Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany's main stock market index, the DE40, fell to 23561 points on August 1, 2025, losing 2.10% from the previous session. Over the past month, the index has declined 0.96%, though it remains 33.40% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Germany. Germany Stock Market Index (DE40) - values, historical data, forecasts and news - updated on August of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany's main stock market index, the DE40, fell to 24218 points on July 25, 2025, losing 0.32% from the previous session. Over the past month, the index has climbed 2.40% and is up 31.49% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Germany. Germany Stock Market Index (DE40) - values, historical data, forecasts and news - updated on July of 2025.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Forecast: Import of Woodfree Fine Paper Weighing 40-150 g/m2 to Germany 2024 - 2028 Discover more data with ReportLinker!
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
France's main stock market index, the FR40, fell to 7546 points on August 1, 2025, losing 2.91% from the previous session. Over the past month, the index has declined 2.48%, though it remains 4.06% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on August of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Monthly means of surface and flux forecast data from ECMWF ERA-40 reanalysis project are in this dataset.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Forecast: Sold Production of Paper Sacks and Bags Not with a Base Width More than 40 Cm in Germany 2023 - 2027 Discover more data with ReportLinker!
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Forecast: Import of Sacks and Bags, Having a Base of a Width of 40 cm or More to Germany 2024 - 2028 Discover more data with ReportLinker!
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Italy's main stock market index, the IT40, fell to 40467 points on August 1, 2025, losing 1.27% from the previous session. Over the past month, the index has climbed 1.71% and is up 26.38% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Italy. Italy Stock Market Index (IT40) - values, historical data, forecasts and news - updated on August of 2025.
Comprehensive dataset of 40 Weather forecast services in Illinois, United States as of July, 2025. Includes verified contact information (email, phone), geocoded addresses, customer ratings, reviews, business categories, and operational details. Perfect for market research, lead generation, competitive analysis, and business intelligence. Download a complimentary sample to evaluate data quality and completeness.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Forecast: Import of Sacks and Bags, Having a Base of a Width of 40 cm or More to Italy 2024 - 2028 Discover more data with ReportLinker!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ECMWF The new reanalysis project ERA-40 will cover the period from mid-1957 to 2001 including the earlier ECMWF reanalysis ERA-15, 1979-1993. The main objective is to promote the use of global analyses of the state of the atmosphere, land and surface conditions over the period. These datasets contain monthly mean values of 6H forecast surface data.
The National Water Model (NWM) is a water forecasting model operated by the NOAA National Weather Service that continually forecasts flows on 2.7 million stream reaches covering 3.2 million miles of streams and rivers in the continental United States [1]. It operates as part of the national weather forecasting system, with inputs from NOAA numerical weather prediction models, and from weather and water conditions observed through the US Geological Survey's National Water Information System. Reference materials for the computational framework behind NWM is published by NCAR [9] [10].
The NWC generates NWM streamflow forecasts for the continental US (CONUS) with multiple forecast horizons and time steps. Due to the output file sizes, these are normally not available for download more than a couple days at a time [2]. A 40-day rolling window of these forecasts is maintained by HydroShare at RENCI [3], and a complete retrospective (August 2016 to the present) of the NWM Analysis & Assimilation outputs is maintained as well (contact help@cuahsi.org for access).
An archive of all NWM forecasts for the period Aug 29 to Sept 17, 2017 has been compiled at RENCI [4] [5], available as netCDF (.nc) files totaling 6.8 TB. These can be browsed, subsetted, visualized, and downloaded (see [6] [7] [8]). In addition to these output files, we have uploaded to this HydroShare resource the input parameter files needed to re-run the NWM for the Irma period, or for any time period covered by NWM v1.1 and 1.2 (August 2016 to this publication date in August 2018). These parameter files are also made available at [1].
See README for further details and usage guidance. Please see NOAA contacts listed on [1] for questions about the NWM data contents, structure and formats. Contact help@cuahsi.org if any questions about HydroShare-based tools and data access.
References [1] Overview of the NWM framework and output files [http://water.noaa.gov/about/nwm] [2] Free access to all National Water Model output for the most recent two days [ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/nwm] [3] NWM outputs for rolling 40-day window, maintained by HydroShare [http://thredds.hydroshare.org/thredds/catalog/nwm/catalog.html] [4] Archived Irma NWM outputs via RENCI THREDDS server [http://thredds.hydroshare.org/thredds/catalog/nwm/irma/catalog.html] [5] RENCI is an Institute at the University of North Carolina at Chapel Hill [6] Live map for National Water Model forecasts [http://water.noaa.gov/map] [7] NWM Forecast Viewer app [https://hs-apps.hydroshare.org/apps/nwm-forecasts] [8] CUAHSI JupyterHub example scripts for subsetting NWM output files [https://hydroshare.org/resource/3db192783bcb4599bab36d43fc3413db/] [9] WRF-Hydro Overview [https://ral.ucar.edu/projects/wrf_hydro/overview] [10] WRF-Hydro User Guide 2013 [https://ral.ucar.edu/sites/default/files/public/images/project/WRF_Hydro_User_Guide_v3.0.pdf]
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
Laneth-40 Market Analysis: Laneth-40, a non-ionic surfactant derived from lanolin, holds a significant presence in the global market, valued at millions of dollars in 2025. With an impressive CAGR, the market is projected to witness substantial growth over the forecast period of 2025-2033. Key drivers include its emulsification and conditioning properties, making it a preferred choice for a range of cosmetic, skin care, and personal care products. Market Trends and Segments: The increasing demand for natural and eco-friendly ingredients in cosmetics and skincare drives the Laneth-40 market. Additionally, the growing awareness of skin health and the desire for products that provide both cleansing and moisturizing benefits contribute to its popularity. Prominent market players like Nikkol, Croda, and Lanolines Stella dominate the industry, with regional markets in North America, Europe, and Asia Pacific offering significant growth potential. Segments based on application (cosmetic, skin care, etc.) and type (98-99%, above 99%) further define the market landscape. Laneth-40, an ethoxylated fatty acid, has gained significant traction in the personal care and cosmetics industry. This report provides a comprehensive overview of the Laneth-40 market, exploring key trends, driving forces, challenges, and growth opportunities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany's main stock market index, the DE40, fell to 23561 points on August 1, 2025, losing 2.10% from the previous session. Over the past month, the index has declined 0.96%, though it remains 33.40% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Germany. Germany Stock Market Index (DE40) - values, historical data, forecasts and news - updated on August of 2025.