In the period 2018 to 2022, a total of approximately 173 men per 100,000 inhabitants died of cancers of all kinds in the United States, compared to an overall cancer death rate of 126 per 100,000 population among women. This statistic shows cancer death rates in the U.S. for the period from 2018 to 2022, by type and gender.
Breast cancer was the cancer type with the highest rate of death among females worldwide in 2022. That year, there were around 13 deaths from breast cancer among females per 100,000 population. The death rate for all cancers among females was 76.4 per 100,000 population. This statistic displays the rate of cancer deaths among females worldwide in 2022, by type of cancer.
Lung cancer was the cancer type with the highest rate of death among males worldwide in 2022. In that year there were around 25 deaths from trachea, bronchus and lung cancer among males per 100,000 population. The death rate for all cancers among males was 109 per 100,000 population. This statistic shows the rate of cancer deaths among males worldwide in 2022, by type of cancer.
Lung cancer had the highest rate of death among all cancer types worldwide in 2022. In that year, there were around 17 deaths from trachea, bronchus and lung cancer per 100,000 population. The death rate for all cancers was 91.1 per 100,000 population. This statistic shows the rate of cancer deaths worldwide in 2022, by type of cancer.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Annual percent change and average annual percent change in age-standardized cancer mortality rates since 1984 to the most recent data year. The table includes a selection of commonly diagnosed invasive cancers and causes of death are defined based on the World Health Organization International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1999 and on its tenth revision (ICD-10) from 2000 to the most recent year.
Cancer was responsible for around 142 deaths per 100,000 population in the United States in 2022. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated 65,790 deaths among men alone in 2024. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as 99 percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around 81 percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. A recent poll indicated that many U.S. adults believed smoking cigarettes and using other tobacco products increased a person’s risk of developing cancer, but a much smaller percentage believed the same for proven risk factors such as obesity and drinking alcohol.
Cancer survival statistics are typically expressed as the proportion of patients alive at some point subsequent to the diagnosis of their cancer. Statistics compare the survival of patients diagnosed with cancer with the survival of people in the general population who are the same age, race, and sex and who have not been diagnosed with cancer.
The U.S. states are divided into groups based on the rates at which women developed or died from breast cancer in 2013, which is the most recent year for which incidence data are available.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Mortality from skin cancers other than malignant melanoma (ICD-10 C44 equivalent to ICD-9 173). To reduce deaths from skin cancers other than malignant melanoma. Legacy unique identifier: P00653
Lung cancer is the deadliest cancer worldwide, accounting for 1.82 million deaths in 2022. The second most deadly form of cancer is colorectum cancer, followed by liver cancer. However, lung cancer is only the sixth leading cause of death worldwide, with heart disease and stroke accounting for the highest share of deaths.
Male vs. female cases
Given that lung cancer causes the highest number of cancer deaths worldwide, it may be unsurprising to learn that lung cancer is the most common form of new cancer cases among males. However, among females, breast cancer is by far the most common form of new cancer cases. In fact, breast cancer is the most prevalent cancer worldwide, followed by prostate cancer. Prostate cancer is a very close second to lung cancer among the cancers with the highest rates of new cases among men.
Male vs. female deaths
Lung cancer is by far the deadliest form of cancer among males but is the second deadliest form of cancer among females. Breast cancer, the most prevalent form of cancer among females worldwide, is also the deadliest form of cancer among females. Although prostate cancer is the second most prevalent cancer among men, it is the fifth deadliest cancer. Lung, liver, stomach, colorectum, and oesophagus cancers all have higher deaths rates among males.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Mortality from lung cancer (ICD-10 C33-C34 equivalent to ICD-9 162). To reduce deaths from lung cancer. Legacy unique identifier: P00508
This dataset was created by Mathiew HErnandez
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Mortality from cervical cancer (ICD-10 C53 equivalent to ICD-9 180). To reduce deaths from cervical cancer Legacy unique identifier: P00188
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
AbstractIn Italy, approximately 400.000 new cases of malignant tumors are recorded every year. The average of annual deaths caused by tumors, according to the Italian Cancer Registers, is about 3.5 deaths and about 2.5 per 1,000 men and women respectively, for a total of about 3 deaths every 1,000 people. Long-term (at least a decade) and spatially detailed data (up to the municipality scale) are neither easily accessible nor fully available for public consultation by the citizens, scientists, research groups, and associations. Therefore, here we present a ten-year (2009–2018) database on cancer mortality rates (in the form of Standardized Mortality Ratios, SMR) for 23 cancer macro-types in Italy on municipal, provincial, and regional scales. We aim to make easily accessible a comprehensive, ready-to-use, and openly accessible source of data on the most updated status of cancer mortality in Italy for local and national stakeholders, researchers, and policymakers and to provide researchers with ready-to-use data to perform specific studies. Methods For a given locality, year, and cause of death, the SMR is the ratio between the observed number of deaths (Om) and the number of expected deaths (Em): SMR = Om/Em (1) where Om should be an available observational data and Em is estimated as the weighted sum of age-specific population size for the given locality (ni) per age-specific death rates of the reference population (MRi): Em = sum(MRi x ni) (2) MRi could be provided by a public health organization or be estimated as the ratio between the age-specific number of deaths of reference population (Mi) to the age-specific reference population size (Ni): MRi = Mi/Ni (3) Thus, the value of Em is weighted by the age distribution of deaths and population size. SMR assumes value 1 when the number of observed and expected deaths are equal. Following eqns. (1-3), the SMR was computed for single years of the period 2009-2018 and for single cause of death as defined by the International ICD-10 classification system by using the following data: age-specific number of deaths by cause of reference population (i.e., Mi) from the Italian National Institute of Statistics (ISTAT, (http://www.istat.it/en/, last access: 26/01/2022)); age-specific census data on reference population (i.e., Ni) from ISTAT; the observed number of deaths by cause (i.e., Om) from ISTAT; the age-specific census data on population (ni); the SMR was estimated at three different level of aggregation: municipal, provincial (equivalent to the European classification NUTS 3) and regional (i.e., NUTS2). The SMR was also computed for the broad category of malignant tumors (i.e. C00-C979, hereinafter cancer macro-type C), and for the broad category of malignant tumor plus non-malignant tumors (i.e. C00-C979 plus D0-D489, hereinafter cancer macro-type CD). Lower 90% and 95% confidence intervals of 10-year average values were computed according to the Byar method.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Mortality from malignant melanoma (ICD-10 C43 equivalent to ICD-9 172). To reduce deaths from malignant melanoma. Legacy unique identifier: P00644
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT OBJECTIVE To analyze inequalities in incidence, mortality, and estimated survival for neoplasms in men according to social vulnerability. METHODS Analysis of cases and deaths of all neoplasms and the five most common in men aged 30 years or older in the city of Campinas (SP), between 2010 and 2014, using data from the Population-Based Cancer Registry (RCBP) and the Mortality Information System (SIM). The areas of residence were grouped into five social vulnerability strata (SVS) using São Paulo Social Vulnerability Index. For each SVS, age-standardized incidence and mortality rates were calculated. A five-year survival proxy was calculated by complementing the ratio of the mortality rate to the incidence rate. Inequalities between strata were measured by the ratios between rates, the relative inequality index (RII) and the angular inequality index (AII). RESULTS RII revealed that the incidence of all neoplasms (0.66, 95%CI 0.62–0.69) and colorectal and lung cancers were lower among the most socially vulnerable, who presented a higher incidence of stomach and oral cavity cancer. Mortality rates for stomach, oral cavity, prostate and all types of cancer were higher in the most vulnerable segments, with no differences in mortality for colorectal and lung cancer. Survival was lower in the most social vulnerable stratum for all types of cancer studied. AII showed excess cases in the least vulnerable and deaths in the most vulnerable. Social inequalities were different depending on the tumor location and the indicator analyzed. CONCLUSION There is a trend of reversal of inequalities between incidence-mortality and incidence-survival, and the most social vulnerable segment presents lower survival rates for the types of cancer, pointing to the existence of inequality in access to early diagnosis and effective and timely treatment.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Mortality from all malignant neoplasms (ICD-10 C00-C97 equivalent to ICD-9 140-208). To reduce deaths from cancer. Legacy unique identifier: P00376
https://www.krebsdaten.de/Krebs/EN/Database/databasequery_step1_node.htmlhttps://www.krebsdaten.de/Krebs/EN/Database/databasequery_step1_node.html
The German Centre for Cancer Registry Data (ZfKD) provides the topical cancer statistics for Germany. In an interactive database query you will get information on incidence and mortality rates as well as for prevalence and survival rates for different types of cancer.
The cancer type with the highest age-standardized mortality rate in Latin America and the Caribbean in 2022 was prostate cancer with 13.9 deaths per 100,000 population. Breast cancer ranked second, with a mortality rate of 13.2 people per 100,000 population. In that year, breast cancer was the cancer type with the highest prevalence in the region.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can access data about cancer statistics in the United States including but not limited to searches by type of cancer and race, sex, ethnicity, age at diagnosis, and age at death. Background Surveillance Epidemiology and End Results (SEER) database’s mission is to provide information on cancer statistics to help reduce the burden of disease in the U.S. population. The SEER database is a project to the National Cancer Institute. The SEER database collects information on incidence, prevalence, and survival from specific geographic areas representing 28 percent of the United States population. User functionality Users can access a variety of reso urces. Cancer Stat Fact Sheets allow users to look at summaries of statistics by major cancer type. Cancer Statistic Reviews are available from 1975-2008 in table format. Users are also able to build their own tables and graphs using Fast Stats. The Cancer Query system provides more flexibility and a larger set of cancer statistics than F ast Stats but requires more input from the user. State Cancer Profiles include dynamic maps and graphs enabling the investigation of cancer trends at the county, state, and national levels. SEER research data files and SEER*Stat software are available to download through your Internet connection (SEER*Stat’s client-server mode) or via discs shipped directly to you. A signed data agreement form is required to access the SEER data Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available under “Data Documentation and Variable Recodes”.
In the period 2018 to 2022, a total of approximately 173 men per 100,000 inhabitants died of cancers of all kinds in the United States, compared to an overall cancer death rate of 126 per 100,000 population among women. This statistic shows cancer death rates in the U.S. for the period from 2018 to 2022, by type and gender.