Multimodal dataset for emotion analysis using EEG, Physiological and Video Signals of human affective states. The electroencephalogram (EEG) and peripheral physiological signals of 32 participants were recorded as each watched 40 one-minute long excerpts of music videos. Participants rated each video in terms of the levels of arousal, valence, like/dislike, dominance and familiarity. For 22 of the 32 participants, frontal face video was also recorded. A novel method for stimuli selection was used, utilizing retrieval by affective tags from the last.fm website, video highlight detection and an online assessment tool. The dataset is made publicly available and other researchers are encouraged to use it for testing their own affective state estimation methods.
The DEAP dataset consists of two parts:
The ratings from an online self-assessment where 120 one-minute extracts of music videos were each rated by 14-16 volunteers based on arousal, valence and dominance. The participant ratings, physiological recordings and face video of an experiment where 32 volunteers watched a subset of 40 of the above music videos. EEG and physiological signals were recorded and each participant also rated the videos as above. For 22 participants frontal face video was also recorded.
The SEED dataset contains subjects' EEG signals when they were watching films clips. The film clips are carefully selected so as to induce different types of emotion, which are positive, negative, and neutral ones.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comparison of emotion classification model performance on the DEAP dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Emotion recognition plays a significant role in artificial intelligence and human-computer interaction. Electroencephalography (EEG) signals, due to their ability to directly reflect brain activity, have become an essential tool in emotion recognition research. However, the low dimensionality of sparse EEG channel data presents a key challenge in extracting effective features. This paper proposes a sparse channel EEG-based emotion recognition method using the CNN-KAN- network to address the challenges of limited feature extraction and cross-subject variability in emotion recognition. Through a feature mapping strategy, this method maps features such as Differential Entropy (DE), Power Spectral Density (PSD), and Emotion Valence Index (EVI) - Asymmetry Index (ASI) to pseudo-RGB images, effectively integrating both frequency-domain and spatial information from sparse channels, providing multi-dimensional input for CNN feature extraction. By combining the KAN module with a fast Fourier transform-based attention mechanism, the model can effectively fuse frequency-domain and spatial features for accurate classification of complex emotional signals. Experimental results show that the CNN-KAN- model performs comparably to multi-channel models while only using four EEG channels. Through training based on short-time segments, the model effectively reduces the impact of individual differences, significantly improving generalization ability in cross-subject emotion recognition tasks. Extensive experiments on the SEED and DEAP datasets demonstrate the proposed method’s superior performance in emotion classification tasks. In the merged dataset experiments, the accuracy of the SEED three-class task reached 97.985%, while the accuracy for the DEAP four-class task was 91.718%. In the subject-dependent experiment, the average accuracy for the SEED three-class task was 97.45%, and for the DEAP four-class task, it was 89.16%.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Biometrics is the process of measuring and analyzing human characteristics to verify a given person's identity. Most real-world applications rely on unique human traits such as fingerprints or iris. However, among these unique human characteristics for biometrics, the use of Electroencephalogram (EEG) stands out given its high inter-subject variability. Recent advances in Deep Learning and a deeper understanding of EEG processing methods have led to the development of models that accurately discriminate unique individuals. However, it is still uncertain how much EEG data is required to train such models. This work aims at determining the minimal amount of training data required to develop a robust EEG-based biometric model (+95% and +99% testing accuracies) from a subject for a task-dependent task. This goal is achieved by performing and analyzing 11,780 combinations of training sizes, by employing various neural network-based learning techniques of increasing complexity, and feature extraction methods on the affective EEG-based DEAP dataset. Findings suggest that if Power Spectral Density or Wavelet Energy features are extracted from the artifact-free EEG signal, 1 and 3 s of data per subject is enough to achieve +95% and +99% accuracy, respectively. These findings contributes to the body of knowledge by paving a way for the application of EEG to real-world ecological biometric applications and by demonstrating methods to learn the minimal amount of data required for such applications.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionIn recent years, with advancements in wearable devices and biosignal analysis technologies, sports performance analysis has become an increasingly popular research field, particularly due to the growing demand for real-time monitoring of athletes' conditions in sports training and competitive events. Traditional methods of sports performance analysis typically rely on video data or sensor data for motion recognition. However, unimodal data often fails to fully capture the neural state of athletes, leading to limitations in accuracy and real-time performance when dealing with complex movement patterns. Moreover, these methods struggle with multimodal data fusion, making it difficult to fully leverage the deep information from electroencephalogram (EEG) signals.MethodsTo address these challenges, this paper proposes a "Cerebral Transformer" model based on EEG signals and video data. By employing an adaptive attention mechanism and cross-modal fusion, the model effectively combines EEG signals and video streams to achieve precise recognition and analysis of athletes' movements. The model's effectiveness was validated through experiments on four datasets: SEED, DEAP, eSports Sensors, and MODA. The results show that the proposed model outperforms existing mainstream methods in terms of accuracy, recall, and F1 score, while also demonstrating high computational efficiency.Results and discussionThe significance of this study lies in providing a more comprehensive and efficient solution for sports performance analysis. Through cross-modal data fusion, it not only improves the accuracy of complex movement recognition but also provides technical support for monitoring athletes' neural states, offering important applications in sports training and medical rehabilitation.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Multimodal dataset for emotion analysis using EEG, Physiological and Video Signals of human affective states. The electroencephalogram (EEG) and peripheral physiological signals of 32 participants were recorded as each watched 40 one-minute long excerpts of music videos. Participants rated each video in terms of the levels of arousal, valence, like/dislike, dominance and familiarity. For 22 of the 32 participants, frontal face video was also recorded. A novel method for stimuli selection was used, utilizing retrieval by affective tags from the last.fm website, video highlight detection and an online assessment tool. The dataset is made publicly available and other researchers are encouraged to use it for testing their own affective state estimation methods.