Motor-vehicle deaths in the United States have decreased greatly since the 1970s and 1980s. In 2023, there were around **** deaths from motor vehicles per 100,000 population, compared to a rate of **** deaths per 100,000 in 1970. Laws requiring drivers and passengers to wear safety belts and advancements in safety technology in vehicles are major drivers for these reductions. Motor-vehicle accidents in the U.S. Americans spend a significant amount of time behind the wheel. Many cities lack convenient and reliable public transportation and, especially in rural areas, cars are a necessary means of transportation. In 2020, August was the month with the highest number of fatal crashes, followed by September and June. The deadliest time of day for fatal vehicle crashes is between * and * p.m., most likely due to the after-work rush hour and more people who are under the influence of alcohol. Drinking and driving among youth Drinking and driving remains a relevant problem across the United States and can be especially problematic among younger people. In 2023, around *** percent of those aged 21 to 25 years in the United States reported driving under the influence of alcohol in the preceding year. Furthermore, around ***** percent of those aged 16 to 20 drove after drinking within the past year.
The Motor Vehicle Collisions crash table contains details on the crash event. Each row represents a crash event. The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details.For the most accurate, up to date statistics on traffic fatalities, please refer to the NYPD Motor Vehicle Collisions page (updated weekly) or Vision Zero View (updated monthly).
Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.These tables present high-level breakdowns and time series. A list of all tables, including those discontinued, is available in the table index. More detailed data is available in our data tools, or by downloading the open dataset.
The tables below are the latest final annual statistics for 2023. The latest data currently available are provisional figures for 2024. These are available from the latest provisional statistics.
A list of all reported road collisions and casualties data tables and variables in our data download tool is available in the https://assets.publishing.service.gov.uk/media/683709928ade4d13a63236df/reported-road-casualties-gb-index-of-tables.ods">Tables index (ODS, 30.1 KB).
https://assets.publishing.service.gov.uk/media/66f44e29c71e42688b65ec43/ras-all-tables-excel.zip">Reported road collisions and casualties data tables (zip file) (ZIP, 16.6 MB)
RAS0101: https://assets.publishing.service.gov.uk/media/66f44bd130536cb927482733/ras0101.ods">Collisions, casualties and vehicles involved by road user type since 1926 (ODS, 52.1 KB)
RAS0102: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ec/ras0102.ods">Casualties and casualty rates, by road user type and age group, since 1979 (ODS, 142 KB)
RAS0201: https://assets.publishing.service.gov.uk/media/66f44bd1a31f45a9c765ec1f/ras0201.ods">Numbers and rates (ODS, 60.7 KB)
RAS0202: https://assets.publishing.service.gov.uk/media/66f44bd1e84ae1fd8592e8f0/ras0202.ods">Sex and age group (ODS, 167 KB)
RAS0203: https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods">Rates by mode, including air, water and rail modes (ODS, 24.2 KB)
RAS0301: https://assets.publishing.service.gov.uk/media/66f44bd1c71e42688b65ec3e/ras0301.ods">Speed limit, built-up and non-built-up roads (ODS, 49.3 KB)
RAS0302: https://assets.publishing.service.gov.uk/media/66f44bd1080bdf716392e8ee/ras0302.ods">Urban and rural roa
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Fatality Analysis Reporting System (FARS) was created in the United States by the National Highway Traffic Safety Administration (NHTSA) to provide an overall measure of highway safety, to help suggest solutions, and to help provide an objective basis to evaluate the effectiveness of motor vehicle safety standards and highway safety programs.
FARS contains data on a census of fatal traffic crashes within the 50 States, the District of Columbia, and Puerto Rico. To be included in FARS, a crash must involve a motor vehicle traveling on a trafficway customarily open to the public and result in the death of a person (occupant of a vehicle or a non-occupant) within 30 days of the crash. FARS has been operational since 1975 and has collected information on over 989,451 motor vehicle fatalities and collects information on over 100 different coded data elements that characterizes the crash, the vehicle, and the people involved.
FARS is vital to the mission of NHTSA to reduce the number of motor vehicle crashes and deaths on our nation's highways, and subsequently, reduce the associated economic loss to society resulting from those motor vehicle crashes and fatalities. FARS data is critical to understanding the characteristics of the environment, trafficway, vehicles, and persons involved in the crash.
NHTSA has a cooperative agreement with an agency in each state government to provide information in a standard format on fatal crashes in the state. Data is collected, coded and submitted into a micro-computer data system and transmitted to Washington, D.C. Quarterly files are produced for analytical purposes to study trends and evaluate the effectiveness highway safety programs.
There are 40 separate data tables. You can find the manual, which is too large to reprint in this space, here.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.nhtsa_traffic_fatalities.[TABLENAME]
. Fork this kernel to get started.
This dataset was provided by the National Highway Traffic Safety Administration.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph displays the number of car accident fatalities by type in the United States from 2010 to 2022. The x-axis represents the years, labeled from '10 to '22, while the y-axis indicates the number of fatalities. Each year includes data points for four categories: Passenger Vehicle, Pedestrian, Two-Wheeled Vehicle, and Large Truck fatalities. Passenger Vehicle fatalities range from a low of 21,076 in 2014 to a high of 26,650 in 2021. Pedestrian fatalities increase from 4,300 in 2010 to a peak of 7,467 in 2022. Two-Wheeled Vehicle fatalities vary between 5,022 in 2014 and 7,287 in 2022. Large Truck fatalities are the lowest among the categories, ranging from 346 in 2010 to 533 in 2022. The data reveals an overall upward trend in fatalities across all categories, particularly notable in the years 2021 and 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the annual number of fatal and severe road traffic injuries per population and per miles traveled by transport mode, for California, its regions, counties, county divisions, cities/towns, and census tracts. Injury data is from the Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol (CHP), 2002-2010 data from the Transportation Injury Mapping System (TIMS) . The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity]. Transportation accidents are the second leading cause of death in California for people under the age of 45 and account for an average of 4,018 deaths per year (2006-2010). Risks of injury in traffic collisions are greatest for motorcyclists, pedestrians, and bicyclists and lowest for bus and rail passengers. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience 4 times the death rate as Whites or Asians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.
The number of road traffic fatalities per one million inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 18.5 deaths (+13.81 percent). After the tenth consecutive increasing year, the number is estimated to reach 152.46 deaths and therefore a new peak in 2029. Depicted here are the estimated number of deaths which occured in relation to road traffic. They are set in relation to the population size and depicted as deaths per 100,000 inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road traffic fatalities per one million inhabitants in countries like Mexico and Canada.
In 2024, the state of California reported ***** motor-vehicle deaths, an increase from the year before. Death from motor-vehicles remains a relevant problem across the United States. Motor-vehicle deaths in the United States In the United States, a person’s lifetime odds of dying in a motor vehicle accident is around * in **. Death rates from motor vehicles have decreased in recent years and are significantly lower than the rates recorded in the ***** and *****. This is due to a mass improvement in car safety standards and features. For example, all states, with the exception of New Hampshire, have laws against not wearing safety belts. Drinking and driving One of the biggest causes of motor-vehicle deaths is driving while under the influence of alcohol. The state with the highest number of fatalities due to alcohol-impaired driving in 2022 was Texas, followed by California and Florida. Light trucks are the vehicle type most often involved in fatal crashes caused by alcohol-impaired drivers, with around ***** such accidents in the United States in 2022.
Traffic fatalities within the City of Chicago that are included in Vision Zero Chicago (VZC) statistics. Vision Zero is Chicago’s commitment to eliminating fatalities and serious injuries from traffic crashes. The VZC Traffic Fatality List is compiled by the Chicago Department of Transportation (CDOT) after monthly reviews of fatal traffic crash information provided by Chicago Police Department’s Major Accident Investigation Unit (MAIU). CDOT uses a standardized process – sometimes differing from other sources and everyday use of the term -- to determine whether a death is a “traffic fatality.” Therefore, the traffic fatalities included in this list may differ from the fatal crashes reported in the full Traffic Crashes dataset (https://data.cityofchicago.org/d/85ca-t3if). Official traffic crash data are published by the Illinois Department of Transportation (IDOT) on an annual basis. This VZC Traffic Fatality List is updated monthly. Once IDOT publishes its crash data for a year, this dataset is edited to reflect IDOT’s findings. VZC Traffic Fatalities can be linked with other traffic crash datasets using the “Person_ID” field. State of Illinois considers a “traffic fatality” as any death caused by a traffic crash involving a motor vehicle, within 30 days of the crash. Fatalities that meet this definition are included in this VZC Traffic Fatality List unless excluded by any criteria below. There may be records in this dataset that do not appear as fatalities in the other datasets. The following criteria exclude a death from being considered a "traffic fatality," and are derived from Federal and State reporting standards. The Medical Examiner determined that the primary cause of the fatality was not the traffic crash, including: a. The fatality was reported as a suicide based on a police investigation. b. The fatality was reported as a homicide in which the "party at fault" intentionally inflicted serious bodily harm that caused the victim's death. c. The fatality was caused directly and exclusively by a medical condition or the fatality was not attributable to road user movement on a public roadway. (Note: If a person driving suffers a medical emergency and consequently hits and kills another road user, the other road user is included, although the driver suffering a medical emergency is excluded.) The crash did not occur within a trafficway. The crash involved a train or other such mode of transport within the rail dedicated right-of-way. The fatality was on a roadway not under Chicago Police Department jurisdiction, including: a. The fatality was occurred on an expressway. The City of Chicago does not have oversight on the expressway system. However, a fatality on expressway ramps occurring within the City jurisdiction will be counted in VZC Traffic Fatality List. b. The fatality occurred outside City limits. Crashes on streets along the City boundary may be assigned to another jurisdiction after the investigation if it is determined that the crash started or substantially occurred on the side of the street that is outside the City limits. Jurisdiction of streets along the City boundary are split between City and neighboring jurisdictions along the street centerline. The fatality is not a person (e.g., an animal). Change 12/7/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.
In 2023, the number of deaths caused by traffic accidents amounted to approximately 11,628 cases in Vietnam. This indicated a decrease from the previous year. From 2013 to 2021, the number of traffic deaths has gradually declined, then increased dramatically in 2022, with the number of deaths due to crashes double than that in 2021.
The number of road accidents per one million inhabitants in the United States was forecast to continuously decrease between 2024 and 2029 by in total 2,490.4 accidents (-14.99 percent). After the eighth consecutive decreasing year, the number is estimated to reach 14,118.78 accidents and therefore a new minimum in 2029. Depicted here are the estimated number of accidents which occured in relation to road traffic. They are set in relation to the population size and depicted as accidents per one million inhabitants.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of road accidents per one million inhabitants in countries like Mexico and Canada.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2019 based on 12 countries was 19.05 deaths per 100,000 people. The highest value was in Venezuela: 39 deaths per 100,000 people and the lowest value was in Peru: 13.6 deaths per 100,000 people. The indicator is available from 2000 to 2019. Below is a chart for all countries where data are available.
TSGB0801 (RAS40001): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1021689/ras40001.ods" class="govuk-link">Reported accidents and casualties, population, vehicle population, index of vehicle mileage, by road user type and severity (ODS)
TSGB0803 (RAS10002): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1021648/ras10002.ods" class="govuk-link">Reported accidents and accident rates by road class and severity (ODS)
TSGB0812 (RAS30001): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1021664/ras30001.ods" class="govuk-link">Reported road casualties by road user type and severity (ODS)
TSGB0813 (RAS30018): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1021672/ras30018.ods" class="govuk-link">Reported casualty and accident rates by urban and rural roads, road class, road user type, severity and pedestrian involvement (ODS)
TSGB0810 (RAS51016): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/834419/ras51016.ods" class="govuk-link">Reported roadside screening breath tests and breath test failures (ODS)
TSGB0809 (RAS52002): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/982749/ras52002.ods" class="govuk-link">International comparisons of road deaths, number and rates by selected countries (ODS)
Due to difficulties sourcing complete data, TSGB0811 (RAS61001) has not been updated with 2020 figures. We intend to update this table when data becomes available.
TSGB0811 (RAS61001): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/982771/ras61001.ods" class="govuk-link">Motor vehicle offences: findings of guilt at all courts fixed penalty notices and written warnings: by type of offence (ODS)
TSGB0805 (RAI0501): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/761864/rai0501.ods" class="govuk-link">Railway accidents: casualties by type of accident
TSGB0806 (RAI0502): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/761865/rai0502.ods" class="govuk-link">Railway movement accidents: passenger casualties and casualty rates (ODS)
TSGB0807 (RAI0503): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/761866/rai0503.ods" class="govuk-link">Railway accidents: train accidents (ODS)
TSGB0808 (RAI0504): https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/761867/rai0504.ods" class="govuk-link">Signals passed at danger (SPADs) on Network Rail controlled infrastructure (ODS)
Road safety statistics
Email mailto:roadacc.stats@dft.gov.uk">roadacc.stats@dft.gov.uk
Rail statistics enquiries
<div>
<p class="govuk-body govuk-!-margin-bottom-4">
Email <a class="govuk-link" href="mailto:rail.stats@dft.gov.uk">rail.stats@dft.gov.uk</a>
</p>
<p class="govuk-body govuk-!-margin-bottom-4">
Media enquiries 0300 7777 878
</p>
</div>
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
No. of Traffic Accidents: Deaths: Panama data was reported at 13.000 Person in Dec 2024. This records an increase from the previous number of 7.000 Person for Nov 2024. No. of Traffic Accidents: Deaths: Panama data is updated monthly, averaging 6.000 Person from Nov 2019 (Median) to Dec 2024, with 62 observations. The data reached an all-time high of 13.000 Person in Dec 2024 and a record low of 1.000 Person in Aug 2020. No. of Traffic Accidents: Deaths: Panama data remains active status in CEIC and is reported by National Institute of Statistics and Census. The data is categorized under Global Database’s Panama – Table PA.TA008: Number of Traffic Accidents and Deaths: by Province. [COVID-19-IMPACT]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Albania Road Fatalities: Per One Million Inhabitants data was reported at 6.992 Ratio in 2023. This records an increase from the previous number of 5.904 Ratio for 2022. Albania Road Fatalities: Per One Million Inhabitants data is updated yearly, averaging 9.305 Ratio from Dec 1994 (Median) to 2023, with 30 observations. The data reached an all-time high of 13.125 Ratio in 1994 and a record low of 5.904 Ratio in 2022. Albania Road Fatalities: Per One Million Inhabitants data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Albania – Table AL.OECD.ITF: Road Traffic and Road Accident Fatalities: Non OECD Member: Annual. [COVERAGE] ROAD FATALITIES A road fatality is any person killed immediately or dying within 30 days as a result of an injury accident, excluding suicides. A killed person is excluded if the competent authority declares the cause of death to be suicide, i.e. a deliberate act to injure oneself resulting in death. For countries that do not apply the threshold of 30 days, conversion coefficients are estimated so that comparison on the basis of the 30-day definition can be made.
The Motor Vehicle Collisions vehicle table contains details on each vehicle involved in the crash. Each row represents a motor vehicle involved in a crash. The data in this table goes back to April 2016 when crash reporting switched to an electronic system.
The Motor Vehicle Collisions data tables contain information from all police reported motor vehicle collisions in NYC. The police report (MV104-AN) is required to be filled out for collisions where someone is injured or killed, or where there is at least $1000 worth of damage (https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ny_overlay_mv-104an_rev05_2004.pdf). It should be noted that the data is preliminary and subject to change when the MV-104AN forms are amended based on revised crash details. Due to success of the CompStat program, NYPD began to ask how to apply the CompStat principles to other problems. Other than homicides, the fatal incidents with which police have the most contact with the public are fatal traffic collisions. Therefore in April 1998, the Department implemented TrafficStat, which uses the CompStat model to work towards improving traffic safety. Police officers complete form MV-104AN for all vehicle collisions. The MV-104AN is a New York State form that has all of the details of a traffic collision. Before implementing Trafficstat, there was no uniform traffic safety data collection procedure for all of the NYPD precincts. Therefore, the Police Department implemented the Traffic Accident Management System (TAMS) in July 1999 in order to collect traffic data in a uniform method across the City. TAMS required the precincts manually enter a few selected MV-104AN fields to collect very basic intersection traffic crash statistics which included the number of accidents, injuries and fatalities. As the years progressed, there grew a need for additional traffic data so that more detailed analyses could be conducted. The Citywide traffic safety initiative, Vision Zero started in the year 2014. Vision Zero further emphasized the need for the collection of more traffic data in order to work towards the Vision Zero goal, which is to eliminate traffic fatalities. Therefore, the Department in March 2016 replaced the TAMS with the new Finest Online Records Management System (FORMS). FORMS enables the police officers to electronically, using a Department cellphone or computer, enter all of the MV-104AN data fields and stores all of the MV-104AN data fields in the Department’s crime data warehouse. Since all of the MV-104AN data fields are now stored for each traffic collision, detailed traffic safety analyses can be conducted as applicable.This indicator provides information about the mortality rate from motor vehicle crashes and traffic-related injuries, including among pedestrians. Death rate has been age-adjusted to the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Motor vehicle crashes are a leading cause of death from unintentional injury both in Los Angeles County and in the US. While many factors contribute to motor vehicle crash mortality, the built environment plays a critical role. Communities that are exposed to heavy traffic or that lack adequate walking infrastructure for pedestrians have higher rates of motor vehicle crash-related injuries and deaths. They are also more impacted by traffic-related environmental hazards, such as vehicle emissions and air pollution. In Los Angeles County, many of these communities are also home to a large number of low-income residents. Thus, motor vehicle crash mortality can be viewed as an environmental justice issue.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
These data represent the Age-Adjusted Colorado County Mortality Rate Per 100,000 Persons for Motor Vehicle Accident as the Underlying Cause of Death (2015-2019). Population estimates for the denominator are calculated from the 2015-2019 American Community Survey. These data are from the Colorado Department of Public Health and Environment Vital Records Death Dataset and are published annually by the Colorado Department of Public Health and Environment.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph displays the number of car accident fatalities in the United States from 2011 to 2024. The x-axis represents the years, labeled from '11 to '24, while the y-axis indicates the number of deaths resulting from car accidents. Fatalities range from a low of 29,135 in 2024 to a high of 43,230 in 2021. Over the period from 2011 to 2021, there is a general upward trend in fatalities, peaking in 2021. The data shows a slight decrease in 2022 and 2023, with fatalities at 42,514 and 40,990, respectively. In early estimates of 2024, there were 39,345 deaths, but this only includes the first three quarters. This data highlights fluctuations in annual car accident fatalities over the years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indonesia Number of Road Accident: Killed: Bali data was reported at 521.000 Person in 2017. This records an increase from the previous number of 461.000 Person for 2016. Indonesia Number of Road Accident: Killed: Bali data is updated yearly, averaging 544.000 Person from Dec 2003 (Median) to 2017, with 15 observations. The data reached an all-time high of 739.000 Person in 2014 and a record low of 262.000 Person in 2003. Indonesia Number of Road Accident: Killed: Bali data remains active status in CEIC and is reported by Central Bureau of Statistics. The data is categorized under Indonesia Premium Database’s Transport and Telecommunication Sector – Table ID.TA005: Number of Road Accident.
Motor-vehicle deaths in the United States have decreased greatly since the 1970s and 1980s. In 2023, there were around **** deaths from motor vehicles per 100,000 population, compared to a rate of **** deaths per 100,000 in 1970. Laws requiring drivers and passengers to wear safety belts and advancements in safety technology in vehicles are major drivers for these reductions. Motor-vehicle accidents in the U.S. Americans spend a significant amount of time behind the wheel. Many cities lack convenient and reliable public transportation and, especially in rural areas, cars are a necessary means of transportation. In 2020, August was the month with the highest number of fatal crashes, followed by September and June. The deadliest time of day for fatal vehicle crashes is between * and * p.m., most likely due to the after-work rush hour and more people who are under the influence of alcohol. Drinking and driving among youth Drinking and driving remains a relevant problem across the United States and can be especially problematic among younger people. In 2023, around *** percent of those aged 21 to 25 years in the United States reported driving under the influence of alcohol in the preceding year. Furthermore, around ***** percent of those aged 16 to 20 drove after drinking within the past year.