverse installations. For example, author(citation)_2022.10.02-2022.10.03.csv contains the "Author" metadata for all published, non-deaccessioned, versions of all datasets in the 77 installations, where there's a row for each author name, affiliation, identifier type and identifier. The other directory, "dataverse_json_metadata_from_each_known_dataverse_installation", contains 77 zipped files, one for each of the 77 Dataverse installations whose dataset metadata I was able to download using Dataverse APIs. Each zip file contains a CSV file and two sub-directories: The CSV file contains the persistent IDs and URLs of each published dataset in the Dataverse installation as well as a column to indicate whether or not the Python script was able to download the Dataverse JSON metadata for each dataset. For Dataverse installations using Dataverse software versions whose Search APIs include each dataset's owning Dataverse collection name and alias, the CSV files also include which Dataverse collection (within the installation) that dataset was published in. One sub-directory contains a JSON file for each of the installation's published, non-deaccessioned dataset versions. The JSON files contain the metadata in the "Dataverse JSON" metadata schema. The other sub-directory contains information about the metadata models (the "metadata blocks" in JSON files) that the installation was using when the dataset metadata was downloaded. I saved them so that they can be used when extracting metadata from the Dataverse JSON files. The dataset_pids_from_most_known_dataverse_installations.csv file contains the dataset PIDs of all published datasets in the 77 Dataverse installations, with a column to indicate if the Python script was able to download the dataset's metadata. It's a union of all of the "dataset_pids_..." files in each of the 77 zip files. The licenses_used_by_dataverse_installations.csv file contains information about the licenses that a number of the installations let depositors choose when creating datasets. When I collected ... Visit https://dataone.org/datasets/sha256%3Ad27d528dae8cf01e3ea915f450426c38fd6320e8c11d3e901c43580f997a3146 for complete metadata about this dataset.

Search
Clear search
Close search
Google apps
Main menu