The National Death Index (NDI) is a centralized database of death record information on file in state vital statistics offices. Working with these state offices, the National Center for Health Statistics (NCHS) established the NDI as a resource to aid epidemiologists and other health and medical investigators with their mortality ascertainment activities. Assists investigators in determining whether persons in their studies have died and, if so, provide the names of the states in which those deaths occurred, the dates of death, and the corresponding death certificate numbers. Investigators can then make arrangements with the appropriate state offices to obtain copies of death certificates or specific statistical information such as manner of death or educational level. Cause of death codes may also be obtained using the NDI Plus service. Records from 1979 through 2011 are currently available and contain a standard set of identifying information on each death. Death records are added to the NDI file annually, approximately 12 months after the end of a particular calendar year. 2012 should be available summer 2014. Early Release Program for 2013 is now available. The NDI service is available to investigators solely for statistical purposes in medical and health research. The service is not accessible to organizations or the general public for legal, administrative, or genealogy purposes.
https://www.icpsr.umich.edu/web/ICPSR/studies/6629/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6629/terms
This data collection consists of three data files, which can be used to determine infant mortality rates. The first file provides linked records of live births and deaths of children born in the United States in 1991 (residents and nonresidents). This file is referred to as the "Numerator" file. The second file consists of live births in the United States in 1991 and is referred to as the "Denominator-Plus" file. Variables include year of birth, state and county of birth, characteristics of the infant (age, sex, race, birth weight, gestation), characteristics of the mother (origin, race, age, education, marital status, state of birth), characteristics of the father (origin, race, age, education), pregnancy items (prenatal care, live births), and medical data. Beginning in 1989, a number of items were added to the U.S. Standard Certificate of Birth. These changes and/or additions led to the redesign of the linked file record layout for this series and to other changes in the linked file. In addition, variables from the numerator file have been added to the denominator file to facilitate processing, and this file is now called the "Denominator-Plus" file. The additional variables include age at death, underlying cause of death, autopsy, and place of accident. Other new variables added are infant death identification number, exact age at death, day of birth and death, and month of birth and death. The third file, the "Unlinked" file, consists of infant death records that could not be linked to their corresponding birth records.
A database based on a random sample of the noninstitutionalized population of the United States, developed for the purpose of studying the effects of demographic and socio-economic characteristics on differentials in mortality rates. It consists of data from 26 U.S. Current Population Surveys (CPS) cohorts, annual Social and Economic Supplements, and the 1980 Census cohort, combined with death certificate information to identify mortality status and cause of death covering the time interval, 1979 to 1998. The Current Population Surveys are March Supplements selected from the time period from March 1973 to March 1998. The NLMS routinely links geographical and demographic information from Census Bureau surveys and censuses to the NLMS database, and other available sources upon request. The Census Bureau and CMS have approved the linkage protocol and data acquisition is currently underway. The plan for the NLMS is to link information on mortality to the NLMS every two years from 1998 through 2006 with research on the resulting database to continue, at least, through 2009. The NLMS will continue to incorporate data from the yearly Annual Social and Economic Supplement into the study as the data become available. Based on the expected size of the Annual Social and Economic Supplements to be conducted, the expected number of deaths to be added to the NLMS through the updating process will increase the mortality content of the study to nearly 500,000 cases out of a total number of approximately 3.3 million records. This effort would also include expanding the NLMS population base by incorporating new March Supplement Current Population Survey data into the study as they become available. Linkages to the SEER and CMS datasets are also available. Data Availability: Due to the confidential nature of the data used in the NLMS, the public use dataset consists of a reduced number of CPS cohorts with a fixed follow-up period of five years. NIA does not make the data available directly. Research access to the entire NLMS database can be obtained through the NIA program contact listed. Interested investigators should email the NIA contact and send in a one page prospectus of the proposed project. NIA will approve projects based on their relevance to NIA/BSR''s areas of emphasis. Approved projects are then assigned to NLMS statisticians at the Census Bureau who work directly with the researcher to interface with the database. A modified version of the public use data files is available also through the Census restricted Data Centers. However, since the database is quite complex, many investigators have found that the most efficient way to access it is through the Census programmers. * Dates of Study: 1973-2009 * Study Features: Longitudinal * Sample Size: ~3.3 Million Link: *ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/00134
A dataset to advance the study of life-cycle interactions of biomedical and socioeconomic factors in the aging process. The EI project has assembled a variety of large datasets covering the life histories of approximately 39,616 white male volunteers (drawn from a random sample of 331 companies) who served in the Union Army (UA), and of about 6,000 African-American veterans from 51 randomly selected United States Colored Troops companies (USCT). Their military records were linked to pension and medical records that detailed the soldiers������?? health status and socioeconomic and family characteristics. Each soldier was searched for in the US decennial census for the years in which they were most likely to be found alive (1850, 1860, 1880, 1900, 1910). In addition, a sample consisting of 70,000 men examined for service in the Union Army between September 1864 and April 1865 has been assembled and linked only to census records. These records will be useful for life-cycle comparisons of those accepted and rejected for service. Military Data: The military service and wartime medical histories of the UA and USCT men were collected from the Union Army and United States Colored Troops military service records, carded medical records, and other wartime documents. Pension Data: Wherever possible, the UA and USCT samples have been linked to pension records, including surgeon''''s certificates. About 70% of men in the Union Army sample have a pension. These records provide the bulk of the socioeconomic and demographic information on these men from the late 1800s through the early 1900s, including family structure and employment information. In addition, the surgeon''''s certificates provide rich medical histories, with an average of 5 examinations per linked recruit for the UA, and about 2.5 exams per USCT recruit. Census Data: Both early and late-age familial and socioeconomic information is collected from the manuscript schedules of the federal censuses of 1850, 1860, 1870 (incomplete), 1880, 1900, and 1910. Data Availability: All of the datasets (Military Union Army; linked Census; Surgeon''''s Certificates; Examination Records, and supporting ecological and environmental variables) are publicly available from ICPSR. In addition, copies on CD-ROM may be obtained from the CPE, which also maintains an interactive Internet Data Archive and Documentation Library, which can be accessed on the Project Website. * Dates of Study: 1850-1910 * Study Features: Longitudinal, Minority Oversamples * Sample Size: ** Union Army: 35,747 ** Colored Troops: 6,187 ** Examination Sample: 70,800 ICPSR Link: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06836
The dataset is an index to digitized historical death certificates from 1862-1948 from all 5 NYC boroughs. Details about certificates in DORIS's collection and their digitization status can be found on our website (https://a860-historicalvitalrecords.nyc.gov/digital-vital-records).
This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundFor countries to contribute to Sustainable Development Goal 3.1 of reducing the global maternal mortality ratio (MMR) to less than 70 per 100,000 live births by 2030, identifying the drivers of maternal mortality is critically important. The ability of countries to identify the key drivers is however hampered by the lack of data sources with sufficient observations of maternal death to allow a rigorous analysis of its determinants. This paper overcomes this problem by utilising census data. In the context of Indonesia, we merge individual-level data on pregnancy-related deaths and households’ socio-economic status from the 2010 Indonesian population census with detailed data on the availability and quality of local health services from the Village Census. We use these data to test the hypothesis that health service access and quality are important determinants of maternal death and explain the differences between high maternal mortality and low maternal mortality provinces.MethodsThe 2010 Indonesian Population Census identifies 8075 pregnancy-related deaths and 5,866,791 live births. Multilevel logistic regression is used to analyse the impacts of demographic characteristics and the existence of, distance to and quality of health services on the likelihood of maternal death. Decomposition analysis quantifies the extent to which the difference in maternal mortality ratios between high and low performing provinces can be explained by demographic and health service characteristics.FindingsHealth service access and characteristics account for 23% (CI: 17.2% to 28.5%) of the difference in maternal mortality ratios between high and low-performing provinces. The most important contributors are the number of doctors working at the community health centre (8.6%), the number of doctors in the village (6.9%) and distance to the nearest hospital (5.9%). Distance to health clinics and the number of midwives at community health centres and village health posts are not significant contributors, nor is socio-economic status. If the same level of access to doctors and hospitals in lower maternal mortality Java-Bali was provided to the higher maternal mortality Outer Islands of Indonesia, our model predicts 44 deaths would be averted per 100,000 pregnancies.ConclusionIndonesia has employed a strategy over the past several decades of increasing the supply of midwives as a way of decreasing maternal mortality. While there is evidence of reductions in maternal mortality continuing to accrue from the provision of midwife services at village health posts, our findings suggest that further reductions in maternal mortality in Indonesia may require a change of focus to increasing the supply of doctors and access to hospitals. If data on maternal death is collected in a subsequent census, future research using two waves of census data would prove a useful validation of the results found here. Similar research using census data from other countries is also likely to be fruitful.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Death Rate: Crude: per 1000 People data was reported at 8.400 Ratio in 2016. This records a decrease from the previous number of 8.440 Ratio for 2015. United States US: Death Rate: Crude: per 1000 People data is updated yearly, averaging 8.700 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 9.800 Ratio in 1968 and a record low of 7.900 Ratio in 2009. United States US: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Death statistics (i) Number of Deaths for Different Sexes and Crude Death Rate for the Period from 1981 to 2023 (ii) Age-standardised Death Rate (Overall and by Sex) for the Period from 1981 to 2023 (iii) Age-specific Death Rate for Year 2013 and 2023 (iv) Death Rates by Leading Causes of Death for the Period from 2001 to 2023 (v) Number of Deaths by Leading Causes of Death for the Period from 2001 to 2023 (vi) Age-standardised Death Rates by Leading Causes of Death for the Period from 2001 to 2023 (vii) Late Foetal Mortality Rate for the Period from 1981 to 2023 (viii) Perinatal Mortality Rate for the Period from 1981 to 2023 (ix) Neonatal Mortality Rate for the Period from 1981 to 2023 (x) Infant Mortality Rate for the Period from 1981 to 2023 (xi) Number of Maternal Deaths for the Period from 1981 to 2023 (xii) Maternal Mortality Ratio for the Period from 1981 to 2023
This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
These data represent the Age-Adjusted Colorado Census Tract Mortality Rate Per 100,000 Persons for Suicide as the Underlying Cause of Death (2015-2019). Population estimates for the denominator are calculated from the 2015-2019 American Community Survey. These data are from the Colorado Department of Public Health and Environment Vital Records Death Dataset and are published annually by the Colorado Department of Public Health and Environment.
A database providing detailed mortality and population data to those interested in the history of human longevity. For each country, the database includes calculated death rates and life tables by age, time, and sex, along with all of the raw data (vital statistics, census counts, population estimates) used in computing these quantities. Data are presented in a variety of formats with regard to age groups and time periods. The main goal of the database is to document the longevity revolution of the modern era and to facilitate research into its causes and consequences. New data series is continually added to this collection. However, the database is limited by design to populations where death registration and census data are virtually complete, since this type of information is required for the uniform method used to reconstruct historical data series. As a result, the countries and areas included are relatively wealthy and for the most part highly industrialized. The database replaces an earlier NIA-funded project, known as the Berkeley Mortality Database. * Dates of Study: 1751-present * Study Features: Longitudinal, International * Sample Size: 37 countries or areas
This dataset presents the age-adjusted death rates for the 10 leading causes of death in the United States beginning in 1999.
Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia using demographic and medical characteristics. Age-adjusted death rates (per 100,000 population) are based on the 2000 U.S. standard population. Populations used for computing death rates after 2010 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published.
Causes of death classified by the International Classification of Diseases, Tenth Revision (ICD–10) are ranked according to the number of deaths assigned to rankable causes. Cause of death statistics are based on the underlying cause of death.
SOURCES
CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Completeness of Death Registration with Cause-of-Death Information data was reported at 98.000 % in 2009. This records an increase from the previous number of 97.400 % for 2002. United States US: Completeness of Death Registration with Cause-of-Death Information data is updated yearly, averaging 98.000 % from Dec 1992 (Median) to 2009, with 4 observations. The data reached an all-time high of 98.400 % in 1992 and a record low of 97.400 % in 2002. United States US: Completeness of Death Registration with Cause-of-Death Information data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Completeness of death registration is the estimated percentage of deaths that are registered with their cause of death information in the vital registration system of a country.; ; World Health Organization, Global Health Observatory Data Repository/World Health Statistics (http://apps.who.int/gho/data/node.main.1?lang=en).; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Veterans’ Grandchildren Mortality Plus sample consists of the records of more than 35,700 total grandchildrenboth male and female in nearly equal numbers,about 28,000 of which survived to age 45,who were born after the war to 16,791 children of 2,825 veterans,and contains an oversample of ex-POW veterans.The primary purpose of the project was to explore how grandfathers’ trauma affects the longevity and overweight of descendants. The dataset contains birth and death dates of grandchildren, census information on their parents' household, select socioeconomic and education information from the 1930 and 1940 census, and height and weight information from WWII draft cards for the grandsons. This multigenerational dataset can be used for researching the intergenerational transmission of longevity, overweight and socioeconomic status and the sex-specific pathways of this transmission and for testing mechanical linkage algorithms. Researchers built on a previously collected NIA-funded project containing census and death information of children of ex-POW and non-POW veterans (“Early Indicators, Intergenerational Processes, and Aging,” NIA grant P01AG10120, PI: Costa). The Veterans’ Grandchildren Mortality Plus data set contains the newly collected records of the veterans’ grandchildren, as well as the previously collected data of the veterans and their children.
The Genealogical Research Death Index assists individuals with locating New York State (NYS) death records that fall within defined genealogy years, exclusive of New York City recorded death records. This Index contains information on decedents, date of death, gender, age at death, and NYS file number that will allow the public to search for individuals on a variety of genealogy criteria if on file for at least 50 years.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
Count of COVID-19-associated deaths by date of death. Deaths reported to either the OCME or DPH are included in the COVID-19 data. COVID-19-associated deaths include persons who tested positive for COVID-19 around the time of death and persons who were not tested for COVID-19 whose death certificate lists COVID-19 disease as a cause of death or a significant condition contributing to death.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Note the counts in this dataset may vary from the death counts in the other COVID-19-related datasets published on data.ct.gov, where deaths are counted on the date reported rather than the date of death.
Starting in July 2020, this dataset will be updated every weekday. Data are subject to future revision as reporting changes.
https://www.icpsr.umich.edu/web/ICPSR/studies/6836/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6836/terms
This data collection constitutes a portion of the historical data collected by the project "Early Indicators of Later Work Levels, Disease, and Death." With the goal of constructing datasets suitable for longitudinal analyses of factors affecting the aging process, the project is collecting military, medical, and socioeconomical data on a sample of white males mustered into the Union Army during the Civil War. The project seeks to examine the influence of environmental and host factors prior to recruitment on the health performance and survival of recruits during military service, to identify and show relationships between socioeconomic and biomedical conditions (including nutritional status) of veterans at early ages and mortality rates from diseases at middle and late ages, and to study the effects of health and pensions on labor force participation rates of veterans at ages 65 and over. This installment of the collection, Version C-3, supersedes all previous collections (Versions C-1 and C-2), and contains data from the censuses of 1850, 1860, 1900, and 1910 on veterans who were originally mustered into the Union Army in Connecticut, Delaware, District of Columbia, Illinois, Iowa, Kansas, Kentucky, Maine, Maryland, Massachusetts, Michigan, Minnesota, Missouri, New Hampshire, New Jersey, New York, Ohio, Pennsylvania, Vermont, and West Virginia. This version of the collection also contains observations from Wisconsin, Indiana, California, and New Mexico. Census Data, Part 1, includes place of residence, relationship to head of household, date and place of birth, number of children, education, disability status, employment status, number of years in the United States, literacy, marital status, occupation, parents' birthplace, and property/home ownership. The variables in Part 2, Linkage Data, indicate which document sources were located for each recruit.
This dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
This dataset describes drug poisoning deaths at the U.S. and state level by selected demographic characteristics, and includes age-adjusted death rates for drug poisoning. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Drug poisoning death rates may be underestimated in those instances. REFERENCES 1. National Center for Health Statistics. National Vital Statistics System: Mortality data. Available from: http://www.cdc.gov/nchs/deaths.htm. CDC. CDC Wonder: Underlying cause of death 1999–2016. Available from: http://wonder.cdc.gov/wonder/help/ucd.html.
The National Death Index (NDI) is a centralized database of death record information on file in state vital statistics offices. Working with these state offices, the National Center for Health Statistics (NCHS) established the NDI as a resource to aid epidemiologists and other health and medical investigators with their mortality ascertainment activities. Assists investigators in determining whether persons in their studies have died and, if so, provide the names of the states in which those deaths occurred, the dates of death, and the corresponding death certificate numbers. Investigators can then make arrangements with the appropriate state offices to obtain copies of death certificates or specific statistical information such as manner of death or educational level. Cause of death codes may also be obtained using the NDI Plus service. Records from 1979 through 2011 are currently available and contain a standard set of identifying information on each death. Death records are added to the NDI file annually, approximately 12 months after the end of a particular calendar year. 2012 should be available summer 2014. Early Release Program for 2013 is now available. The NDI service is available to investigators solely for statistical purposes in medical and health research. The service is not accessible to organizations or the general public for legal, administrative, or genealogy purposes.