Facebook
TwitterIn 2023, there were approximately 750.5 deaths by all causes per 100,000 inhabitants in the United States. This statistic shows the death rate for all causes in the United States between 1950 and 2023. Causes of death in the U.S. Over the past decades, chronic conditions and non-communicable diseases have come to the forefront of health concerns and have contributed to major causes of death all over the globe. In 2022, the leading cause of death in the U.S. was heart disease, followed by cancer. However, the death rates for both heart disease and cancer have decreased in the U.S. over the past two decades. On the other hand, the number of deaths due to Alzheimer’s disease – which is strongly linked to cardiovascular disease- has increased by almost 141 percent between 2000 and 2021. Risk and lifestyle factors Lifestyle factors play a major role in cardiovascular health and the development of various diseases and conditions. Modifiable lifestyle factors that are known to reduce risk of both cancer and cardiovascular disease among people of all ages include smoking cessation, maintaining a healthy diet, and exercising regularly. An estimated two million new cases of cancer in the U.S. are expected in 2025.
Facebook
TwitterThis dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Facebook
TwitterThe leading causes of death in the United States are heart disease and cancer. However, in 2022, COVID-19 was the fourth leading cause of death in the United States, accounting for around six percent of all deaths that year. In 2022, there were around 45 deaths from COVID-19 per 100,000 population.
Cardiovascular disease
Deaths from cardiovascular disease are more common among men than women but have decreased for both sexes over the past few decades. Coronary heart disease accounts for the highest portion of cardiovascular disease deaths in the United States, followed by stroke and high blood pressure. The states with the highest death rates from cardiovascular disease include Oklahoma, Mississippi, and Alabama. Smoking tobacco, physical inactivity, poor diet, stress, and being overweight or obese are all risk factors for developing heart disease.
Cancer
Although cancer is the second leading cause of death in the United States, like deaths from cardiovascular disease, deaths from cancer have decreased over the last few decades. The highest death rates from cancer come from lung cancer for both men and women. Breast cancer is the second deadliest cancer for women, while prostate cancer is the second deadliest cancer for men. West Virginia, Mississippi, and Kentucky lead the nation with the highest cancer death rates.
Facebook
TwitterThis statistic shows the percentage changes in selected causes of death due to diseases in the United States, between 2000 and 2022. The number of deaths caused by prostate cancer increased by 7.4 percent during this period. Changes in selected causes of deathThere has been a decrease in the rate of death caused by many diseases, including stroke and heart disease. However, the mortality rate due to Alzheimer’s disease increased by 142 percent from 2000 to 2022. Alzheimer’s disease caused 27.7 deaths per 100,000 population in 2023, making it the sixth leading cause of death in the United States. Mortality rates due to different diseases vary by different factors, including race and ethnicity. For example, cancer is the leading cause of death among Asians and Pacific Islanders in the United States, accounting for 22 percent of total deaths among this population, while heart disease is the leading cause of death among the white population. Ischemic heart disease is the leading cause of death worldwide, accounting for around nine million deaths in 2021. In the early 1900's, the mortality rate was primarily concentrated among people of younger ages, but increasingly, this has shifted to older population groups. In recent years, decreased mortality rates are often linked to improved medical care, such as new developments in medical technologies. Shifts in lifestyle habits such as decreased smoking rates and healthier diets may also attribute to lower mortality rates.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
These datasets record mortality rates across all ages in the USA by cause of death, sex, and rural/urban status, 2011–2013. The dataset represents the rates for each administrative region under the Department of Health and Human Services (HHS).
HHS Region 01 - Boston: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont
HHS Region 02 - New York: New Jersey, New York, Puerto Rico, and the Virgin Islands
HHS Region 03 - Philadelphia: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia
HHS Region 04 - Atlanta: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee
HHS Region 05 - Chicago: Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin
HHS Region 06 - Dallas: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas
HHS Region 07 - Kansas City: Iowa, Kansas, Missouri, and Nebraska
HHS Region 08 - Denver: Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming
HHS Region 09 - San Francisco: Arizona, California, Hawaii, Nevada, American Samoa, Commonwealth of the Northern Mariana Islands, Federated States of Micronesia, Guam, Marshall Islands, and Republic of Palau
HHS Region 10 - Seattle: Alaska, Idaho, Oregon, and Washington
Facebook
TwitterThe leading causes of death in Massachusetts are cancer, heart disease, unintentional injury, stroke, and chronic lower respiratory disease. These mortality rates tend to be higher for people of color; and Black residents have a higher premature mortality rate overall and Asian residents have a higher rate of mortality due to stroke.
Facebook
TwitterThis dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Facebook
TwitterThe Detailed Mortality - Underlying Cause of Death data on CDC WONDER are county-level national mortality and population data spanning the years 1999-2009. Data are based on death certificates for U.S. residents. Each death certificate contains a single underlying cause of death, and demographic data. The number of deaths, crude death rates, age-adjusted death rates, standard errors and 95% confidence intervals for death rates can be obtained by place of residence (total U.S., region, state, and county), age group (including infants and single-year-of-age cohorts), race (4 groups), Hispanic ethnicity, sex, year of death, and cause-of-death (4-digit ICD-10 code or group of codes, injury intent and mechanism categories, or drug and alcohol related causes), year, month and week day of death, place of death and whether an autopsy was performed. The data are produced by the National Center for Health Statistics.
Facebook
TwitterNumber of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.
Facebook
TwitterBy Oklahoma [source]
This dataset contains an overview of historical heart disease death rates in Oklahoma from 2000 to 2018. The dataset consists of yearly figures and target figures for the numbers of deaths due to heart diseases, allowing a comparison between the expected rate and the actual rate over time. This data is important as it can be used to analyze trends in heart disease death rates, helping inform public health initiatives and policy decisions
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset includes the number of death due to heart disease in Oklahoma. It provides a single, comprehensive data set that captures detailed information on the historical prevalence of heart disease death rates in the state. This dataset can be used for various research or analytical purposes such as epidemiological studies or health services planning.
To use this dataset, one must first understand that it contains three main pieces: the year of reported deaths, the actual number of deaths related to heart disease during each year and a target total for expected deaths from heart disease per year, which are used as reference points when analyzing other years. The years column includes all relevant dates while historical data column provides more specifics such as exact numbers and percentages related to those who perished due to heart-related conditions.
By utilizing this data set users can easily find out how many persons died due to cardiac-related diseases along with what risks were most prevalent at certain times over that period by comparing provided figures with reference targets at any given time slice in question (time point). Additionally, one can observe trends carefully within different groups such as males versus females or rural versus urban locations thus allowing them more robust insight into factors associated with mortality from cardiac conditions across different demographics
- Identifying which geographic areas in Oklahoma are at highest risk for heart disease and creating targeted public health initiatives to reduce its incidence.
- Determining correlations between changes in vital health indicators (e.g., increase of physical activity) with changes in heart disease death rates to better inform policy and research direction.
- Analyzing overall mortality rates compared to other counties or states with comparable demographics to assess the effectiveness of existing public health interventions over time
If you use this dataset in your research, please credit the original authors. Data Source
Unknown License - Please check the dataset description for more information.
File: res_heart_disease_deaths_kdjx-hayj.csv | Column name | Description | |:--------------------|:-----------------------------------------------------------------------------------------------------------------------------------------| | Years | The year associated with the data. (Integer) | | Historical Data | The number of deaths due to heart disease in Oklahoma in that particular year from 2000-2018. (Integer) | | Target | A value generated based on Historical Data indicating what should be targeted as a baseline performance measure going forward. (Integer) |
File: res_heart_disease_deaths_-_column_chart_3a28-gndr.csv | Column name | Description | |:--------------------|:-----------------------------------------------------------------------------------------------------------------------------------------| | Years | The year associated with the data. (Integer) | | Historical Data | The number of deaths due to heart disease in Oklahoma in that particular year from 2000-2018. (Integer) | | Target | A value generated based on Historical Data indicating what should be targeted as a baseline performance measure going forward. (Integer) |
...
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Legacy unique identifier: P00476
Facebook
TwitterBy Health [source]
This dataset contains mortality statistics for 122 U.S. cities in 2016, providing detailed information about all deaths that occurred due to any cause, including pneumonia and influenza. The data is voluntarily reported from cities with populations of 100,000 or more, and it includes the place of death and the week during which the death certificate was filed. Data is provided broken down by age group and includes a flag indicating the reliability of each data set to help inform analysis. Each row also provides longitude and latitude information for each reporting area in order to make further analysis easier. These comprehensive mortality statistics are invaluable resources for tracking disease trends as well as making comparisons between different areas across the country in order to identify public health risks quickly and effectively
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains mortality rates for 122 U.S. cities in 2016, including deaths by age group and cause of death. The data can be used to study various trends in mortality and contribute to the understanding of how different diseases impact different age groups across the country.
In order to use the data, firstly one has to identify which variables they would like to use from this dataset. These include: reporting area; MMWR week; All causes by age greater than 65 years; All causes by age 45-64 years; All causes by age 25-44 years; All causes by age 1-24 years; All causes less than 1 year old; Pneumonia and Influenza total fatalities; Location (1 & 2); flag indicating reliability of data.
Once you have identified the variables that you are interested in,you will need to filter the dataset so that it only includes relevant information for your analysis or research purposes. For example, if you are looking at trends between different ages, then all you would need is information on those 3 specific cause groups (greater than 65, 45-64 and 25-44). You can do this using a selection tool that allows you to pick only certain columns from your data set or an excel filter tool if your data is stored as a csv file type .
Next step is preparing your data - it’s important for efficient analysis also helpful when there are too many variables/columns which can confuse our analysis process – eliminate unnecessary columns, rename column labels where needed etc ... In addition , make sure we clean up any missing values / outliers / incorrect entries before further investigation .Remember , outliers or corrupt entries may lead us into incorrect conclusions upon analyzing our set ! Once we complete the cleaning steps , now its safe enough transit into drawing insights !
The last step involves using statistical methods such as linear regression with multiple predictors or descriptive statistical measures such as mean/median etc ..to draw key insights based on analysis done so far and generate some actionable points !
With these steps taken care off , now its easier for anyone who decides dive into another project involving this particular dataset with added advantage formulated out of existing work done over our previous investigations!
- Creating population health profiles for cities in the U.S.
- Tracking public health trends across different age groups
- Analyzing correlations between mortality and geographical locations
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: rows.csv | Column name | Description | |:--------------------------------------------|:-----------------------------------...
Facebook
TwitterRank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Facebook
TwitterDQS Death rates for heart disease, by sex, race, Hispanic origin, and age: United States from CDC WONDER
Description
Data on death rates for diseases of heart in the United States, by age, sex, race, and Hispanic origin. Data are from Health, United States. SOURCE: National Center for Health Statistics, National Vital Statistics System, Mortality File. Search, visualize, and download these and other estimates from over 120 health topics with the NCHS Data Query System… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/dqs-death-rates-for-heart-disease-by-sex-race-hisp.
Facebook
TwitterAs of 2023, the countries with the highest death rates worldwide were Monaco, Bulgaria, and Latvia. In these countries, there were ** to ** deaths per 1,000 people. The country with the lowest death rate is Qatar, where there is just *** death per 1,000 people. Leading causes of death The leading causes of death worldwide are, by far, cardiovascular diseases, accounting for ** percent of all deaths in 2021. That year, there were **** million deaths worldwide from ischaemic heart disease and **** million from stroke. Interestingly, a worldwide survey from that year found that people greatly underestimate the proportion of deaths caused by cardiovascular disease, but overestimate the proportion of deaths caused by suicide, interpersonal violence, and substance use disorders. Death in the United States In 2023, there were around **** million deaths in the United States. The leading causes of death in the United States are currently heart disease and cancer, accounting for a combined ** percent of all deaths in 2023. Lung and bronchus cancer is the deadliest form of cancer worldwide, as well as in the United States. In the U.S. this form of cancer is predicted to cause around ****** deaths among men alone in the year 2025. Prostate cancer is the second-deadliest cancer for men in the U.S. while breast cancer is the second deadliest for women. In 2023, the tenth leading cause of death in the United States was COVID-19. Deaths due to COVID-19 resulted in a significant rise in the total number of deaths in the U.S. in 2020 and 2021 compared to 2019, and it was the third leading cause of death in the U.S. during those years.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset of U.S. mortality trends since 1900 highlights childhood mortality rates by age group for age at death.
Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).
Age groups for childhood death rates are based on age at death.
SOURCES
CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.
National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf.
Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf.
National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Facebook
TwitterThe age-specific mortality rate of other and unspecified infectious and parasitic diseases and their sequelae at all ages in Canada stood at *** in 2023. Between 2000 and 2023, the age-specific mortality rate rose by ***, though the increase followed an uneven trajectory rather than a consistent upward trend.
Facebook
TwitterThe indicator measures the standardised death rate of chronic diseases. Chronic diseases included in the indicator are malignant neoplasms, diabetes mellitus, ischaemic heart diseases, cerebrovascular diseases, chronic lower respiratory diseases and chronic liver diseases (International Classification of Diseases (ICD) codes C00 to C97, E10 to E14, I20 to I25, I60 to I69 and J40 to J47). Death due to chronic diseases is considered premature if it occurs before the age of 65. The rate is calculated by dividing the number of people under 65 dying due to a chronic disease by the total population under 65. Data on causes of death (COD) refer to the underlying cause which - according to the World Health Organisation (WHO) - is "the disease or injury which initiated the train of morbid events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury". COD data are derived from death certificates. The medical certification of death is an obligation in all Member States. The data are presented as standardised death rates, meaning they are adjusted to a standard age distribution in order to measure death rates independently of different age structures of populations. This approach improves comparability over time and between countries. The standardised death rates used here are calculated on the basis of the standard European population referring to the residents of the countries.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Mortality from infectious and parasitic disease (ICD-10 A00-B99 equivalent to ICD-9 001-139). To reduce deaths from infectious and parasitic disease. Legacy unique identifier: P00476
Facebook
TwitterAlzheimer's Disease death rates by county, all races (includes Hispanic/Latino), all sexes, all ages, 2019-2023. Death data were provided by the National Vital Statistics System. Death rates (deaths per 100,000 population per year) are age-adjusted to the 2000 US standard population (20 age groups: <1, 1-4, 5-9, ... , 80-84, 85-89, 90+). Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by the National Cancer Institute. The US Population Data File is used for mortality data. The Average Annual Percent Change is based onthe APCs calculated by the Joinpoint Regression Program (Version 4.9.0.0). Due to data availability issues, the time period used in the calculation of the joinpoint regression model may differ for selected counties. Counties with a (3) after their name may have their joinpoint regresssion model calculated using a different time period due to data availability issues.
Facebook
TwitterIn 2023, there were approximately 750.5 deaths by all causes per 100,000 inhabitants in the United States. This statistic shows the death rate for all causes in the United States between 1950 and 2023. Causes of death in the U.S. Over the past decades, chronic conditions and non-communicable diseases have come to the forefront of health concerns and have contributed to major causes of death all over the globe. In 2022, the leading cause of death in the U.S. was heart disease, followed by cancer. However, the death rates for both heart disease and cancer have decreased in the U.S. over the past two decades. On the other hand, the number of deaths due to Alzheimer’s disease – which is strongly linked to cardiovascular disease- has increased by almost 141 percent between 2000 and 2021. Risk and lifestyle factors Lifestyle factors play a major role in cardiovascular health and the development of various diseases and conditions. Modifiable lifestyle factors that are known to reduce risk of both cancer and cardiovascular disease among people of all ages include smoking cessation, maintaining a healthy diet, and exercising regularly. An estimated two million new cases of cancer in the U.S. are expected in 2025.