100+ datasets found
  1. NCHS - Age-adjusted Death Rates for Selected Major Causes of Death

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Age-adjusted Death Rates for Selected Major Causes of Death [Dataset]. https://catalog.data.gov/dataset/nchs-age-adjusted-death-rates-for-selected-major-causes-of-death
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  2. COVID-19 death rates in 2020 countries worldwide as of April 26, 2022

    • statista.com
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 death rates in 2020 countries worldwide as of April 26, 2022 [Dataset]. https://www.statista.com/statistics/1105914/coronavirus-death-rates-worldwide/
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

    A word on the flaws of numbers like this

    People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.

  3. s

    Death Rate Calculation - Datasets - Falkland Islands Data Portal

    • dataportal.saeri.org
    Updated May 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Death Rate Calculation - Datasets - Falkland Islands Data Portal [Dataset]. https://dataportal.saeri.org/dataset/death-rate-calculation
    Explore at:
    Dataset updated
    May 29, 2024
    Area covered
    Falkland Islands (Islas Malvinas)
    Description

    Contains equation used to calculate death rates for farms. Data held within the Department of Agriculture

  4. O

    Premature Death Rate Data

    • opendata.ramseycounty.us
    application/rdfxml +5
    Updated May 22, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Premature Death Rate Data [Dataset]. https://opendata.ramseycounty.us/Public-Health/Premature-Death-Rate-Data/c8gi-nvxs
    Explore at:
    json, csv, tsv, xml, application/rdfxml, application/rssxmlAvailable download formats
    Dataset updated
    May 22, 2019
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Premature death rate measures mortality by counting deaths at earlier ages more than deaths at later ages. For example, when a person dies at 20, this death contributes 55 years of potential life lost. In contrast, when a person dies at age 70, this death contributes only five years of potential life lost to a county. For our purposes, premature deaths occur before age 75. Counties with older populations are more likely to have higher crude premature death rates than counties with younger populations. Therefore, when age-adjusted, we remove the effect of differently aged populations as a risk factor for premature death. This allows us to make a fair comparison of premature death rates across counties.

  5. Countries with lowest death rates 2023

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with lowest death rates 2023 [Dataset]. https://www.statista.com/statistics/562759/ranking-of-20-countries-with-lowest-death-rates/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    In 2023, with just *** death per one thousand people, Qatar and the United Arab Emirates were the countries with the lowest death rates worldwide. This statistic shows a ranking of the 20 countries with the lowest death rates worldwide, as of 2023. Health in high-income countries Countries with the highest life expectancies are also often high-income countries with well-developed economic, social and health care systems, providing adequate resources and access to treatment for health concerns. Health care expenditure as a share of GDP varies per country; for example, spending in the United States is higher than in other OECD countries due to higher costs and prices for care services and products. In developed countries, the main burden of disease is often due to non-communicable diseases occurring in old age, such as cardiovascular diseases and cancer. High burden in low-income countries The countries with the lowest life expectancy worldwide are all in Africa- including Nigeria, Chad, and Lesotho- with life expectancies reaching up to 20 years shorter than the average global life expectancy. Leading causes of death in low-income countries include respiratory infections and diarrheal diseases, as these countries are often hit with the double burden of infectious diseases plus non-communicable diseases, such as those related to cardiovascular pathologies. Additionally, these countries often lack the resources and infrastructure to sustain effective healthcare systems and fail to provide appropriate access and treatment for their populations.

  6. NCHS - Death rates and life expectancy at birth

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Death rates and life expectancy at birth [Dataset]. https://catalog.data.gov/dataset/nchs-death-rates-and-life-expectancy-at-birth
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  7. Countries with the highest infant mortality rate 2024

    • statista.com
    Updated Apr 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest infant mortality rate 2024 [Dataset]. https://www.statista.com/statistics/264714/countries-with-the-highest-infant-mortality-rate/
    Explore at:
    Dataset updated
    Apr 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    This statistic shows the 20 countries* with the highest infant mortality rate in 2024. An estimated 101.3 infants per 1,000 live births died in the first year of life in Afghanistan in 2024. Infant and child mortality Infant mortality usually refers to the death of children younger than one year. Child mortality, which is often used synonymously with infant mortality, is the death of children younger than five. Among the main causes are pneumonia, diarrhea – which causes dehydration – and infections in newborns, with malnutrition also posing a severe problem. As can be seen above, most countries with a high infant mortality rate are developing countries or emerging countries, most of which are located in Africa. Good health care and hygiene are crucial in reducing child mortality; among the countries with the lowest infant mortality rate are exclusively developed countries, whose inhabitants usually have access to clean water and comprehensive health care. Access to vaccinations, antibiotics and a balanced nutrition also help reducing child mortality in these regions. In some countries, infants are killed if they turn out to be of a certain gender. India, for example, is known as a country where a lot of girls are aborted or killed right after birth, as they are considered to be too expensive for poorer families, who traditionally have to pay a costly dowry on the girl’s wedding day. Interestingly, the global mortality rate among boys is higher than that for girls, which could be due to the fact that more male infants are actually born than female ones. Other theories include a stronger immune system in girls, or more premature births among boys.

  8. c

    Standardised death rate due to homicide by sex

    • opendata.marche.camcom.it
    json
    Updated Mar 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESTAT (2025). Standardised death rate due to homicide by sex [Dataset]. https://opendata.marche.camcom.it/json-browser.htm?dse=sdg_16_10?lastTimePeriod=1
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    ESTAT
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2022
    Area covered
    Variables measured
    Rate
    Description

    The indicator measures the standardised death rate of homicide and injuries inflicted by another person with the intent to injure or kill by any means, including ‘late effects’ from assault (International Classification of Diseases (ICD) codes X85 to Y09 and Y87.1). It does not include deaths due to legal interventions or war (ICD codes Y35 and Y36). Data on causes of death (COD) refer to the underlying cause which - according to the World Health Organisation (WHO) - is "the disease or injury which initiated the train of morbid events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury". COD data are derived from death certificates. The medical certification of death is an obligation in all Member States. The data are presented as standardised death rates, meaning they are adjusted to a standard age distribution in order to measure death rates independently of different age structures of populations. This approach improves comparability over time and between countries. The standardised death rates used here are calculated on the basis of the standard European population referring to the residents of the countries.

    Copyright notice and free re-use of data on: https://ec.europa.eu/eurostat/about-us/policies/copyright

  9. Z

    Russian Short-Term Mortality Fluctuations database

    • data.niaid.nih.gov
    • zenodo.org
    Updated Dec 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jdanov, Dmitri (2023). Russian Short-Term Mortality Fluctuations database [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10280663
    Explore at:
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    Rodina, Olga
    Shchur, Aleksey
    Timonin, Sergei
    Sergeev, Egor
    Churilova, Elena
    Jdanov, Dmitri
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    1. Database contents The Russian Short-Term Mortality Fluctuations database (RusSTMF) contains a series of standardized and crude death rates for men, women and both sexes for Russia as a whole and its regions for the period from 2000 to 2021. All the output indicators presented in the database are calculated based on data of deaths registered by the Vital Registry Office. The weekly death counts are calculated based on depersonalized individual data provided by the Russian Federal State Statistics Service (Rosstat) at the request of the HSE. Time coverage: 03.01.2000 (Week 1) – 31.12.2021 (Week 1148)
    2. A brief description of the input data on deaths Date of death: date of occurrence Unit of time: week First and last days of the week: Monday – Sunday First and last week of the year: The weeks are organized according to ISO 8601:2004 guidelines. Each week of the year, including the first and last, contains 7 days. In order to get 7-day weeks, the days of previous years are included in this first week (if January 1 fell on Tuesday, Wednesday or Thursday) or in the last calendar week (if December 31 fell on Thursday, Friday or Saturday). Age groups: the entire population Sex: men, women, both sexes (men and women combined) Restrictions and data changes: data on deaths in the Pskov region were excluded for weeks 9-13 of 2012 Note: Deaths with an unknown date of occurrence (unknown year, month, or day) account for about 0.3% of all deaths and are excluded from the calculation of week-age-specific and standardized death rates.
    3. Description of the week-specific mortality rates data file Week-specific standardized death rates for Russia as a whole and its regions are contained in a single data file presented in .csv format. The format of data allows its uploading into any system for statistical analysis. Each record (row) in the data file contains data for one calendar year, one week, one territory, one sex. The decimal point is dot (.) The first element of the row is the territory code ("PopCode" column), the second element is the year ("Year" column), the third element ("Week" column) is the week of the year, the fourth element ("Sex" column) is sex (F – female, M – male, B – both sexes combined). This is followed by a column "CDR" with the value of the crude death rate and "SDR" with the value of the standardized death rate. If the indicator cannot be calculated for some combination of year, sex, and territory, then the corresponding meaningful data elements in the data file are replaced with ".".
  10. T

    Vital Signs: Life Expectancy – Bay Area

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Apr 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-Bay-Area/emjt-svg9
    Explore at:
    xml, csv, tsv, application/rssxml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 7, 2017
    Dataset authored and provided by
    State of California, Department of Health: Death Records
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.

    Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  11. d

    Infant Mortality

    • catalog.data.gov
    • data.cityofnewyork.us
    • +3more
    Updated Nov 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Infant Mortality [Dataset]. https://catalog.data.gov/dataset/infant-mortality
    Explore at:
    Dataset updated
    Nov 15, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Infant Mortality Rate by Maternal Race/Ethnicity for New York City, 2007-2016 Counts of infant deaths (age <1 year) are based on NYC death certificates. The rate is calculated using the counts of infant deaths as the numerator and the count of live births from NYC birth certificates as the denominator.

  12. d

    SHMI primary diagnosis coding contextual indicators

    • digital.nhs.uk
    csv, pdf, xls, xlsx
    Updated Jun 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). SHMI primary diagnosis coding contextual indicators [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/shmi/2024-06
    Explore at:
    csv(8.7 kB), xls(85.5 kB), pdf(228.8 kB), pdf(231.3 kB), csv(9.0 kB), xlsx(76.7 kB)Available download formats
    Dataset updated
    Jun 13, 2024
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Feb 1, 2023 - Jan 31, 2024
    Area covered
    England
    Description

    These indicators are designed to accompany the SHMI publication. Information on the main condition the patient is in hospital for (the primary diagnosis) is used to calculate the expected number of deaths used in the calculation of the SHMI. A high percentage of records with an invalid primary diagnosis may indicate a data quality problem. A high percentage of records with a primary diagnosis which is a symptom or sign may indicate problems with data quality or timely diagnosis of patients, but may also reflect the case-mix of patients or the service model of the trust (e.g. a high level of admissions to acute admissions wards for assessment and stabilisation). Contextual indicators on the percentage of provider spells with an invalid primary diagnosis and the percentage of provider spells with a primary diagnosis which is a symptom or sign are produced to support the interpretation of the SHMI. Notes: 1. There is a shortfall in the number of records for East Lancashire Hospitals NHS Trust (trust code RXR), Guy’s and St Thomas’ NHS Foundation Trust (trust code RJ1), and King’s College Hospital NHS Foundation Trust (trust code RJZ). Values for these trusts are based on incomplete data and should therefore be interpreted with caution. 2. Frimley Health NHS Foundation Trust (trust code RDU) stopped submitting data to the Secondary Uses Service (SUS) during June 2022 and did not start submitting data again until April 2023 due to an issue with their patient records system. This is causing a large shortfall in records and values for this trust should be viewed in the context of this issue. 3. A number of trusts are now submitting Same Day Emergency Care (SDEC) data to the Emergency Care Data Set (ECDS) rather than the Admitted Patient Care (APC) dataset. The SHMI is calculated using APC data. Removal of SDEC activity from the APC data may impact a trust’s SHMI value and may increase it. More information about this is available in the Background Quality Report. 4. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of this page.

  13. N

    Age-standardised Death Rates Calculated Using the European Standard...

    • find.data.gov.scot
    • dtechtive.com
    xlsx, zip
    Updated Sep 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Records of Scotland (2023). Age-standardised Death Rates Calculated Using the European Standard Population [Dataset]. https://find.data.gov.scot/datasets/3623
    Explore at:
    zip(null MB), xlsx(null MB)Available download formats
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Records of Scotland
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Scotland
    Description

    There is no description available for this dataset.

  14. NCHS - Childhood Mortality Rates

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Childhood Mortality Rates [Dataset]. https://catalog.data.gov/dataset/nchs-childhood-mortality-rates
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights childhood mortality rates by age group for age at death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Age groups for childhood death rates are based on age at death. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  15. NCHS - Drug Poisoning Mortality by County: United States

    • data.virginia.gov
    • healthdata.gov
    • +2more
    csv, json, rdf, xsl
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Drug Poisoning Mortality by County: United States [Dataset]. https://data.virginia.gov/dataset/nchs-drug-poisoning-mortality-by-county-united-states2
    Explore at:
    json, csv, xsl, rdfAvailable download formats
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    This dataset describes drug poisoning deaths at the county level by selected demographic characteristics and includes age-adjusted death rates for drug poisoning from 1999 to 2015.

    Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent).

    Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published.

    Estimate does not meet standards of reliability or precision. Death rates are flagged as “Unreliable” in the chart when the rate is calculated with a numerator of 20 or less.

    Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Estimates should be interpreted with caution.

    Smoothed county age-adjusted death rates (deaths per 100,000 population) were obtained according to methods described elsewhere (3–5). Briefly, two-stage hierarchical models were used to generate empirical Bayes estimates of county age-adjusted death rates due to drug poisoning for each year during 1999–2015. These annual county-level estimates “borrow strength” across counties to generate stable estimates of death rates where data are sparse due to small population size (3,5). Estimates are unavailable for Broomfield County, Colo., and Denali County, Alaska, before 2003 (6,7). Additionally, Bedford City, Virginia was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. County boundaries are consistent with the vintage 2005-2007 bridged-race population file geographies (6).

  16. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Booster Dose [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm
    Explore at:
    xml, csv, application/rssxml, application/rdfxml, json, tsvAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138

  17. d

    Mortality rate for children under 5 years old

    • data.gov.tw
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health Promotion Administration, Mortality rate for children under 5 years old [Dataset]. https://data.gov.tw/en/datasets/152385
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    Health Promotion Administration
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description
    1. Data source: Calculated by the Department of Health using the National Simple Life Table issued by the Statistics Department of the Ministry of the Interior. 2. Definition: The probability of death from birth to less than 5 years of age.
  18. n

    National Longitudinal Mortality Study

    • neuinfo.org
    • rrid.site
    • +2more
    Updated Jul 2, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). National Longitudinal Mortality Study [Dataset]. http://identifiers.org/RRID:SCR_008946
    Explore at:
    Dataset updated
    Jul 2, 2011
    Description

    A database based on a random sample of the noninstitutionalized population of the United States, developed for the purpose of studying the effects of demographic and socio-economic characteristics on differentials in mortality rates. It consists of data from 26 U.S. Current Population Surveys (CPS) cohorts, annual Social and Economic Supplements, and the 1980 Census cohort, combined with death certificate information to identify mortality status and cause of death covering the time interval, 1979 to 1998. The Current Population Surveys are March Supplements selected from the time period from March 1973 to March 1998. The NLMS routinely links geographical and demographic information from Census Bureau surveys and censuses to the NLMS database, and other available sources upon request. The Census Bureau and CMS have approved the linkage protocol and data acquisition is currently underway. The plan for the NLMS is to link information on mortality to the NLMS every two years from 1998 through 2006 with research on the resulting database to continue, at least, through 2009. The NLMS will continue to incorporate data from the yearly Annual Social and Economic Supplement into the study as the data become available. Based on the expected size of the Annual Social and Economic Supplements to be conducted, the expected number of deaths to be added to the NLMS through the updating process will increase the mortality content of the study to nearly 500,000 cases out of a total number of approximately 3.3 million records. This effort would also include expanding the NLMS population base by incorporating new March Supplement Current Population Survey data into the study as they become available. Linkages to the SEER and CMS datasets are also available. Data Availability: Due to the confidential nature of the data used in the NLMS, the public use dataset consists of a reduced number of CPS cohorts with a fixed follow-up period of five years. NIA does not make the data available directly. Research access to the entire NLMS database can be obtained through the NIA program contact listed. Interested investigators should email the NIA contact and send in a one page prospectus of the proposed project. NIA will approve projects based on their relevance to NIA/BSR''s areas of emphasis. Approved projects are then assigned to NLMS statisticians at the Census Bureau who work directly with the researcher to interface with the database. A modified version of the public use data files is available also through the Census restricted Data Centers. However, since the database is quite complex, many investigators have found that the most efficient way to access it is through the Census programmers. * Dates of Study: 1973-2009 * Study Features: Longitudinal * Sample Size: ~3.3 Million Link: *ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/00134

  19. O

    Strategic Measure_Infant mortality rate (number of deaths of infants younger...

    • data.austintexas.gov
    • datahub.austintexas.gov
    • +1more
    application/rdfxml +5
    Updated Dec 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Austin, Texas - data.austintexas.gov (2022). Strategic Measure_Infant mortality rate (number of deaths of infants younger than 1-year-old per 1,000 live births) [Dataset]. https://data.austintexas.gov/Health-and-Community-Services/Strategic-Measure_Infant-mortality-rate-number-of-/qxch-wiie
    Explore at:
    csv, tsv, xml, application/rdfxml, application/rssxml, jsonAvailable download formats
    Dataset updated
    Dec 20, 2022
    Dataset authored and provided by
    City of Austin, Texas - data.austintexas.gov
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This dataset includes counts of infant births and deaths within Austin city limits by year. The counts are calculated into an infant mortality rate for each year. Both infant deaths and infant births are reported through the Office of Vital Records.

    View more details and insights related to this data set on the story page: https://data.austintexas.gov/stories/s/HE-B-3-Infant-mortality-rate-number-of-deaths-of-i/jwg4-2djc/

  20. T

    Tanzania TZ: Death Rate: Crude: per 1000 People

    • ceicdata.com
    Updated Sep 18, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Tanzania TZ: Death Rate: Crude: per 1000 People [Dataset]. https://www.ceicdata.com/en/tanzania/population-and-urbanization-statistics/tz-death-rate-crude-per-1000-people
    Explore at:
    Dataset updated
    Sep 18, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Tanzania
    Variables measured
    Population
    Description

    Tanzania TZ: Death Rate: Crude: per 1000 People data was reported at 6.737 Ratio in 2016. This records a decrease from the previous number of 7.015 Ratio for 2015. Tanzania TZ: Death Rate: Crude: per 1000 People data is updated yearly, averaging 15.029 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 20.502 Ratio in 1960 and a record low of 6.737 Ratio in 2016. Tanzania TZ: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Tanzania – Table TZ.World Bank: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2025). NCHS - Age-adjusted Death Rates for Selected Major Causes of Death [Dataset]. https://catalog.data.gov/dataset/nchs-age-adjusted-death-rates-for-selected-major-causes-of-death
Organization logo

NCHS - Age-adjusted Death Rates for Selected Major Causes of Death

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 23, 2025
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Description

This dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

Search
Clear search
Close search
Google apps
Main menu