Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
The influenza pandemic of 1918, known as the Spanish Flu, was one of the deadliest and widespread pandemics in human history. The scale of the outbreak, as well as limitations in technology, medicine and communication, create difficulties when trying to uncover accurate figures relating to the pandemic. Estimates suggest that the virus, known as the H1N1 influenza virus, infected more than one quarter of the global population, which equated to approximately 500 million people in 1920. It was responsible for roughly 25 million fatalities, although some projections suggest that it could have caused double this number of deaths. The exact origins of this strain of influenza remain unclear to this day, however it was first noticed in Western Europe in the latter stages of the First World War. Wartime censorship in Europe meant that the severity of the pandemic was under-reported, while news outlets in neutral Spain were free to report openly about the impact of the virus; this gave the illusion that the virus was particularly strong in Spain, giving way to the term "Spanish Flu".
Effects of the virus
By late summer 1918, the pandemic had spread across the entire continent, and the H1N1 virus had mutated into a deadlier strain that weakened the infected's immune system more than traditional influenzas. Some studies suggest that, in contrast to these traditional influenza viruses, having a stronger immune system was actually a liability in the case of the H1N1 virus as it triggered what is known as a "cytokine storm". This is where white blood cells release proteins called cytokines, which signal the body to attack the virus, in turn releasing more white blood cells which release more cytokines. This cycle over-works and greatly weakens the immune system, often giving way to other infections; most commonly pneumonia in the case of the Spanish Flu. For this reason, the Spanish Flu had an uncommonly high fatality rate among young adults, who are traditionally the healthiest group in society. Some theories for the disproportionate death-rate among young adults suggest that the elderly's immune systems benefitted from exposure to earlier influenza pandemics, such as the "Asiatic/Russian Flu" pandemic of 1889.
Decrease in life expectancy As the war in Europe came to an end, soldiers returning home brought the disease to all corners of the world, and the pandemic reached global proportions. Isolated and under-developed nations were especially vulnerable; particularly in Samoa, where almost one quarter of the population died within two months and life expectancy fell to just barely over one year for those born in 1918; this was due to the arrival of a passenger ship from New Zealand in November 1918, where the infected passengers were not quarantined on board, allowing the disease to spread rapidly. Other areas where life expectancy dropped below ten years for those born in 1918 were present-day Afghanistan, the Congo, Fiji, Guatemala, Kenya, Micronesia, Serbia, Tonga and Uganda. The British Raj, now Bangladesh, India and Pakistan, saw more fatalities than any other region, with as many as five percent of the entire population perishing as a result of the pandemic. The pandemic also had a high fatality rate among pregnant women and infants, and greatly impacted infant mortality rates across the world. There were several waves of the pandemic until late 1920, although they decreased in severity as time progressed, and none were as fatal as the outbreak in 1918. A new strain of the H1N1 influenza virus did re-emerge in 2009, and was colloquially known as "Swine Flu"; thankfully it had a much lower fatality rate due to medical advancements across the twentieth century.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comparison of the number of cases of resistance detection by phenotypic (DST) and genotypic web-based tools for ten TB anti-drugs.
The Black Death was the largest and deadliest pandemic of Yersinia pestis recorded in human history, and likely the most infamous individual pandemic ever documented. The plague originated in the Eurasian Steppes, before moving with Mongol hordes to the Black Sea, where it was then brought by Italian merchants to the Mediterranean. From here, the Black Death then spread to almost all corners of Europe, the Middle East, and North Africa. While it was never endemic to these regions, it was constantly re-introduced via trade routes from Asia (such as the Silk Road), and plague was present in Western Europe until the seventeenth century, and the other regions until the nineteenth century. Impact on Europe In Europe, the major port cities and metropolitan areas were hit the hardest. The plague spread through south-western Europe, following the arrival of Italian galleys in Sicily, Genoa, Venice, and Marseilles, at the beginning of 1347. It is claimed that Venice, Florence, and Siena lost up to two thirds of their total population during epidemic's peak, while London, which was hit in 1348, is said to have lost at least half of its population. The plague then made its way around the west of Europe, and arrived in Germany and Scandinavia in 1348, before travelling along the Baltic coast to Russia by 1351 (although data relating to the death tolls east of Germany is scarce). Some areas of Europe remained untouched by the plague for decades; for example, plague did not arrive in Iceland until 1402, however it swept across the island with devastating effect, causing the population to drop from 120,000 to 40,000 within two years. Reliability While the Black Death affected three continents, there is little recorded evidence of its impact outside of Southern or Western Europe. In Europe, however, many sources conflict and contrast with one another, often giving death tolls exceeding the estimated population at the time (such as London, where the death toll is said to be three times larger than the total population). Therefore, the precise death tolls remain uncertain, and any figures given should be treated tentatively.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sensitivity, specificity and accuracy of ten drugs of anti-TB drug resistance analysed by WGS plus web-based tools compared with DST.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The enormous toll on human life during the 1918–1919 Spanish influenza pandemic is a constant reminder of the potential lethality of influenza viruses. With the declaration by the World Health Organization of a new H1N1 influenza virus pandemic, and with continued human cases of highly pathogenic H5N1 avian influenza virus infection, a better understanding of the host response to highly pathogenic influenza viruses is essential. To this end, we compared pathology and global gene expression profiles in bronchial tissue from macaques infected with either the reconstructed 1918 pandemic virus or the highly pathogenic avian H5N1 virus A/Vietnam/1203/04. Severe pathology was observed in respiratory tissues from 1918 virus-infected animals as early as 12 hours after infection, and pathology steadily increased at later time points. Although tissues from animals infected with A/Vietnam/1203/04 also showed clear signs of pathology early on, less pathology was observed at later time points, and there was evidence of tissue repair. Global transcriptional profiles revealed that specific groups of genes associated with inflammation and cell death were up-regulated in bronchial tissues from animals infected with the 1918 virus but down-regulated in animals infected with A/Vietnam/1203/04. Importantly, the 1918 virus up-regulated key components of the inflammasome, NLRP3 and IL-1β, whereas these genes were down-regulated by A/Vietnam/1203/04 early after infection. TUNEL assays revealed that both viruses elicited an apoptotic response in lungs and bronchi, although the response occurred earlier during 1918 virus infection. Our findings suggest that the severity of disease in 1918 virus-infected macaques is a consequence of the early up-regulation of cell death and inflammatory related genes, in which additive or synergistic effects likely dictate the severity of tissue damage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The .xlsx file contains raw data related to the article "COVID-19 and Lombardy: TESTing the impact of the first wave of the pandemic. EBioMedicine. 2020 Nov;61:103069", available at the following link.
Abstract
Background: Italy was the first western country to experience a large Coronavirus Disease 2019 (COVID-19) outbreak and the province of Bergamo experienced one of the deadliest COVID-19 outbreaks in the world. Following the peak of the epidemic in mid-March, the curve has slowly fallen thanks to the strict lockdown imposed by the Italian government on 9th March 2020.
Methods: We performed a cross-sectional study to assess the prevalence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in 423 workers in Bergamo province who returned to the workplace after the end of the Italian lockdown on 5th May 2020. To this end, we performed an enzyme-linked immunosorbent assay (ELISA) to detect the humoral response against SARS-CoV-2 and a nasopharyngeal swab to assess the presence of SARS-CoV-2 RNA by real-time reverse transcription polymerase chain reaction (rRT-PCR). As a secondary aim of the study, we validated a lateral flow immunochromatography assay (LFIA) for the detection of anti-SARS-CoV-2 antibodies.
Findings: ELISA identified 38.5% positive subjects, of whom 51.5% were positive for both IgG and IgM, 47.3% were positive only for IgG, but only 1.2% were positive for IgM alone. Only 23 (5.4%) participants tested positive for SARS-CoV-2 by rRT-PCR, although with high cycle thresholds (between 34 and 39), indicating a very low residual viral load that was not able to infect cultured cells. All these rRT-PCR positive subjects had already experienced seroconversion. When the ELISA was used as the comparator, the estimated specificity and sensitivity of the rapid LFIA for IgG were 98% and 92%, respectively.
Interpretation: the prevalence of SARS-CoV-2 infection in the province of Bergamo reached 38.5%, significantly higher than has been reported for most other regions worldwide. Few nasopharyngeal swabs tested positive in fully recovered subjects, though with a very low SARS-CoV-2 viral load, with implications for infectivity and discharge policies for positive individuals in the post-pandemic period. The rapid LFIA used in this study is a valuable tool for rapid serologic surveillance of COVID-19 for population studies.
Demobilization following the First World War saw millions of soldiers return to their home countries from the trenches, and in doing so, they brought with them another wave of the deadliest and far-reaching pandemic of all time. As the H1N1 influenza virus, known as the Spanish Flu, spread across the world and infected between one third and a quarter of the global population, it impacted all areas of society. One such impact was on workers' wages, as the labor shortage drove up the demand for skilled workers, which then increased wages. In the United States, wages had already increased due to the shortage of workers caused by the war, however the trend increased further in the two or three years after the war, despite the return of so many personnel from overseas.
In the first fifteen years of the twentieth century, wages across the shown industries had increased gradually and steadily in line with inflation, with the hourly wage in manufacturing increasing from roughly 15 cents per hour to 21 cents per hour in this period. Between 1915 and 1921 or 1921 however, the hourly rate more than doubled across most of these industries, with the hourly wage in manufacturing increasing from 21 cents per hour in 1915 to 56 cents per hour in 1920. Although manufacturing wages were the lowest among those shown here, the trend was similar across even the highest paying trades, with hourly wages in the building trade increasing from 57 cents per hour in 1915 to one dollar and eight cents in 1921. The averages of almost all these trades decreased again in 1922, before plateauing or increasing at a slower rate throughout the late 1920s. Other factors, such as the Wall Street Crash of 1929 and subsequent Great Depression, make comparing this data with wages in later decades more difficult, but it does give some insight into the economic effects of pandemics in history.
Among the ten major virus outbreaks in the last 50 years, Marburg ranked first in terms of the fatality rate with 80 percent. In comparison, the recent novel coronavirus, originating from the Chinese city of Wuhan, had an estimated fatality rate of 2.2 percent as of January 31, 2020.
Alarming COVID-19 fatality rate in Mexico More than 812,000 people worldwide had died from COVID-19 as of August 24, 2020. Three of the most populous countries in the world have reported particularly large numbers of coronavirus-related deaths: Mexico, Brazil, and the United States. Out of those three nations, Mexico has the highest COVID-19 death rate, with around one in ten confirmed cases resulting in death. The high fatality rate in Mexico indicates that cases may be much higher than reported because testing capacity has been severely stretched.
Post-lockdown complacency a real danger In March 2020, each infected person was estimated to transmit the COVID-19 virus to between 1.5 and 3.5 other people, which was a higher infection rate than the seasonal flu. The coronavirus is primarily spread through respiratory droplets, and transmission commonly occurs when people are in close contact. As lockdowns ease around the world, people are being urged not to become complacent; continue to wear face coverings and practice social distancing, which can help to prevent further infections.
For the week ending June 13, 2025, weekly deaths in England and Wales were 228 below the number expected, compared with 747 below what was expected in the previous week. In late 2022, and through early 2023, excess deaths were elevated for a number of weeks, with the excess deaths figure for the week ending January 13, 2023, the highest since February 2021. In the middle of April 2020, at the height of the Coronavirus (COVID-19) pandemic, there were almost 12,000 excess deaths a week recorded in England and Wales. It was not until two months later, in the week ending June 19, 2020, that the number of deaths began to be lower than the five-year average for the corresponding week. Most deaths since 1918 in 2020 In 2020, there were 689,629 deaths in the United Kingdom, making that year the deadliest since 1918, at the height of the Spanish influenza pandemic. As seen in the excess death figures, April 2020 was by far the worst month in terms of deaths during the pandemic. The weekly number of deaths for weeks 16 and 17 of that year were 22,351, and 21,997 respectively. Although the number of deaths fell to more usual levels for the rest of that year, a winter wave of the disease led to a high number of deaths in January 2021, with 18,676 deaths recorded in the fourth week of that year. For the whole of 2021, there were 667,479 deaths in the UK, 22,150 fewer than in 2020. Life expectancy in the UK goes into reverse In 2022, life expectancy at birth for women in the UK was 82.6 years, while for men it was 78.6 years. This was the lowest life expectancy in the country for ten years, and came after life expectancy improvements stalled throughout the 2010s, and then declined from 2020 onwards. There is also quite a significant regional difference in life expectancy in the UK. In the London borough of Kensington and Chelsea, for example, the life expectancy for men was 81.5 years, and 86.5 years for women. By contrast, in Blackpool, in North West England, male life expectancy was just 73.1 years, while for women, life expectancy was lowest in Glasgow, at 78 years.
The largest outbreak of Ebola virus since 1976 occurred in Sierra Leone between 2014 and 2016. The outbreak resulted in ****** cases and ***** deaths. The outbreak that affected Sierra Leone started in Guinea and spread rapidly to surrounding countries. Ebola Virus Disease Ebola Virus Disease (EVD) is a viral pathogen that causes fever, headaches, severe abdominal pain and, in some cases, haemorrhaging. It is transmitted from human-to-human through contact with infected body fluids, infected objects or semen from a recovered EVD patient. Ebola infection has several stages, including incubation, illness and infectiousness. It is estimated that the mean time from Ebola exposure to the onset of symptoms is approximately seven days. Of the five types of Ebola, Zaire ebolavirus has been shown to be the deadliest. 2014-2016 Ebola Outbreak The West African Ebola outbreak of 2014-2016 was the largest outbreak in history. As of 2016, it was estimated that Sierra Leone had the most Ebola-associated deaths, followed by Guinea. The outbreak began in Guinea in January 2014. However, it progressed rapidly and by March 30, 2016, Liberia had experienced over ** thousand cases. Throughout the 2014-2016 epidemic, health care workers were disproportionately affected by the disease. By November 4, 2015, there were almost *** cases of Ebola virus disease among health care workers.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.