[Metadata] Geoid 12B: Hybrid geoid model used to convert the ellipsoidal height obtained by the Global Navigation Satellite System (to the orthometric height of a specific vertical datum). The National Geodetic
Survey (NGS) has been producing the hybrid geoid to convert the ellipsoidal
height obtained from the Global Navigation Satellite System (GNSS) to the
orthometric height of a specific vertical datum. The GEOID12B model is intended
to transform between NAD 83 (2011/PA11/MA11) and the respective vertical datums
for the different regions, including NAVD88, GUVD04, ASVD02, NMVD03, PRVD02 and
VIVD09.
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico. These integrated bathymetric-topographic DEMs were developed for NOAA Coastal Survey Development Laboratory (CSDL) through the American Recovery and Reinvestment Act (ARRA) of 2009 to evaluate the utility of the Vertical Datum Transformation tool (VDatum), developed jointly by NOAA's Office of Coast Survey (OCS), National Geodetic Survey (NGS), and Center for Operational Oceanographic Products and Services (CO-OPS). Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. Coastal Services Center (CSC), the U.S. Office of Coast Survey (OCS), the U.S. Army Corps of Engineers (USACE), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of North American Vertical Datum of 1988 (NAVD 88), Mean High Water (MHW) or Mean Lower Low Water (MLLW) and horizontal datum of North American Datum of 1983 (NAD 83). Cell size ranges from 1/3 arc-second (~10 meters) to 1 arc-second (~30 meters). The NOAA VDatum DEM Project was funded by the American Recovery and Reinvestment Act (ARRA) of 2009 (http://www.recovery.gov/).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (NAVD88). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
VDatum is designed to vertically transform geospatial data among a variety of tidal, orthometric and ellipsoidal vertical datums - allowing users to convert their data from different horizontal/vertical references into a common system and enabling the fusion of diverse geospatial data in desired reference levels.This particular layer allows you to convert from NAVD 88 to MHHW.Units: metersThese data are a derived product of the NOAA VDatum tool and they extend the tool's Mean Higher High Water (MHHW) tidal datum conversion inland beyond its original extent.VDatum was designed to vertically transform geospatial data among a variety of tidal, orthometric and ellipsoidal vertical datums - allowing users to convert their data from different horizontal/vertical references into a common system and enabling the fusion of diverse geospatial data in desired reference levels (https://vdatum.noaa.gov/). However, VDatum's conversion extent does not completely cover tidally-influenced areas along the coast. For more information on why VDatum does not provide tidal datums inland, see https://vdatum.noaa.gov/docs/faqs.html.Because of the extent limitation and since most inundation mapping activities use a tidal datum as the reference zero (i.e., 1 meter of sea level rise on top of Mean Higher High Water), the NOAA Office for Coastal Management created this dataset for the purpose of extending the MHHW tidal datum beyond the areas covered by VDatum. The data do not replace VDatum, nor do they supersede the valid datum transformations VDatum provides. However, the data are based on VDatum's underlying transformation data and do provide an approximation of MHHW where VDatum does not provide one. In addition, the data are in a GIS-friendly format and represent MHHW in NAVD88, which is the vertical datum by which most topographic data are referenced.Data are in the UTM NAD83 projection. Horizontal resolution varies by VDatum region, but is either 50m or 100m. Data are vertically referenced to NAVD88 meters.More information about the NOAA VDatum transformation and associated tools can be found here.
[Metadatas] This layer represents the USGS topo quadrangle boundaries published in the Old Hawaiian Datum (OHD), prior to their being recast in the late 1990's. Source: Created by the Office of State Planning in the Old Hawaiian Datum using the latitude/longitude coordinates of the quadrangle boundaries, and the ARC GENERATE command.
For more information, see the full metadata at https://files.hawaii.gov/dbedt/op/gis/data/usgs_quads_ohd.pdf, or contact the Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
This study is the first comprehensive publication of tidal datums and extreme tides for San Francisco Bay (Bay) since the United States Army Corps of Engineers (USACE) published itsSan Francisco Bay Tidal Stage vs. Frequency Study in 1984 (USACE 1984). The USACE study was groundbreaking at the time of publication, presenting tidal datums and the “100-year tide” elevation for 53 locations around the Bay. The purpose of this study is to update and expand on the USACE study and to present daily and extreme tidal information for more than 900 locations along the Bay shoreline. Tidal datums, described further in Section 2 , are standard elevations defined by a certain phase of the tide (e.g., mean high tide, mean low tide). A tidal datum is used as a reference to measure and define local water levels, and as such is specific to local hydrodynamic processes and is not easily extended from one area to another without substantiating measurements or analysis. Many industries and activities rely on tidal datums, including shipping and navigation, coastal flood management, coastal development, and wetland restoration. Extreme tidal elevations are estimated for less-frequent extreme tides (e.g., 2-year tides to 500-year tides [tides with a 50.0 percent to 0.2 percent annual chance of occurrence, respectively]). Knowledge of the 100-year tide, or the water elevation with a 1 percent annual chance of occurrence, is critical for shoreline planning, floodplain management, and sea level rise (SLR) adaptation efforts. This study presents detailed daily and extreme tide information for the entirety of the Bay shoreline. This data set will support floodplain management efforts; shoreline vulnerability and risk analyses; shoreline engineering, design, and permitting; ecological studies; and appropriate sea level rise adaptation planning. The goal of this study is to provide data that support a wide-range of planning efforts around the Bay, particularly as communities seek to understand—and begin to adapt to—rising sea levels. You can access the full report at: http://www.adaptingtorisingtides.org/wp-content/uploads/2016/05/20160429.SFBay_Tidal-Datums_and_Extreme_Tides_Study.FINAL_.pdf.
[Metadata] This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Downloaded from National Geodetic Survey website Feb 2025. Each geodetic control station in this dataset has either a precise Latitude/Longitude used for horizontal control or a precise Orthometric Height used for vertical control, or both. The National Geodetic Survey (NGS) serves as the Nation's depository for geodetic data. The NGS distributes geodetic data worldwide to a variety of users. These geodetic data include the final results of geodetic surveys, software programs to format, compute, verify, and adjust original survey observations or to convert values from one geodetic datum to another, and publications that describe how to obtain and use Geodetic Data products and services.
Note: This data was projected to the State's standard projection/datum of UTM Zone 4, NAD 83 HARN for use in the State's GIS database, The State posts an un-projected version of the layer on its legacy site (https://planning.hawaii.gov/gis/download-gis-data-expanded/#013), or users can visit the National Geodetic Survey site directly, at https://geodesy.noaa.gov/datasheets/.
For additional information, please see metadata at https://files.hawaii.gov/dbedt/op/gis/data/ngs_geodetic_ctrl_stns_summary.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
Tidal Datum GIS outputsShapefiles are provided that present the approximate shore-parallel extent of tidal datums across coastal Massachusetts. These shapefiles are provided for 2030, 2050, and 2070 sea level rise scenarios. Individual shapefiles are provided for the north and south model domains for a total of 6 tidal datum shapefiles (2 model domains, 3 sea level rise scenarios). The results presented within these polygons are based upon tidal model simulations conducted using the MC-FRM, with north shapefiles created using the north model domain, and south using the south model domain. Separate polygons (zones) are provided for approximate location where MHW values vary to the nearest 0.1 ft interval. These zones are derived based on the variation in the MHW datum, and as such other datums (MHHW, MTL, MLW, and MLLW) may vary withineach segmented polygon, especially in areas of varied bathymetry. Data are presented in units of feet relative to the NAVD88 datum.These shapefiles contain the following fields: FID, Shape, Hatch, MHHW, MHW, MTL, MLW, and MLLW. The MHHW, MHW, MTL, MLW, and MLLW fields contain float type values representing the tidal datums calculated for each polygon rounded to the nearest tenth of a foot. The Hatch field contains a binary value (0 or 1), with 1 representing zones of uncertainty for tidal datums. These uncertain zones are either dynamic in terms of geomorphology or are restricted by smaller anthropogenic features (culverts, tide gates, etc.) that were not fully resolved in the MC-FRM. Zones with a 1 Hatch value may or may not contain tidal datum information. It is recommended that care be taken when utilizing the tidal benchmark information in these hatched zones and site-specific data observations (tide data) are recommended to verify the values in these areas. If datum information is not available 9999 values are located in the datum fields for that polygon. The FID and Shape fields contain an ID number and shape type contained in each polygon.The shapefiles provided are not intended to represent a spatial extent of the tidal benchmark (i.e., they do not present the geospatial location of water level). Rather, these shapefiles provide the tidal benchmark values that should be applied over each of the geospatial zones.
[Metadatas] This layer represents the USGS topo quadrangle boundaries published in the Old Hawaiian Datum (OHD), prior to their being recast in the late 1990's. Source: Created by the Office of State Planning in the Old Hawaiian Datum using the latitude/longitude coordinates of the quadrangle boundaries, and the ARC GENERATE command.
For more information, see the full metadata at https://files.hawaii.gov/dbedt/op/gis/data/usgs_quads_ohd.pdf, or contact the Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
The following dataset includes "Active Benchmarks," which are provided to facilitate the identification of City-managed standard benchmarks. Standard benchmarks are for public and private use in establishing a point in space. Note: The benchmarks are referenced to the Chicago City Datum = 0.00, (CCD = 579.88 feet above mean tide New York). The City of Chicago Department of Water Management’s (DWM) Topographic Benchmark is the source of the benchmark information contained in this online database. The information contained in the index card system was compiled by scanning the original cards, then transcribing some of this information to prepare a table and map. Over time, the DWM will contract services to field verify the data and update the index card system and this online database.This dataset was last updated September 2011. Coordinates are estimated. To view map, go to https://data.cityofchicago.org/Buildings/Elevation-Benchmarks-Map/kmt9-pg57 or for PDF map, go to http://cityofchicago.org/content/dam/city/depts/water/supp_info/Benchmarks/BMMap.pdf. Please read the Terms of Use: http://www.cityofchicago.org/city/en/narr/foia/data_disclaimer.html.
Tidal Datum GIS outputsShapefiles are provided that present the approximate shore-parallel extent of tidal datums across coastal Massachusetts. These shapefiles are provided for 2030, 2050, and 2070 sea level rise scenarios. Individual shapefiles are provided for the north and south model domains for a total of 6 tidal datum shapefiles (2 model domains, 3 sea level rise scenarios). The results presented within these polygons are based upon tidal model simulations conducted using the MC-FRM, with north shapefiles created using the north model domain, and south using the south model domain. Separate polygons (zones) are provided for approximate location where MHW values vary to the nearest 0.1 ft interval. These zones are derived based on the variation in the MHW datum, and as such other datums (MHHW, MTL, MLW, and MLLW) may vary withineach segmented polygon, especially in areas of varied bathymetry. Data are presented in units of feet relative to the NAVD88 datum.These shapefiles contain the following fields: FID, Shape, Hatch, MHHW, MHW, MTL, MLW, and MLLW. The MHHW, MHW, MTL, MLW, and MLLW fields contain float type values representing the tidal datums calculated for each polygon rounded to the nearest tenth of a foot. The Hatch field contains a binary value (0 or 1), with 1 representing zones of uncertainty for tidal datums. These uncertain zones are either dynamic in terms of geomorphology or are restricted by smaller anthropogenic features (culverts, tide gates, etc.) that were not fully resolved in the MC-FRM. Zones with a 1 Hatch value may or may not contain tidal datum information. It is recommended that care be taken when utilizing the tidal benchmark information in these hatched zones and site-specific data observations (tide data) are recommended to verify the values in these areas. If datum information is not available 9999 values are located in the datum fields for that polygon. The FID and Shape fields contain an ID number and shape type contained in each polygon.The shapefiles provided are not intended to represent a spatial extent of the tidal benchmark (i.e., they do not present the geospatial location of water level). Rather, these shapefiles provide the tidal benchmark values that should be applied over each of the geospatial zones.
The Geoprocessing tool embeds the Web-based Transformation Tool released by Lands Department of HKSAR in ArcGIS and provides an instant extraction of height information of Hong Kong Principal Datum from various coordinate systems/datums. The Transformation Tool from Lands Department uses the conversion methods, parameters and formulas listed in the "Explanatory Notes on Geodetic Datums in Hong Kong" (PDF) and the "Datum Transformation and Transformation Parameters" (The "7-parameters") (PDF) as well as the Geoid Model established by the Hong Kong Polytechnic University. Please refer to this guidelines for using this geoprocessing tool in ArcGIS Pro.(Note: This tool is only applicable in ArcGIS Pro, and for coordinates within Hong Kong territories.)
The Christmas Island Geographic Information System (CIGIS) is a collection of spatial data, viewing and analysis tools dealing with Christmas Island, Indian Ocean. The data include orthophotography, topographic, mining, cultural and environmental features of the island. This work is part of ongoing service to the Department of Transport and Regional Services.
Tidal Datum GIS outputsShapefiles are provided that present the approximate shore-parallel extent of tidal datums across coastal Massachusetts. These shapefiles are provided for 2030, 2050, and 2070 sea level rise scenarios. Individual shapefiles are provided for the north and south model domains for a total of 6 tidal datum shapefiles (2 model domains, 3 sea level rise scenarios). The results presented within these polygons are based upon tidal model simulations conducted using the MC-FRM, with north shapefiles created using the north model domain, and south using the south model domain. Separate polygons (zones) are provided for approximate location where MHW values vary to the nearest 0.1 ft interval. These zones are derived based on the variation in the MHW datum, and as such other datums (MHHW, MTL, MLW, and MLLW) may vary withineach segmented polygon, especially in areas of varied bathymetry. Data are presented in units of feet relative to the NAVD88 datum.These shapefiles contain the following fields: FID, Shape, Hatch, MHHW, MHW, MTL, MLW, and MLLW. The MHHW, MHW, MTL, MLW, and MLLW fields contain float type values representing the tidal datums calculated for each polygon rounded to the nearest tenth of a foot. The Hatch field contains a binary value (0 or 1), with 1 representing zones of uncertainty for tidal datums. These uncertain zones are either dynamic in terms of geomorphology or are restricted by smaller anthropogenic features (culverts, tide gates, etc.) that were not fully resolved in the MC-FRM. Zones with a 1 Hatch value may or may not contain tidal datum information. It is recommended that care be taken when utilizing the tidal benchmark information in these hatched zones and site-specific data observations (tide data) are recommended to verify the values in these areas. If datum information is not available 9999 values are located in the datum fields for that polygon. The FID and Shape fields contain an ID number and shape type contained in each polygon.The shapefiles provided are not intended to represent a spatial extent of the tidal benchmark (i.e., they do not present the geospatial location of water level). Rather, these shapefiles provide the tidal benchmark values that should be applied over each of the geospatial zones.
This map represents City of Salem, Oregon, Survey Benchmarks. The Survey Section of the Public Works Department establishes and maintains horizontal and vertical survey control throughout the City for most public and private projects. Vertical datum is NGVD 1929-47. Horizontal datum is NAD 1983-91. The map references detailed GIS data provided by the City of Salem Public Works Department. Contact the City of Salem City Surveyor (503-588-6211) for questions and the most up-to-date information, or gis@cityofsalem.net.
The 1/3 arc-second St. Croix, U.S. Virgin Islands Coastal Digital Elevation Model will be used to support NOAA's tsunami forecast system and for tsunami inundation modeling. This DEM encompasses the Virgin Islands and the adjacent off-shore coastal area.The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (MHW). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.
US Geologic Service (USGS) Digital Raster Graphics (1:24000 scale) for the State of Georgia, combined with a hillshade visualization of a 10 meter Digital Elevation Model (DEM). A DRG is an image of a USGS standard series topographic map scanned at a minimum resolution of 250 dots per inch, and georeferenced to the Universal Transverse Mercator (UTM) projection. Each 7.5-minute DRG provides coverage for an area of land measuring 7.5-minutes of latitude by 7.5-minutes longitude. The horizontal positional accuracy and datum of the DRG matches that of the source map. The National Elevation Dataset (NED) is produced and distributed by the USGS. The NED is derived from diverse sources and processed to a common coordinate system and unit of vertical measure. NED data are in geographic coordinates (decimal degree units) and conform with the North American Datum of 1983. Elevation values are in meters, and referenced to the North American Vertical Datum of 1988 over the conterminous US. Although these data have been processed successfully on a computer system at the Georgia GIS Data Clearinghouse, no warranty expressed or implied is made by Georgia GIS Data Clearinghouse regarding the utility of the data on any other system, nor shall the act of distribution constitute any such warranty.
Digital Terrain Model (bare earth) of parts of Maui and Molokai. Partial coverage Vexcel, Inc. LIDAR of Maui and Molokai were purchased by County of Maui to assist with three-dimensional modeling of structures in areas of higher development. 1'/px, LIDAR-derived, bare earth DEM/elevation raster of parts of Maui and Molokai – specifically, Central Molokai, Kahului, Kihei, Lahaina and Pukalani. XY units: feet, Z units: meters. Use Limitations: 1.Disclaimer - This dataset is being placed in the public domain. Any use is allowed except for re-sale. Neither Vexcel, Inc., the County of Maui, nor the State of Hawaii make any guarantees, expressed or implied, regarding its accuracy or fitness of use. Users should verify XYZ values through a licensed surveyor for any engineering application. This data should only be used as a guide, vs. a statement of fact regarding real-world conditions. 2.Vertical Datum - The originator of this LIDAR dataset, Vexcel Inc. of Boulder, Colorado referenced Z values to the North American Vertical Datum of 1988 (NAVD88). NAVD88 is not recognized as a valid vertical reference for the state of Hawaii. Currently Hawaii has no official (de jure or de facto) vertical datum, and NOAA's National Geodetic Survey (NGS) recommends that elevations be referenced to the nearest NOAA tidal gauge. A legacy LIDAR dataset produced in 2013 by the United States Army Corps of Engineers (USACE) used NAD83(PA11) as its vertical reference. In theory this approach should result in better accuracy for the Z dimension as PA11 is a Pacific plate-centric datum. In comparing flat areas containing neither structures or vegetation, it was found that the Vexcel values sit approximately 4 feet above the USACE dataset. The vertical datum issue was brought to the attention of Vexcel, Inc. Vexcel used the 2013 USACE LIDAR as vertical control to correct their LIDAR data. The (corrected) .las data is shared as it was delivered. As stated above, the use of this data transfers all risks and assumption of responsibility to the user. For more information see https://files.hawaii.gov/dbedt/op/gis/data/Maui_2019_DTM.html or contact County of Maui at GISMonitor@co.maui.hi.us or Hawaii Statewide GIS Program at gis@hawaii.gov.
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017. These data provide a standardized shoreline database for the state. This release includes both long-term (up to 168 years) and short term (~20 years) rates. Files associated with the long-term and short-term rates are appended with "LT" and "ST", respectively. A proxy-datum bias reference line that accounts for the positional difference in a proxy shoreline (e.g. High Water Line (HWL) shoreline) and a datum shoreline (e.g. MHW shoreline) is also included in this release.
The Vermont Water Quality Standards (VTWQS) are rules intended to achieve the goals of the Vermont Surface Water Strategy, as well as the objective of the federal Clean Water Act which is to restore and maintain the chemical, physical, and biological integrity of the Nation's water. The classification of waters is in included in the VTWQS. The classification of all waters has been established by a combination of legislative acts and by classification or reclassification decisions issued by the Water Resources Board or Secretary pursuant to 10 V.S.A. � 1253. Those waters reclassified by the Secretary to Class A(1), A(2), or B(1) for any use shall include all waters within the entire watershed of the reclassified waters unless expressly provided otherwise in the rule. All waters above 2,500 feet altitude, National Geodetic Vertical Datum, are designated Class A(1) for all uses, unless specifically designated Class A(2) for use as a public water source. All waters at or below 2,500 feet altitude, National Geodetic Vertical Datum, are designated Class B(2) for all uses, unless specifically designated as Class A(1), A(2), or B(1) for any use.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
In Spring 2019, with funding from several State partners, MassGIS contracted with the U.S. Geological Survey for statewide, 15 cm resolution, 16-bit, 4-band (RGB-IR) digital orthophotos. The data were delivered in early 2020 as 10,218 individual 1,500 m x 1,500 m tiles in a GeoTIFF format. To allow for easier distribution of this free imagery, MassGIS compressed the GeoTIFFS into the JPEG 2000 format, which retains the IR band. The tile naming convention is based on the U.S. National Grid (USNG), taking the coordinates of the southwest corner of the tile.Project specifications are based on the American Society of Photogrammetry and Remote Sensing (ASPRS) standards. The data were developed based on a horizontal projection/datum of NAD 1983 2011 UTM zones 18N and 19N meters and a vertical projection/datum of NAVD 88 (GEOID 12B) meters.This digital orthoimagery was created to provide easily accessible geospatial data which are readily available to enhance the capability of federal, state, and local emergency responders, as well as to plan for homeland security efforts. These data also support The National Map.These images can serve a variety of purposes, from general planning to field reference for spatial analysis, to a tool for data development and revision of vector maps. The imagery can also serve as a reference layer or basemap for myriad applications inside geographic information system (GIS) software and web-based maps.This image service was created using JPEG 2000 versions of the imagery that MassGIS converted from GeoTiffs and distributes online.For more information see the imagery's MassGIS metadata page.
[Metadata] Geoid 12B: Hybrid geoid model used to convert the ellipsoidal height obtained by the Global Navigation Satellite System (to the orthometric height of a specific vertical datum). The National Geodetic
Survey (NGS) has been producing the hybrid geoid to convert the ellipsoidal
height obtained from the Global Navigation Satellite System (GNSS) to the
orthometric height of a specific vertical datum. The GEOID12B model is intended
to transform between NAD 83 (2011/PA11/MA11) and the respective vertical datums
for the different regions, including NAVD88, GUVD04, ASVD02, NMVD03, PRVD02 and
VIVD09.