37 datasets found
  1. What's the DAX Index Telling You? (Forecast)

    • kappasignal.com
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). What's the DAX Index Telling You? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/whats-dax-index-telling-you.html
    Explore at:
    Dataset updated
    Apr 18, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What's the DAX Index Telling You?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  2. DAX Index Unraveled? (Forecast)

    • kappasignal.com
    Updated Apr 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). DAX Index Unraveled? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/dax-index-unraveled.html
    Explore at:
    Dataset updated
    Apr 6, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    DAX Index Unraveled?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  3. DAX Index: Germany's Economic Pulse? (Forecast)

    • kappasignal.com
    Updated Sep 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). DAX Index: Germany's Economic Pulse? (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/dax-index-germanys-economic-pulse.html
    Explore at:
    Dataset updated
    Sep 14, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    Germany
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    DAX Index: Germany's Economic Pulse?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. Can DAX Index Revolutionize Data Analysis? (Forecast)

    • kappasignal.com
    Updated Apr 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Can DAX Index Revolutionize Data Analysis? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/can-dax-index-revolutionize-data.html
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can DAX Index Revolutionize Data Analysis?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  5. T

    Germany Stock Market Index (DE40) Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Germany Stock Market Index (DE40) Data [Dataset]. https://tradingeconomics.com/germany/stock-market
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 30, 1987 - Jul 15, 2025
    Area covered
    Germany
    Description

    Germany's main stock market index, the DE40, rose to 24188 points on July 15, 2025, gaining 0.11% from the previous session. Over the past month, the index has climbed 2.06% and is up 30.62% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Germany. Germany Stock Market Index (DE40) - values, historical data, forecasts and news - updated on July of 2025.

  6. P

    Historical DD (DAX) DAX Futures Data

    • portaracqg.com
    txt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Portara Historical Datasets for Hedge Funds Banks Traders and CTA's, Historical DD (DAX) DAX Futures Data [Dataset]. https://portaracqg.com/futures/day/dd
    Explore at:
    txt(229.6 GB), txt(10.7 GB), txt(< 50 KB)Available download formats
    Dataset authored and provided by
    Portara Historical Datasets for Hedge Funds Banks Traders and CTA's
    Time period covered
    Jan 1, 1899 - Dec 31, 2040
    Description

    Download Historical DAX Futures Data. CQG daily, 1 minute, tick, and level 1 data from 1899.

  7. DAX Index: Barometer of German Economic Health? (Forecast)

    • kappasignal.com
    Updated Sep 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). DAX Index: Barometer of German Economic Health? (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/dax-index-barometer-of-german-economic.html
    Explore at:
    Dataset updated
    Sep 13, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    Germany
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    DAX Index: Barometer of German Economic Health?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. P

    Historical TDX (FTDX) Tec DAX Performance Futures Data

    • portaracqg.com
    txt
    Updated Jan 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Portara Historical Datasets for Hedge Funds Banks Traders and CTA's (2023). Historical TDX (FTDX) Tec DAX Performance Futures Data [Dataset]. https://portaracqg.com/futures/day/tdx
    Explore at:
    txt(< 50 KB), txt(16.3 MB), txt(2.5 GB)Available download formats
    Dataset updated
    Jan 17, 2023
    Dataset authored and provided by
    Portara Historical Datasets for Hedge Funds Banks Traders and CTA's
    Time period covered
    Jan 1, 1899 - Dec 31, 2040
    Description

    Download Historical Tec DAX Performance Futures Data. CQG daily, 1 minute, tick, and level 1 data from 1899.

  9. DAX Index: Is Germany's Economy on the Rise? (Forecast)

    • kappasignal.com
    Updated Nov 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). DAX Index: Is Germany's Economy on the Rise? (Forecast) [Dataset]. https://www.kappasignal.com/2024/11/dax-index-is-germanys-economy-on-rise.html
    Explore at:
    Dataset updated
    Nov 10, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    Germany
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    DAX Index: Is Germany's Economy on the Rise?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. South Korea Turnover: KOSPI: Vol: Purchases: Pension Funds

    • ceicdata.com
    Updated Mar 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). South Korea Turnover: KOSPI: Vol: Purchases: Pension Funds [Dataset]. https://www.ceicdata.com/en/korea/korea-exchange-kospi-market-turnover-by-type-of-investors-shares/turnover-kospi-vol-purchases-pension-funds
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 1, 2017 - Apr 1, 2018
    Area covered
    South Korea
    Variables measured
    Turnover
    Description

    Korea Turnover: KOSPI: Vol: Purchases: Pension Funds data was reported at 84.722 Share mn in Oct 2018. This records an increase from the previous number of 68.649 Share mn for Sep 2018. Korea Turnover: KOSPI: Vol: Purchases: Pension Funds data is updated monthly, averaging 63.722 Share mn from Jul 1995 (Median) to Oct 2018, with 280 observations. The data reached an all-time high of 162.075 Share mn in Apr 2015 and a record low of 0.333 Share mn in Apr 1998. Korea Turnover: KOSPI: Vol: Purchases: Pension Funds data remains active status in CEIC and is reported by Korea Exchange. The data is categorized under Global Database’s South Korea – Table KR.Z004: Korea Exchange: KOSPI Market: Turnover by Type of Investors: Shares.

  11. P

    Historical DAXA (FDAX) DAX Combined Index Indicies Data

    • portaracqg.com
    txt
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Portara Historical Datasets for Hedge Funds Banks Traders and CTA's (2023). Historical DAXA (FDAX) DAX Combined Index Indicies Data [Dataset]. https://portaracqg.com/indicies/day/daxa
    Explore at:
    txt, txt(< 50 KB)Available download formats
    Dataset updated
    Jun 21, 2023
    Dataset authored and provided by
    Portara Historical Datasets for Hedge Funds Banks Traders and CTA's
    Time period covered
    Jan 1, 1899 - Dec 31, 2040
    Description

    Download Historical DAX Combined Index Indicies Data. CQG daily, 1 minute, tick, and level 1 data from 1899.

  12. Deutsche Boerse Stock Exchange

    • lseg.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LSEG (2024). Deutsche Boerse Stock Exchange [Dataset]. https://www.lseg.com/en/data-analytics/financial-data/pricing-and-market-data/equities-market-data/deutsche-boerse-stock-exchange
    Explore at:
    csv,delimited,gzip,html,json,pcap,pdf,parquet,python,sql,string format,text,user interface,xml,zip archiveAvailable download formats
    Dataset updated
    Nov 25, 2024
    Dataset provided by
    London Stock Exchange Grouphttp://www.londonstockexchangegroup.com/
    Authors
    LSEG
    License

    https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer

    Description

    Use LSEG products to access Deutsche Boerse Group data, operating the Frankfurt Stock Exchange, including XETRA and EUREX trading platforms.

  13. Largest stock exchange operators worldwide 2025, by market capitalization

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest stock exchange operators worldwide 2025, by market capitalization [Dataset]. https://www.statista.com/statistics/270126/largest-stock-exchange-operators-by-market-capitalization-of-listed-companies/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2025
    Area covered
    Worldwide
    Description

    The New York Stock Exchange (NYSE) is the largest stock exchange in the world, with an equity market capitalization of almost ** trillion U.S. dollars as of June 2025. The following three exchanges were the NASDAQ, PINK Exchange, and the Frankfurt Exchange. What is a stock exchange? A stock exchange is a marketplace where stockbrokers, traders, buyers, and sellers can trade in equities products. The largest exchanges have thousands of listed companies. These companies sell shares of their business, giving the general public the opportunity to invest in them. The oldest stock exchange worldwide is the Frankfurt Stock Exchange, founded in the late sixteenth century. Other functions of a stock exchange Since these are publicly traded companies, every firm listed on a stock exchange has had an initial public offering (IPO). The largest IPOs can raise billions of dollars in equity for the firm involved. Related to stock exchanges are derivatives exchanges, where stock options, futures contracts, and other derivatives can be traded.

  14. DAX Index: Unlocking Dynamic Dimensions? (Forecast)

    • kappasignal.com
    Updated May 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). DAX Index: Unlocking Dynamic Dimensions? (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/dax-index-unlocking-dynamic-dimensions.html
    Explore at:
    Dataset updated
    May 1, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    DAX Index: Unlocking Dynamic Dimensions?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. South Korea Turnover: KOSPI: Vol: Purchases: Pension Funds & Government

    • ceicdata.com
    Updated Mar 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). South Korea Turnover: KOSPI: Vol: Purchases: Pension Funds & Government [Dataset]. https://www.ceicdata.com/en/korea/korea-exchange-kospi-market-turnover-by-type-of-investors-shares/turnover-kospi-vol-purchases-pension-funds--government
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2018 - Dec 1, 2018
    Area covered
    South Korea
    Variables measured
    Turnover
    Description

    South Korea Turnover: KOSPI: Vol: Purchases: Pension Funds & Government data was reported at 165.750 Share mn in Dec 2018. This records a decrease from the previous number of 239.104 Share mn for Nov 2018. South Korea Turnover: KOSPI: Vol: Purchases: Pension Funds & Government data is updated monthly, averaging 137.621 Share mn from Jan 1999 (Median) to Dec 2018, with 240 observations. The data reached an all-time high of 298.827 Share mn in Oct 2008 and a record low of 59.908 Share mn in Feb 1999. South Korea Turnover: KOSPI: Vol: Purchases: Pension Funds & Government data remains active status in CEIC and is reported by Korea Exchange. The data is categorized under Global Database’s South Korea – Table KR.Z004: Korea Exchange: KOSPI Market: Turnover by Type of Investors: Shares.

  16. T

    South Korea Stock Market Data

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 23, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2016). South Korea Stock Market Data [Dataset]. https://tradingeconomics.com/south-korea/stock-market
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Oct 23, 2016
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 3, 1983 - Jul 14, 2025
    Area covered
    South Korea
    Description

    South Korea's main stock market index, the KOSPI, rose to 3202 points on July 14, 2025, gaining 0.83% from the previous session. Over the past month, the index has climbed 8.67% and is up 11.92% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from South Korea. South Korea Stock Market - values, historical data, forecasts and news - updated on July of 2025.

  17. South Korea Turnover: KOSPI: Value: Sales: Pension Funds & Government

    • ceicdata.com
    Updated May 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). South Korea Turnover: KOSPI: Value: Sales: Pension Funds & Government [Dataset]. https://www.ceicdata.com/en/korea/korea-exchange-kospi-market-turnover-by-type-of-investors-value
    Explore at:
    Dataset updated
    May 30, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2018 - Dec 1, 2018
    Area covered
    South Korea
    Variables measured
    Turnover
    Description

    Turnover: KOSPI: Value: Sales: Pension Funds & Government data was reported at 8,102.682 KRW bn in Dec 2018. This records a decrease from the previous number of 10,744.723 KRW bn for Nov 2018. Turnover: KOSPI: Value: Sales: Pension Funds & Government data is updated monthly, averaging 4,376.346 KRW bn from Jan 1999 (Median) to Dec 2018, with 240 observations. The data reached an all-time high of 12,943.328 KRW bn in Aug 2011 and a record low of 594.628 KRW bn in Jul 2001. Turnover: KOSPI: Value: Sales: Pension Funds & Government data remains active status in CEIC and is reported by Korea Exchange. The data is categorized under Global Database’s South Korea – Table KR.Z003: Korea Exchange: KOSPI Market: Turnover by Type of Investors: Value.

  18. Fund Management Activities in Germany - Market Research Report (2015-2030)

    • ibisworld.com
    Updated Aug 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2024). Fund Management Activities in Germany - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/germany/industry/fund-management-activities/948/
    Explore at:
    Dataset updated
    Aug 31, 2024
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Time period covered
    2014 - 2029
    Area covered
    Germany
    Description

    The low interest rate environment that prevailed for a long time, the boom on the capital markets and the increased savings rate have brought positive growth to the fund industry over the past five years. Between 2019 and 2024, industry turnover increased by an average of 3.2% per year and is expected to amount to €2.2 billion in the current year, which corresponds to an increase of 1.1% compared to the previous year. Despite the overall positive sales trend, however, fund companies are facing tougher competition and increasing regulation. Added to this is the increasing competition from foreign fund companies in the wake of advancing digitalisation and the growing popularity of passively managed funds. The trend towards low-cost passive products is not only directly reducing the earnings of industry players, but is also exerting pressure on the prices of actively managed products.The performance of the global capital markets plays a key role in the situation of the fund industry. The global capital markets in particular have been characterised by price gains almost continuously over the past five years - despite their short-term slump in 2020 due to the pandemic - and in some cases reached new all-time highs last year. Rising prices of key benchmark indices such as the MSCI World, the S&P 500 or the DAX benefit industry players both directly through the income generated on sales and indirectly through the growing profitability of fund products for investors compared to other investment instruments such as fixed-income investments. For the period from 2024 to 2029, IBISWorld forecasts an average annual increase in industry turnover of 1.4% to EUR 2.3 billion in 2029 against the backdrop of an expected positive price trend on the global capital markets. However, smaller fund companies in particular are likely to struggle with the higher costs resulting from the regulations that have been introduced. In combination with the likely intensification of price competition due to the increasing market entry of foreign fund companies, the profitability of this sector is likely to stagnate over the next five years.

  19. DAX Index: German Economic Barometer? (Forecast)

    • kappasignal.com
    Updated Aug 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). DAX Index: German Economic Barometer? (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/dax-index-german-economic-barometer.html
    Explore at:
    Dataset updated
    Aug 13, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    Germany
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    DAX Index: German Economic Barometer?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. DAX Index: A Mirror to German Economic Health? (Forecast)

    • kappasignal.com
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). DAX Index: A Mirror to German Economic Health? (Forecast) [Dataset]. https://www.kappasignal.com/2024/07/dax-index-mirror-to-german-economic.html
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    Germany
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    DAX Index: A Mirror to German Economic Health?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
KappaSignal (2024). What's the DAX Index Telling You? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/whats-dax-index-telling-you.html
Organization logo

What's the DAX Index Telling You? (Forecast)

Explore at:
Dataset updated
Apr 18, 2024
Dataset authored and provided by
KappaSignal
License

https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

Description

This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

What's the DAX Index Telling You?

Financial data:

  • Historical daily stock prices (open, high, low, close, volume)

  • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

  • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

Machine learning features:

  • Feature engineering based on financial data and technical indicators

  • Sentiment analysis data from social media and news articles

  • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

Potential Applications:

  • Stock price prediction

  • Portfolio optimization

  • Algorithmic trading

  • Market sentiment analysis

  • Risk management

Use Cases:

  • Researchers investigating the effectiveness of machine learning in stock market prediction

  • Analysts developing quantitative trading Buy/Sell strategies

  • Individuals interested in building their own stock market prediction models

  • Students learning about machine learning and financial applications

Additional Notes:

  • The dataset may include different levels of granularity (e.g., daily, hourly)

  • Data cleaning and preprocessing are essential before model training

  • Regular updates are recommended to maintain the accuracy and relevance of the data

Search
Clear search
Close search
Google apps
Main menu