100+ datasets found
  1. WWII: share of total population lost per country 1939-1945

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). WWII: share of total population lost per country 1939-1945 [Dataset]. https://www.statista.com/statistics/1351638/second-world-war-share-total-population-loss/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    It is estimated that the Second World War was responsible for the deaths of approximately 3.76 percent of the world's population between 1939 and 1945. In 2022, where the world's population reached eight billion, this would be equal to the death of around 300 million people.

    The region that experienced the largest loss of life relative to its population was the South Seas Mandate - these were former-German territories given to the Empire of Japan through the Treaty of Versailles following WWI, and they make up much of the present-day countries of the Marshall Islands, Micronesia, the Northern Mariana Islands (U.S. territory), and Palau. Due to the location and strategic importance of these islands, they were used by the Japanese as launching pads for their attacks on Pearl Harbor and in the South Pacific, while they were also taken as part of the Allies' island-hopping strategy in their counteroffensive against Japan. This came at a heavy cost for the local populations, a large share of whom were Japanese settlers who had moved there in the 1920s and 1930s. Exact figures for both pre-war populations and wartime losses fluctuate by source, however civilian losses in these islands were extremely high as the Japanese defenses resorted to more extreme measures in the war's final phase.

  2. Second World War: fatalities per country 1939-1945

    • statista.com
    • ai-chatbox.pro
    Updated Apr 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Second World War: fatalities per country 1939-1945 [Dataset]. https://www.statista.com/statistics/1293510/second-world-war-fatalities-per-country/
    Explore at:
    Dataset updated
    Apr 4, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Estimates for the total death count of the Second World War generally range somewhere between 70 and 85 million people. The Soviet Union suffered the highest number of fatalities of any single nation, with estimates mostly falling between 22 and 27 million deaths. China then suffered the second greatest, at around 20 million, although these figures are less certain and often overlap with the Chinese Civil War. Over 80 percent of all deaths were of those from Allied countries, and the majority of these were civilians. In contrast, 15 to 20 percent were among the Axis powers, and the majority of these were military deaths, as shown in the death ratios of Germany and Japan. Civilian deaths and atrocities It is believed that 60 to 67 percent of all deaths were civilian fatalities, largely resulting from war-related famine or disease, and war crimes or atrocities. Systematic genocide, extermination campaigns, and forced labor, particularly by the Germans, Japanese, and Soviets, led to the deaths of millions. In this regard, Nazi activities alone resulted in 17 million deaths, including six million Jews in what is now known as The Holocaust. Not only was the scale of the conflict larger than any that had come before, but the nature of and reasoning behind this loss make the Second World War stand out as one of the most devastating and cruelest conflicts in history. Problems with these statistics Although the war is considered by many to be the defining event of the 20th century, exact figures for death tolls have proven impossible to determine, for a variety of reasons. Countries such as the U.S. have fairly consistent estimates due to preserved military records and comparatively few civilian casualties, although figures still vary by source. For most of Europe, records are less accurate. Border fluctuations and the upheaval of the interwar period mean that pre-war records were already poor or non-existent for many regions. The rapid and chaotic nature of the war then meant that deaths could not be accurately recorded at the time, and mass displacement or forced relocation resulted in the deaths of many civilians outside of their homeland, which makes country-specific figures more difficult to find. Early estimates of the war’s fatalities were also taken at face value and formed the basis of many historical works; these were often very inaccurate, but the validity of the source means that the figures continue to be cited today, despite contrary evidence.

    In comparison to Europe, estimate ranges are often greater across Asia, where populations were larger but pre-war data was in short supply. Many of the Asian countries with high death tolls were European colonies, and the actions of authorities in the metropoles, such as the diversion of resources from Asia to Europe, led to millions of deaths through famine and disease. Additionally, over one million African soldiers were drafted into Europe’s armies during the war, yet individual statistics are unavailable for most of these colonies or successor states (notably Algeria and Libya). Thousands of Asian and African military deaths went unrecorded or are included with European or Japanese figures, and there are no reliable figures for deaths of millions from countries across North Africa or East Asia. Additionally, many concentration camp records were destroyed, and such records in Africa and Asia were even sparser than in Europe. While the Second World War is one of the most studied academic topics of the past century, it is unlikely that we will ever have a clear number for the lives lost in the conflict.

  3. Death rate from in France 1982-2023

    • statista.com
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Death rate from in France 1982-2023 [Dataset]. https://www.statista.com/statistics/460122/death-rate-france/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    France
    Description

    The mortality rate has been stable in France since the middle of 1980s. The mortality rate varies between *** and ***** deaths per 1,000 inhabitants. Life expectancy of women in France amounted to more than 85 years in 2023, making the country one of the areas in Europe where women live the longest. A slowly increasing death rate From 2014 to 2020, the death rate in France generally remained stable, oscillating mostly between *** and *** deaths per 1,000 population. Death rate, also known as mortality rate, is the ratio between the annual number of deaths and the average total population over a given period and on a specific territory. In 2023, the population in France reached ***** million people, while in 2022, the total number of deaths in France was *******. The mortality rate in France increased slowly in recent years. In 2007, the death rate amounted to *** per thousand population, compared to *** deaths ten years later. Causes of death In 2013, the leading cause of death among French citizens was cancer. That year, ******* people died of tumors, while diseases of the circulatory system were the second most common cause of death in the country. Mortality rate because of cancer was particularly high among French males, whereas females appear to be more affected by cardiovascular disease. Studies have shown that cancer was not only the leading cause of death in France, but also in Europe. More broadly, health and diseases were among the major causes of death in European countries, even if traffic accidents killed more than ***** individuals in France in 2021.

  4. a

    COVID-19 Trends in Each Country-Copy

    • hub.arcgis.com
    • open-data-pittsylvania.hub.arcgis.com
    Updated Jun 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  5. G

    Death rate by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jan 13, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2015). Death rate by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/Death_rate/
    Explore at:
    xml, csv, excelAvailable download formats
    Dataset updated
    Jan 13, 2015
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2022
    Area covered
    World, World
    Description

    The average for 2022 based on 195 countries was 8.37 deaths per 1000 people. The highest value was in Ukraine: 21.4 deaths per 1000 people and the lowest value was in Qatar: 1.08 deaths per 1000 people. The indicator is available from 1960 to 2022. Below is a chart for all countries where data are available.

  6. Number of military and civilian deaths per country in the First World War...

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of military and civilian deaths per country in the First World War 1914-1918 [Dataset]. https://www.statista.com/statistics/1208625/first-world-war-fatalities-per-country/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The First World War saw the mobilization of more than 65 million soldiers, and the deaths of almost 15 million soldiers and civilians combined. Approximately 8.8 million of these deaths were of military personnel, while six million civilians died as a direct result of the war; mostly through hunger, disease and genocide. The German army suffered the highest number of military losses, totaling at more than two million men. Turkey had the highest civilian death count, largely due to the mass extermination of Armenians, as well as Greeks and Assyrians. Varying estimates suggest that Russia may have suffered the highest number of military and total fatalities in the First World War. However, this is complicated by the subsequent Russian Civil War and Russia's total specific to the First World War remains unclear to this day.

    Proportional deaths In 1914, Central and Eastern Europe was largely divided between the empires of Austria-Hungary, Germany and Russia, while the smaller Balkan states had only emerged in prior decades with the decline of the Ottoman Empire. For these reasons, the major powers in the east were able to mobilize millions of men from across their territories, as Britain and France did with their own overseas colonies, and were able to utilize their superior manpower to rotate and replace soldiers, whereas smaller nations did not have this luxury. For example, total military losses for Romania and Serbia are around 12 percent of Germany's total military losses; however, as a share of their total mobilized forces these countries lost roughly 33 percent of their armies, compared to Germany's 15 percent mortality rate. The average mortality rate of all deployed soldiers in the war was around 14 percent.

    Unclarity in the totals Despite ending over a century ago, the total number of deaths resulting from the First World War remains unclear. The impact of the Influenza pandemic of 1918, as well as various classifications of when or why fatalities occurred, has resulted in varying totals with differences ranging in the millions. Parallel conflicts, particularly the Russian Civil War, have also made it extremely difficult to define which conflicts the fatalities should be attributed to. Since 2012, the totals given by Hirschfeld et al in Brill's Encyclopedia of the First World War have been viewed by many in the historical community as the most reliable figures on the subject.

  7. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  8. Z

    Life table data for "Bounce backs amid continued losses: Life expectancy...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dowd, Jennifer B. (2022). Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6241024
    Explore at:
    Dataset updated
    Jul 20, 2022
    Dataset provided by
    Aburto, José Manuel
    Dowd, Jennifer B.
    Kashnitsky, Ilya
    Jaadla, Hannaliis
    Kniffka, Maxi S.
    Schöley, Jonas
    Zhang, Luyin
    Kashyap, Ridhi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19"

    cc-by Jonas Schöley, José Manuel Aburto, Ilya Kashnitsky, Maxi S. Kniffka, Luyin Zhang, Hannaliis Jaadla, Jennifer B. Dowd, and Ridhi Kashyap. "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    These are CSV files of life tables over the years 2015 through 2021 across 29 countries analyzed in the paper "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    40-lifetables.csv

    Life table statistics 2015 through 2021 by sex, region and quarter with uncertainty quantiles based on Poisson replication of death counts. Actual life tables and expected life tables (under the assumption of pre-COVID mortality trend continuation) are provided.

    30-lt_input.csv

    Life table input data.

    id: unique row identifier

    region_iso: iso3166-2 region codes

    sex: Male, Female, Total

    year: iso year

    age_start: start of age group

    age_width: width of age group, Inf for age_start 100, otherwise 1

    nweeks_year: number of weeks in that year, 52 or 53

    death_total: number of deaths by any cause

    population_py: person-years of exposure (adjusted for leap-weeks and missing weeks in input data on all cause deaths)

    death_total_nweeksmiss: number of weeks in the raw input data with at least one missing death count for this region-sex-year stratum. missings are counted when the week is implicitly missing from the input data or if any NAs are encounted in this week or if age groups are implicitly missing for this week in the input data (e.g. 40-45, 50-55)

    death_total_minnageraw: the minimum number of age-groups in the raw input data within this region-sex-year stratum

    death_total_maxnageraw: the maximum number of age-groups in the raw input data within this region-sex-year stratum

    death_total_minopenageraw: the minimum age at the start of the open age group in the raw input data within this region-sex-year stratum

    death_total_maxopenageraw: the maximum age at the start of the open age group in the raw input data within this region-sex-year stratum

    death_total_source: source of the all-cause death data

    death_total_prop_q1: observed proportion of deaths in first quarter of year

    death_total_prop_q2: observed proportion of deaths in second quarter of year

    death_total_prop_q3: observed proportion of deaths in third quarter of year

    death_total_prop_q4: observed proportion of deaths in fourth quarter of year

    death_expected_prop_q1: expected proportion of deaths in first quarter of year

    death_expected_prop_q2: expected proportion of deaths in second quarter of year

    death_expected_prop_q3: expected proportion of deaths in third quarter of year

    death_expected_prop_q4: expected proportion of deaths in fourth quarter of year

    population_midyear: midyear population (July 1st)

    population_source: source of the population count/exposure data

    death_covid: number of deaths due to covid

    death_covid_date: number of deaths due to covid as of

    death_covid_nageraw: the number of age groups in the covid input data

    ex_wpp_estimate: life expectancy estimates from the World Population prospects for a five year period, merged at the midpoint year

    ex_hmd_estimate: life expectancy estimates from the Human Mortality Database

    nmx_hmd_estimate: death rate estimates from the Human Mortality Database

    nmx_cntfc: Lee-Carter death rate projections based on trend in the years 2015 through 2019

    Deaths

    source:

    STMF input data series (https://www.mortality.org/Public/STMF/Outputs/stmf.csv)

    ONS for GB-EAW pre 2020

    CDC for US pre 2020

    STMF:

    harmonized to single ages via pclm

    pclm iterates over country, sex, year, and within-year age grouping pattern and converts irregular age groupings, which may vary by country, year and week into a regular age grouping of 0:110

    smoothing parameters estimated via BIC grid search seperately for every pclm iteration

    last age group set to [110,111)

    ages 100:110+ are then summed into 100+ to be consistent with mid-year population information

    deaths in unknown weeks are considered; deaths in unknown ages are not considered

    ONS:

    data already in single ages

    ages 100:105+ are summed into 100+ to be consistent with mid-year population information

    PCLM smoothing applied to for consistency reasons

    CDC:

    The CDC data comes in single ages 0:100 for the US. For 2020 we only have the STMF data in a much coarser age grouping, i.e. (0, 1, 5, 15, 25, 35, 45, 55, 65, 75, 85+). In order to calculate life-tables in a manner consistent with 2020, we summarise the pre 2020 US death counts into the 2020 age grouping and then apply the pclm ungrouping into single year ages, mirroring the approach to the 2020 data

    Population

    source:

    for years 2000 to 2019: World Population Prospects 2019 single year-age population estimates 1950-2019

    for year 2020: World Population Prospects 2019 single year-age population projections 2020-2100

    mid-year population

    mid-year population translated into exposures:

    if a region reports annual deaths using the Gregorian calendar definition of a year (365 or 366 days long) set exposures equal to mid year population estimates

    if a region reports annual deaths using the iso-week-year definition of a year (364 or 371 days long), and if there is a leap-week in that year, set exposures equal to 371/364*mid_year_population to account for the longer reporting period. in years without leap-weeks set exposures equal to mid year population estimates. further multiply by fraction of observed weeks on all weeks in a year.

    COVID deaths

    source: COVerAGE-DB (https://osf.io/mpwjq/)

    the data base reports cumulative numbers of COVID deaths over days of a year, we extract the most up to date yearly total

    External life expectancy estimates

    source:

    World Population Prospects (https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/CSV_FILES/WPP2019_Life_Table_Medium.csv), estimates for the five year period 2015-2019

    Human Mortality Database (https://mortality.org/), single year and age tables

  9. M

    India Death Rate 1950-2025

    • macrotrends.net
    csv
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). India Death Rate 1950-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/ind/india/death-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - May 30, 2025
    Area covered
    India
    Description
    India death rate for 2025 is 7.53, a 0.76% increase from 2024.
    <ul style='margin-top:20px;'>
    
    <li>India death rate for 2024 was <strong>7.47</strong>, a <strong>0.77% increase</strong> from 2023.</li>
    <li>India death rate for 2023 was <strong>7.42</strong>, a <strong>0.49% increase</strong> from 2022.</li>
    <li>India death rate for 2022 was <strong>7.38</strong>, a <strong>0.49% increase</strong> from 2021.</li>
    </ul>Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.
    
  10. Israel Vital Statistics: per 1000 Live Births: Infant Death Rate

    • ceicdata.com
    • dr.ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Israel Vital Statistics: per 1000 Live Births: Infant Death Rate [Dataset]. https://www.ceicdata.com/en/israel/vital-statistics/vital-statistics-per-1000-live-births-infant-death-rate
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Israel
    Variables measured
    Vital Statistics
    Description

    Israel Vital Statistics: per 1000 Live Births: Infant Death Rate data was reported at 3.062 ‰ in 2017. This records a decrease from the previous number of 3.142 ‰ for 2016. Israel Vital Statistics: per 1000 Live Births: Infant Death Rate data is updated yearly, averaging 5.800 ‰ from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 15.700 ‰ in 1981 and a record low of 3.062 ‰ in 2017. Israel Vital Statistics: per 1000 Live Births: Infant Death Rate data remains active status in CEIC and is reported by Central Bureau of Statistics. The data is categorized under Global Database’s Israel – Table IL.G002: Vital Statistics.

  11. H

    A negative history of epidemiologic and demographic factors was associated...

    • dataverse.harvard.edu
    Updated Apr 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mourad Errasfa (2022). A negative history of epidemiologic and demographic factors was associated with high numbers of Covid-19 [Dataset]. http://doi.org/10.7910/DVN/XWOREU
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 28, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Mourad Errasfa
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Background : Substantial differences between countries were observed in terms of Covid-19 death tolls during the past two years. It was of interest to find out how the epidemiologic and/or demographic history of the population may have had a role in the high prevalence of the Covid-19 in some countries. Objective : This observational study aimed to investigate possible relations between Covid-19 death numbers in 39 countries and the prepandemic history of epidemiologic and demographic conditions. Methods : We sought the Covid-19 death toll in 39 countries in Europe, America, Africa, and Asia. Records (2019) of epidemiologic (Cancer, Alzheimer's disease) and demographic (natality, mortality, and fetility rates, percentage of people aged 65 and over) parameters as well as data on alcohol intake per capita were retrieved from official web pages. Data was analysed by simple linear or polynomial regression by the mean of Microsoft Excell software (2016). Results : When Covid-19 death numbers were plotted against the geographic latitude of each country, a bell-shaped curve was obtained for both the first and second years (coefficient of determination R2=0.38) of the pandemic. In a similar manner, bell-shaped curves were obtained when latitudes were plotted against the scores of (cancer plus Alzheimer's disease, R² = 0,65,), the percentage of advanced age (R² = 0,52,) and the alcohol intake level (R² = 0,64,). Covid-19 death numbers were positively correlated to the scores of (cancer plus Alzheimer's disease) (R2= 0.41, P= 1.61x10-5), advanced age (R2= 0.38, P= 4.09x10-5) and alcohol intake (R2= 0.48, P= 1.55x10-6). Instead, inverted bell-shaped curves were obtained when latitudes were plotted against the birth rate/mortality rate ratio (R² = 0,51) and the fetility rate (R² = 0,33). In addition, Covid-19 deaths were negatively correlated with the birth rate/mortality rate ratio (R2= 0.67) and fertility rate (R2= 0.50). Conclusion : The results show that the 39 countries in both hemisphers in this study have different patterns of epidemiologic and demographic factors, and that the negative history of epidemiologic and demographic factors of the northern hemisphere countries, as well as their high alcohol intake, were very correlated with their Covid-19 death tolls. Hence, also nutritional habits may have had a role in the general health status of people in regard to their immunity against the coronavirus.

  12. w

    Correlation of death rate and life expectancy at birth by country in...

    • workwithdata.com
    Updated May 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Correlation of death rate and life expectancy at birth by country in Northern Africa [Dataset]. https://www.workwithdata.com/charts/countries?chart=scatter&f=1&fcol0=region&fop0=%3D&fval0=Northern+Africa&x=life_expectancy&y=death_rate
    Explore at:
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Africa, Africa
    Description

    This scatter chart displays death rate (per 1,000 people) against life expectancy at birth (year) in Northern Africa. The data is about countries.

  13. e

    COVID-19 Trends in Each Country

    • coronavirus-resources.esri.com
    • hub.arcgis.com
    • +2more
    Updated Mar 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-resources.esri.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset authored and provided by
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  14. G

    Infant mortality by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated May 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2020). Infant mortality by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/infant_mortality/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset updated
    May 7, 2020
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2022
    Area covered
    World, World
    Description

    The average for 2021 based on 187 countries was 20 deaths per 1000 live births. The highest value was in Sierra Leone: 78 deaths per 1000 live births and the lowest value was in San Marino: 1 deaths per 1000 live births. The indicator is available from 1960 to 2022. Below is a chart for all countries where data are available.

  15. f

    Modeling Age-Specific Mortality for Countries with Generalized HIV Epidemics...

    • plos.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David J. Sharrow; Samuel J. Clark; Adrian E. Raftery (2023). Modeling Age-Specific Mortality for Countries with Generalized HIV Epidemics [Dataset]. http://doi.org/10.1371/journal.pone.0096447
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    David J. Sharrow; Samuel J. Clark; Adrian E. Raftery
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundIn a given population the age pattern of mortality is an important determinant of total number of deaths, age structure, and through effects on age structure, the number of births and thereby growth. Good mortality models exist for most populations except those experiencing generalized HIV epidemics and some developing country populations. The large number of deaths concentrated at very young and adult ages in HIV-affected populations produce a unique ‘humped’ age pattern of mortality that is not reproduced by any existing mortality models. Both burden of disease reporting and population projection methods require age-specific mortality rates to estimate numbers of deaths and produce plausible age structures. For countries with generalized HIV epidemics these estimates should take into account the future trajectory of HIV prevalence and its effects on age-specific mortality. In this paper we present a parsimonious model of age-specific mortality for countries with generalized HIV/AIDS epidemics.Methods and FindingsThe model represents a vector of age-specific mortality rates as the weighted sum of three independent age-varying components. We derive the age-varying components from a Singular Value Decomposition of the matrix of age-specific mortality rate schedules. The weights are modeled as a function of HIV prevalence and one of three possible sets of inputs: life expectancy at birth, a measure of child mortality, or child mortality with a measure of adult mortality. We calibrate the model with 320 five-year life tables for each sex from the World Population Prospects 2010 revision that come from the 40 countries of the world that have and are experiencing a generalized HIV epidemic. Cross validation shows that the model is able to outperform several existing model life table systems.ConclusionsWe present a flexible, parsimonious model of age-specific mortality for countries with generalized HIV epidemics. Combined with the outputs of existing epidemiological and demographic models, this model makes it possible to project future age-specific mortality profiles and number of deaths for countries with generalized HIV epidemics.

  16. C

    Cambodia KH: Lifetime Risk of Maternal Death: 1 in: Rate Varies by Country

    • ceicdata.com
    Updated Feb 27, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Cambodia KH: Lifetime Risk of Maternal Death: 1 in: Rate Varies by Country [Dataset]. https://www.ceicdata.com/en/cambodia/social-health-statistics/kh-lifetime-risk-of-maternal-death-1-in-rate-varies-by-country
    Explore at:
    Dataset updated
    Feb 27, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2020
    Area covered
    Cambodia
    Description

    Cambodia KH: Lifetime Risk of Maternal Death: 1 in: Rate Varies by Country data was reported at 295.000 NA in 2023. This records an increase from the previous number of 249.000 NA for 2022. Cambodia KH: Lifetime Risk of Maternal Death: 1 in: Rate Varies by Country data is updated yearly, averaging 94.000 NA from Dec 1985 (Median) to 2023, with 39 observations. The data reached an all-time high of 295.000 NA in 2023 and a record low of 20.000 NA in 1985. Cambodia KH: Lifetime Risk of Maternal Death: 1 in: Rate Varies by Country data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Cambodia – Table KH.World Bank.WDI: Social: Health Statistics. Life time risk of maternal death is the probability that a 15-year-old female will die eventually from a maternal cause assuming that current levels of fertility and mortality (including maternal mortality) do not change in the future, taking into account competing causes of death.;WHO, UNICEF, UNFPA, World Bank Group, and UNDESA/Population Division. Trends in maternal mortality estimates 2000 to 2023. Geneva, World Health Organization, 2025;Weighted average;

  17. f

    Age distribution, trends, and forecasts of under-5 mortality in 31...

    • plos.figshare.com
    docx
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iván Mejía-Guevara; Wenyun Zuo; Eran Bendavid; Nan Li; Shripad Tuljapurkar (2023). Age distribution, trends, and forecasts of under-5 mortality in 31 sub-Saharan African countries: A modeling study [Dataset]. http://doi.org/10.1371/journal.pmed.1002757
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    PLOS Medicine
    Authors
    Iván Mejía-Guevara; Wenyun Zuo; Eran Bendavid; Nan Li; Shripad Tuljapurkar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Sub-Saharan Africa, Africa
    Description

    BackgroundDespite the sharp decline in global under-5 deaths since 1990, uneven progress has been achieved across and within countries. In sub-Saharan Africa (SSA), the Millennium Development Goals (MDGs) for child mortality were met only by a few countries. Valid concerns exist as to whether the region would meet new Sustainable Development Goals (SDGs) for under-5 mortality. We therefore examine further sources of variation by assessing age patterns, trends, and forecasts of mortality rates.Methods and findingsData came from 106 nationally representative Demographic and Health Surveys (DHSs) with full birth histories from 31 SSA countries from 1990 to 2017 (a total of 524 country-years of data). We assessed the distribution of age at death through the following new demographic analyses. First, we used a direct method and full birth histories to estimate under-5 mortality rates (U5MRs) on a monthly basis. Second, we smoothed raw estimates of death rates by age and time by using a two-dimensional P-Spline approach. Third, a variant of the Lee–Carter (LC) model, designed for populations with limited data, was used to fit and forecast age profiles of mortality. We used mortality estimates from the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME) to adjust, validate, and minimize the risk of bias in survival, truncation, and recall in mortality estimation. Our mortality model revealed substantive declines of death rates at every age in most countries but with notable differences in the age patterns over time. U5MRs declined from 3.3% (annual rate of reduction [ARR] 0.1%) in Lesotho to 76.4% (ARR 5.2%) in Malawi, and the pace of decline was faster on average (ARR 3.2%) than that observed for infant (IMRs) (ARR 2.7%) and neonatal (NMRs) (ARR 2.0%) mortality rates. We predict that 5 countries (Kenya, Rwanda, Senegal, Tanzania, and Uganda) are on track to achieve the under-5 sustainable development target by 2030 (25 deaths per 1,000 live births), but only Rwanda and Tanzania would meet both the neonatal (12 deaths per 1,000 live births) and under-5 targets simultaneously. Our predicted NMRs and U5MRs were in line with those estimated by the UN IGME by 2030 and 2050 (they overlapped in 27/31 countries for NMRs and 22 for U5MRs) and by the Institute for Health Metrics and Evaluation (IHME) by 2030 (26/31 and 23/31, respectively). This study has a number of limitations, including poor data quality issues that reflected bias in the report of births and deaths, preventing reliable estimates and predictions from a few countries.ConclusionsTo our knowledge, this study is the first to combine full birth histories and mortality estimates from external reliable sources to model age patterns of under-5 mortality across time in SSA. We demonstrate that countries with a rapid pace of mortality reduction (ARR ≥ 3.2%) across ages would be more likely to achieve the SDG mortality targets. However, the lower pace of neonatal mortality reduction would prevent most countries from achieving those targets: 2 countries would reach them by 2030, 13 between 2030 and 2050, and 13 after 2050.

  18. w

    Dataset of death rate and life expectancy at birth of countries per year in...

    • workwithdata.com
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of death rate and life expectancy at birth of countries per year in China (Historical) [Dataset]. https://www.workwithdata.com/datasets/countries-yearly?col=country%2Cdate%2Cdeath_rate%2Clife_expectancy&f=1&fcol0=country&fop0=%3D&fval0=China
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China
    Description

    This dataset is about countries per year in China. It has 64 rows. It features 4 columns: country, death rate, and life expectancy at birth.

  19. Z

    Global Country Information 2023

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Elgiriyewithana, Nidula
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    Country: Name of the country.

    Density (P/Km2): Population density measured in persons per square kilometer.

    Abbreviation: Abbreviation or code representing the country.

    Agricultural Land (%): Percentage of land area used for agricultural purposes.

    Land Area (Km2): Total land area of the country in square kilometers.

    Armed Forces Size: Size of the armed forces in the country.

    Birth Rate: Number of births per 1,000 population per year.

    Calling Code: International calling code for the country.

    Capital/Major City: Name of the capital or major city.

    CO2 Emissions: Carbon dioxide emissions in tons.

    CPI: Consumer Price Index, a measure of inflation and purchasing power.

    CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

    Currency_Code: Currency code used in the country.

    Fertility Rate: Average number of children born to a woman during her lifetime.

    Forested Area (%): Percentage of land area covered by forests.

    Gasoline_Price: Price of gasoline per liter in local currency.

    GDP: Gross Domestic Product, the total value of goods and services produced in the country.

    Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

    Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

    Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

    Largest City: Name of the country's largest city.

    Life Expectancy: Average number of years a newborn is expected to live.

    Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

    Minimum Wage: Minimum wage level in local currency.

    Official Language: Official language(s) spoken in the country.

    Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

    Physicians per Thousand: Number of physicians per thousand people.

    Population: Total population of the country.

    Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

    Tax Revenue (%): Tax revenue as a percentage of GDP.

    Total Tax Rate: Overall tax burden as a percentage of commercial profits.

    Unemployment Rate: Percentage of the labor force that is unemployed.

    Urban Population: Percentage of the population living in urban areas.

    Latitude: Latitude coordinate of the country's location.

    Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    Analyze population density and land area to study spatial distribution patterns.

    Investigate the relationship between agricultural land and food security.

    Examine carbon dioxide emissions and their impact on climate change.

    Explore correlations between economic indicators such as GDP and various socio-economic factors.

    Investigate educational enrollment rates and their implications for human capital development.

    Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

    Study labor market dynamics through indicators such as labor force participation and unemployment rates.

    Investigate the role of taxation and its impact on economic development.

    Explore urbanization trends and their social and environmental consequences.

  20. Crude death rate SEA 2024, by country

    • statista.com
    • ai-chatbox.pro
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Crude death rate SEA 2024, by country [Dataset]. https://www.statista.com/statistics/615579/crude-death-rate-in-southeast-asia-2016-by-country/
    Explore at:
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Asia
    Description

    In 2024, Myanmar had the highest crude death rate among the Southeast Asian countries, with 8.9 deaths per thousand population. That year, Singapore had the lowest crude death rate, with 5.4 deaths per thousand population.Factors that influence the death rateThe death rate, also called mortality rate, is generally influenced by various factors such as the social environment, diseases, health facilities and services as well as the food supply of the respective countries. Myanmar’s government spent five percent of its public budget on health in 2016. In 2020, health expenditure per capita in Myanmar amounted to around 72 U.S. dollars. The Maldives had the lowest crude death rate in the Asia-Pacific region in 2024. There, health expenditure accounted for 13.73 percent of the country’s GDP. Furthermore, the share of undernourished people was at around three percent in Myanmar in 2020. Within Southeast Asia, Myanmar has also been one of the poorest countries. In 2020, the country’s GDP per capita was estimated at 1.15 thousand U.S. dollars, the lowest across the Asia-Pacific region.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). WWII: share of total population lost per country 1939-1945 [Dataset]. https://www.statista.com/statistics/1351638/second-world-war-share-total-population-loss/
Organization logo

WWII: share of total population lost per country 1939-1945

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 9, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

It is estimated that the Second World War was responsible for the deaths of approximately 3.76 percent of the world's population between 1939 and 1945. In 2022, where the world's population reached eight billion, this would be equal to the death of around 300 million people.

The region that experienced the largest loss of life relative to its population was the South Seas Mandate - these were former-German territories given to the Empire of Japan through the Treaty of Versailles following WWI, and they make up much of the present-day countries of the Marshall Islands, Micronesia, the Northern Mariana Islands (U.S. territory), and Palau. Due to the location and strategic importance of these islands, they were used by the Japanese as launching pads for their attacks on Pearl Harbor and in the South Pacific, while they were also taken as part of the Allies' island-hopping strategy in their counteroffensive against Japan. This came at a heavy cost for the local populations, a large share of whom were Japanese settlers who had moved there in the 1920s and 1930s. Exact figures for both pre-war populations and wartime losses fluctuate by source, however civilian losses in these islands were extremely high as the Japanese defenses resorted to more extreme measures in the war's final phase.

Search
Clear search
Close search
Google apps
Main menu